BASIC GEOMETRY AND TOPOLOGY HOMEWORK 1, DUE 8/21/2020

Problem 1. Consider the general linear group

$$GL_n(\mathbb{R}) = \{ A \in M_{n \times n}(\mathbb{R}) \mid \det A \neq 0 \}$$

- (a) Prove that GL_n(ℝ) is an open subset of M_{n×n}(ℝ) = ℝ^{n²}.
 (b) Prove that the map f : GL_n(ℝ) → GL_n(ℝ) defined by f(A) = A⁻¹ is continuous.¹

Problem 2. Prove that the product topology on $\mathbb{R} \times \mathbb{R}$ (where both \mathbb{R} factors are endowed with standard topology) agrees with the standard topology on \mathbb{R}^2 .

Problem 3. Prove the continuity criterion for maps to a subspace: if X, Y are topological spaces and $A \subset Y$ a subset, then

- (a) the inclusion $i: A \to Y$ is a continuous map;
- (b) a map $f: X \to A$ is continuous if and only if the composition $X \xrightarrow{f} A \xrightarrow{i} Y$ is continuous.

Problem 4. Prove the continuity criterion for maps out of a quotient: if X, Yare topological spaces, \sim an equivalence relation on X and X/\sim the quotient space (with quotient topology), then:

- (a) the quotient map $p: X \to X/\sim$ is continuous;
- (b) a map $f: X/ \sim \to Y$ is continuous if and only if the composition

 $X \xrightarrow{p} X / \sim \xrightarrow{f} Y$ is continuous.

Problem 5. British Rail metric on \mathbb{R}^n is defined by

(1)
$$d(x,y) = \begin{cases} ||x|| + ||y|| & \text{if } x \neq y, \\ 0 & \text{if } x = y \end{cases}$$

- (a) What do open balls $B_r^{BR}(x) = \{y \in \mathbb{R}^n \mid d(x,y) < r\}$ look like, depending on radius r > 0?
- (b) What is the metric topology on \mathbb{R}^n corresponding to the British Rail metric (1)? (I.e., the topology generated by subsets $B_r^{BR}(x)$ for $r > 0, x \in \mathbb{R}^n$.)

¹Hint: compose f with the inclusion $GL_n(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$, show that the composition is continuous and infer that f itself is continuous by the continuity criterion for maps to a subspace.