BASIC GEOMETRY AND TOPOLOGY HOMEWORK 10, DUE 10/30/2020

I Prove the following properties of pullbacks of differential forms.
(a) If $F: M \rightarrow N, G: K \rightarrow M$ are two smooth maps and α is a p-form on N, then

$$
(F \circ G)^{*} \alpha=G^{*}\left(F^{*} \alpha\right)
$$

(b) For α, β two p-forms on N and $F: M \rightarrow N$ a smooth map, one has

$$
F^{*}(\alpha+\beta)=F^{*} \alpha+F^{*} \beta
$$

(c) For α a p-form on N, β a q-form on N and and $F: M \rightarrow N$ a smooth map, one has

$$
F^{*}(\alpha \wedge \beta)=F^{*} \alpha \wedge F^{*} \beta
$$

II Fix a smooth manifold M. Let Ξ^{p} be the space of skew-symmetric p-fold multilinear maps ζ from p-tuples of vector fields to functions on M such that

$$
\zeta\left(X_{1}, \ldots, f X_{i} \ldots, X_{p}\right)=f \zeta\left(X_{1}, \ldots, X_{i}, \ldots, X_{p}\right)
$$

for any $f \in C^{\infty}(M)$ - i.e., ζ is $C^{\infty}(M)$-linear in each argument. Construct an isomorphism (of vector spaces) between Ξ^{p} and the space $\Omega^{p}(M)$ of differential p-forms.

III (Coordinate-free definition of the exterior derivative.) Fix a p-form α on a manifold M. Consider a multilinear map A from $(p+1)$-tuples of vector fields $X_{0}, X_{1}, \ldots, X_{p}$ to smooth functions given by

$$
\begin{align*}
A\left(X_{0}, \ldots, X_{p}\right)= & \sum_{i=0}^{p}(-1)^{i} X_{i}\left(\alpha\left(X_{0}, \ldots, \widehat{X}_{i}, \ldots, X_{p}\right)\right)+ \tag{1}\\
& +\sum_{0 \leq i<j \leq p}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \widehat{X}_{i}, \ldots, \widehat{X}_{j}, \ldots, X_{p}\right)
\end{align*}
$$

where the hat is the omission sign.
(a) Prove that A is skew-symmetric in $X_{0}, \ldots X_{p}$.
(b) Prove that A is $C^{\infty}(M)$-linear in each argument, i.e. $A\left(X_{0}, \ldots, f X_{i}, \ldots, X_{p}\right)=$ $f A\left(X_{0}, \ldots, X_{i}, \ldots, X_{p}\right)$ for any $f \in C^{\infty}(M) .{ }^{1}$ Thus, by Problem II, A corresponds to a $(p+1)$-form on M.
(c) Prove that $A=d \alpha$, using the definition of the exterior derivative on the right via local coordinates.

[^0]IV Let $M=\mathbb{R}^{3}$. For f a function, $\alpha=a_{1} d x_{1}+a_{2} d x_{2}+a_{3} d x_{3}$ a general 1-form and $\beta=b_{1} d x_{2} \wedge d x_{3}+b_{2} d x_{3} \wedge d x_{1}+b_{3} d x_{1} \wedge d x_{2}$ a general 2-form (here f, a_{i}, b_{i} are smooth functions of coordinates x_{1}, x_{2}, x_{3}), compute the exterior derivatives $d f, d \alpha, d \beta$. Compare with formulas for the gradient of a function, curl of a vector field and divergence of a vector field.

V Consider a 2-form on an open set U in S^{2} (the unit sphere in \mathbb{R}^{3}) given by

$$
\omega=\sin \theta d \theta \wedge d \phi
$$

where θ, ϕ are the spherical coordinates on S^{2} and U is given by $\theta \in(0, \pi)$, $\phi \in(-\pi, \pi)$. Recall that the spherical coordinates (r, θ, ϕ) on \mathbb{R}^{3} are related to Cartesian coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ by

$$
x_{1}=r \sin \theta \cos \phi, \quad x_{2}=r \sin \theta \sin \phi, \quad x_{3}=r \cos \theta
$$

and the unit sphere is given by $r=1$.
(a) Write ω in terms of the "stereographic coordinates" $\left(u_{1}, u_{2}\right)$ where the stereographic chart map is $S^{2} \backslash\{0,0,1\} \rightarrow \mathbb{R}^{2}$,

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(u_{1}, u_{2}\right)=\frac{1}{1-x_{3}}\left(x_{1}, x_{2}\right)
$$

Also, write ω in terms of the opposite stereographic chart $S^{2} \backslash\{0,0,-1\} \rightarrow$ \mathbb{R}^{2} given by

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(v_{1}, v_{2}\right)=\frac{1}{1+x_{3}}\left(x_{1}, x_{2}\right)
$$

(b) Using the previous, show that ω can be extended uniquely to a smooth 2-form on the entire S^{2}. (I.e. there exists a unique 2-form on S^{2} which restricts to ω on $U \subset S^{2}$.)
(c) Let $\rho_{t}^{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, for $i=1,2,3$, be the linear map of \mathbb{R}^{3} into itself representing the rotation about x_{i}-axis by angle t. Note that diffeomorphisms ρ_{t}^{i} restrict to diffeomorphisms of S^{2}. Prove that these diffeomorphisms leave the 2 -form ω invariant, in the sense that

$$
\left(\rho_{t}^{i}\right)^{*} \omega=\omega
$$

for any angle t and any $i=1,2,3$.

[^0]: ${ }^{1}$ It might be useful to first prove the following property of the Lie bracket: $[X, f Y]=f[X, Y]+X(f) Y,[f X, Y]=f[X, Y]-X Y(f)$ for X, Y two vector fields and f a function.

