BASIC GEOMETRY AND TOPOLOGY HOMEWORK 11, DUE 11/6/2020

I Prove that the inner product of a vector field X and a differential form $\alpha \in$ $\Omega^{p}(M)$, defined via $\left(\iota_{X} \alpha\right)\left(X_{1}, \ldots, X_{p-1}\right)=\alpha\left(X, X_{1}, \ldots, X_{p-1}\right)$ satisfies the Leibnitz identity

$$
\iota_{X}(\alpha \wedge \beta)=\iota_{X} \alpha \wedge \beta+(-1)^{p} \alpha \wedge \iota_{X} \beta
$$

Here α is a p-form and β is a q-form. ${ }^{1}$
II Let X and Y be two vector fields on a manifold M and α a p-form on M. Prove the following properties of the inner product and Lie derivative:
(a) $\iota_{X} \iota_{Y} \alpha=-\iota_{Y} \iota_{X} \alpha$.
(b) $\iota_{X} \mathcal{L}_{Y} \alpha-\mathcal{L}_{Y} \iota_{X} \alpha=\iota_{[X, Y]} \alpha$. Here \mathcal{L}_{Y} is the Lie derivative along Y.
(c) $\mathcal{L}_{X} \mathcal{L}_{Y} \alpha-\mathcal{L}_{Y} \mathcal{L}_{X} \alpha=\mathcal{L}_{[X, Y]} \alpha$.

III Consider the vector field $X=x_{1} \frac{\partial}{\partial x_{1}}+\cdots+x_{n} \frac{\partial}{\partial x_{n}}$ on \mathbb{R}^{n} (the "Euler vector field"). Show that if f is a homogeneous polynomial of degree k in coordinates x_{1}, \ldots, x_{n} and if $1 \leq i_{1}<\ldots<i_{p} \leq n$, then for the p-form $\alpha=f d x_{i_{1}} \wedge \cdots \wedge d x_{i_{p}}$, the Lie derivative along X is:

$$
\mathcal{L}_{X} \alpha=(k+p) \alpha
$$

IV Let M and N be two compact smooth manifolds. For $p \geq 0$, construct a natural linear map to the de Rham cohomology of the product:

$$
\Phi: \quad \bigoplus_{i=0}^{p} H^{i}(M) \otimes H^{p-i}(N) \rightarrow H^{p}(M \times N)
$$

Remark: In fact (you don't have to prove this), Φ is an isomorphism of vector spaces and the fact that the cohomology of the product (r.h.s.) can be computed in terms of the cohomology of M and N (l.h.s.) is known as the Künneth formula.

V A symplectic form on a smooth n-manifold M is a 2 -form ω on M such that - $d \omega=0$, i.e., ω is closed;

- ω is non-degenerate, i.e. for any $x \in M, \omega_{x}$ is a non-degenerate skewsymmetric bilinear form on the tangent space $T_{x} M .{ }^{2}$

[^0](a) Show that in order to have a symplectic form, the manifold M must necessarily have even dimension.
(b) Show that on $\mathbb{R}^{2 n}$ with coordinates $x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$, the 2 -form
$$
\omega=d x_{1} \wedge d p_{1}+d x_{2} \wedge d p_{2}+\cdots+d x_{n} \wedge d p_{n}
$$ is a symplectic form.
(c) Consider $M=T^{*} N$ the cotangent bundle of a smooth manifold N. In a coordinate chart ${ }^{3} \pi^{-1} U$ with coordinates $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ on $T^{*} N$ associated to a coordinate chart $U \subset N$ with coordinates $\left(x_{1}, \ldots, x_{n}\right)$ on the base N, define a 2 -form locally as
\[

$$
\begin{equation*}
\omega=d x_{1} \wedge d y_{1}+\cdots+d x_{n} \wedge d y_{n} \tag{1}
\end{equation*}
$$

\]

- Prove that (1) defines a global ${ }^{4} 2$-form on $T^{*} N$ (by checking that expressions (1) written in terms of two coordinate charts on $T^{*} N$ agree on an overlap).
- Prove that the resulting global 2-form ω is a symplectic form on the cotangent bundle $T^{*} N$.

[^1]
[^0]: ${ }^{1}$ The following identity mentioned in class may be useful: $(\alpha \wedge \beta)\left(X_{1}, \ldots, X_{p+q}\right)=$ $\sum_{\sigma \in \operatorname{Sh}_{p, q}} \operatorname{sign}(\sigma) \cdot \alpha\left(X_{\sigma(1)}, \ldots, X_{\sigma(p)}\right) \beta\left(X_{\sigma(p+1)}, \ldots, X_{\sigma(p+q)}\right)$. Where the sum is over $(p, q)-$ shuffles, i.e., permutations of $\{1,2, \ldots, p+q\}$ such that $\sigma(1)<\ldots<\sigma(p)$ and $\sigma(p+1)<\ldots<$ $\sigma(p+q)$.
 ${ }^{2}$ I.e., one has skew-symmetry: $\omega_{x}(u, v)=-\omega_{x}(v, u)$ for any $u, v \in T_{x} M$ and non-degeneracy: $\omega_{x}(u, v)=0$ for any $u \in T_{x} M$ implies $v=0$.

[^1]: ${ }^{3}$ Here $\pi: T^{*} N \rightarrow N$ is the bundle projection.
 ${ }^{4}$ As opposed to locally defined.

