BASIC GEOMETRY AND TOPOLOGY HOMEWORK 11, DUE 11/6/2020

I Prove that the inner product of a vector field X and a differential form $\alpha \in \Omega^p(M)$, defined via $(\iota_X \alpha)(X_1, \ldots, X_{p-1}) = \alpha(X, X_1, \ldots, X_{p-1})$ satisfies the Leibnitz identity

$$\iota_X(\alpha \wedge \beta) = \iota_X \alpha \wedge \beta + (-1)^p \alpha \wedge \iota_X \beta$$

Here α is a *p*-form and β is a *q*-form.¹

- II Let X and Y be two vector fields on a manifold M and α a p-form on M. Prove the following properties of the inner product and Lie derivative:
 - (a) $\iota_X \iota_Y \alpha = -\iota_Y \iota_X \alpha$.
 - (b) $\iota_X \mathcal{L}_Y \alpha \mathcal{L}_Y \iota_X \alpha = \iota_{[X,Y]} \alpha$. Here \mathcal{L}_Y is the Lie derivative along Y.
 - (c) $\mathcal{L}_X \mathcal{L}_Y \alpha \mathcal{L}_Y \mathcal{L}_X \alpha = \mathcal{L}_{[X,Y]} \alpha.$
- III Consider the vector field $X = x_1 \frac{\partial}{\partial x_1} + \cdots + x_n \frac{\partial}{\partial x_n}$ on \mathbb{R}^n (the "Euler vector field"). Show that if f is a homogeneous polynomial of degree k in coordinates x_1, \ldots, x_n and if $1 \leq i_1 < \ldots < i_p \leq n$, then for the *p*-form $\alpha = f dx_{i_1} \wedge \cdots \wedge dx_{i_p}$, the Lie derivative along X is:

$$\mathcal{L}_X \alpha = (k+p)\,\alpha$$

IV Let M and N be two compact smooth manifolds. For $p \ge 0$, construct a natural linear map to the de Rham cohomology of the product:

$$\Phi: \quad \bigoplus_{i=0}^{p} H^{i}(M) \otimes H^{p-i}(N) \to H^{p}(M \times N)$$

Remark: In fact (you don't have to prove this), Φ is an *isomorphism* of vector spaces and the fact that the cohomology of the product (r.h.s.) can be computed in terms of the cohomology of M and N (l.h.s.) is known as the Künneth formula.

- V A symplectic form on a smooth n-manifold M is a 2-form ω on M such that
 - $d\omega = 0$, i.e., ω is closed;
 - ω is non-degenerate, i.e. for any $x \in M$, ω_x is a non-degenerate skewsymmetric bilinear form on the tangent space $T_x M$.²

¹The following identity mentioned in class may be useful: $(\alpha \land \beta)(X_1, \ldots, X_{p+q}) = \sum_{\sigma \in \operatorname{Sh}_{p,q}} \operatorname{sign}(\sigma) \cdot \alpha(X_{\sigma(1)}, \ldots, X_{\sigma(p)}) \beta(X_{\sigma(p+1)}, \ldots, X_{\sigma(p+q)})$. Where the sum is over (p,q)-shuffles, i.e., permutations of $\{1, 2, \ldots, p+q\}$ such that $\sigma(1) < \ldots < \sigma(p)$ and $\sigma(p+1) < \ldots < \sigma(p+q)$.

²I.e., one has skew-symmetry: $\omega_x(u,v) = -\omega_x(v,u)$ for any $u, v \in T_x M$ and non-degeneracy: $\omega_x(u,v) = 0$ for any $u \in T_x M$ implies v = 0.

- (a) Show that in order to have a symplectic form, the manifold M must necessarily have even dimension.
- (b) Show that on \mathbb{R}^{2n} with coordinates $x_1, \ldots, x_n, p_1, \ldots, p_n$, the 2-form

$$\omega = dx_1 \wedge dp_1 + dx_2 \wedge dp_2 + \dots + dx_n \wedge dp_n$$

is a symplectic form.

- (c) Consider $M = T^*N$ the cotangent bundle of a smooth manifold N. In a coordinate chart³ $\pi^{-1}U$ with coordinates $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ on T^*N associated to a coordinate chart $U \subset N$ with coordinates (x_1, \ldots, x_n) on the base N, define a 2-form locally as
- (1)

 $\omega = dx_1 \wedge dy_1 + \dots + dx_n \wedge dy_n$

- Prove that (1) defines a global⁴ 2-form on T^*N (by checking that expressions (1) written in terms of two coordinate charts on T^*N agree on an overlap).
- Prove that the resulting global 2-form ω is a symplectic form on the cotangent bundle T^*N .

 $\mathbf{2}$

³Here $\pi: T^*N \to N$ is the bundle projection. ⁴As opposed to locally defined.