BASIC GEOMETRY AND TOPOLOGY HOMEWORK 7, DUE 10/9/2020

- I Prove that if M is an m-dimensional smooth manifold and N is an n-dimensional smooth manifold, then the Cartesian product $M \times N$ has the structure of an (m + n)-dimensional smooth manifold.
- II Consider the function $f : \mathbb{R}^2 \to R$ given by $f(x_1, x_2) = x_1 x_2$. Which $c \in \mathbb{R}$ in the codomain are the *regular*¹ values of f? (And hence $f^{-1}(c)$ is guaranteed to be a smooth manifold.)
- III (a) Fix $n \ge 1$. Prove that the unitary group (a.k.a. the group of unitary matrices)

$$U(n) = \{A \in \operatorname{Mat}_{n \times n}^{\mathbb{C}} \mid A^{\dagger}A = \mathbf{1}\}$$

is a smooth manifold. What is its dimension?² Is it compact? Here $\operatorname{Mat}_{n \times n}^{\mathbb{C}}$ are square $n \times n$ matrices with complex entries, $A^{\dagger} = \overline{A}^{T}$ is the adjoint matrix (the conjugate-transpose), **1** is the unit matrix.

- (b) Prove that the special linear group $SL(n, \mathbb{R}) = \{A \in \operatorname{Mat}_{n \times n} | \det A = 1\}$ is a smooth manifold of dimension $n^2 1$.³
- IV (a) Find the tangent space to $SL(n,\mathbb{R})$ at **1** as ker $DF_1 \subset \operatorname{Mat}_{n \times n}$ with $F : \operatorname{Mat}_{n \times n} \to \mathbb{R}$ given by $A \mapsto \det A$.
 - (b) Find the tangent space to U(n) at **1** (as a subspace of $\operatorname{Mat}_{n \times n}^{\mathbb{C}}$).

¹Recall that, given a map $F : \mathbb{R}^{m+n} \to \mathbb{R}^m$, a point $c \in \mathbb{R}^m$ is called a "regular value" of F if for each preimage $a \in F^{-1}(c)$, the differential $DF_a : \mathbb{R}^{m+n} \to \mathbb{R}^m$ is surjective.

²Warning: note that the dimension of $\operatorname{Mat}_{n \times n}^{\mathbb{C}}$ as a real vector space is $2n^2$, not n^2 . ³A property of determinants you might find useful: for A an invertible matrix, one has $\det(A + H) = \det A \cdot (1 + \operatorname{tr}(A^{-1}H) + r(A, H))$ where $\lim_{H \to 0} r(A, H)/||H|| = 0$.

BASIC GEOMETRY AND TOPOLOGY HOMEWORK 7, DUE 10/9/2020

V Let S^n be the unit sphere in \mathbb{R}^{n+1} with the atlas (U^\pm,ϕ^\pm) with

$$U^{\pm} = S^n \setminus \{ (0, \dots, 0, \pm 1) \} \xrightarrow{\phi^{\pm}} \mathbb{R}^n$$
$$(x_0, \dots, x_n) \xrightarrow{\phi^{\pm}} \frac{1}{1 \mp x_n} (x_0, \dots, x_{n-1})$$

Denote (u_1, \ldots, u_n) the coordinates in chart (U^+, ϕ^+) and (v_1, \ldots, v_n) the coordinates in the chart (U^-, ϕ^-) . Fix a point $a \in U^+ \cap U^-$. (a) Let

(1)
$$\alpha = \sum_{i=1}^{n} \alpha_i (du_i)_a \quad \in T_a^* S^n$$

be a vector in the cotangent space⁴ at a point $a \in S^n$, with α_i some fixed real coefficients. Express α defined by (1) in terms of the basis $\{(dv_i)_a\}$ in the cotangent space $T^*_a S^n$ (i.e. find the coefficients in terms of α_i 's).

(b) Let

 $\mathbf{2}$

(2)
$$\xi = \sum_{i=1}^{n} \xi_i \left(\frac{\partial}{\partial u_i}\right)_a \in T_a S^n$$

be a tangent vector to S^n at a, with ξ_i some coefficients. Express ξ in terms of the basis $\left\{ \left(\frac{\partial}{\partial v_i} \right)_a \right\}$ in the tangent space $T_a S^n$.

⁴In the class we used the notation T_a^* for the cotangent space; here we are opting for the more explicit notation $T_a^*S^n$ to emphasize that it is the cotangent space to the sphere, not to the ambient \mathbb{R}^{n+1} .