BASIC GEOMETRY AND TOPOLOGY HOMEWORK 7, DUE 10/9/2020

I Prove that if M is an m-dimensional smooth manifold and N is an n-dimensional smooth manifold, then the Cartesian product $M \times N$ has the structure of an $(m+n)$-dimensional smooth manifold.

II Consider the function $f: \mathbb{R}^{2} \rightarrow R$ given by $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$. Which $c \in \mathbb{R}$ in the codomain are the regular ${ }^{1}$ values of f ? (And hence $f^{-1}(c)$ is guaranteed to be a smooth manifold.)

III (a) Fix $n \geq 1$. Prove that the unitary group (a.k.a. the group of unitary matrices)

$$
U(n)=\left\{A \in \operatorname{Mat}_{n \times n}^{\mathbb{C}} \mid A^{\dagger} A=\mathbf{1}\right\}
$$

is a smooth manifold. What is its dimension? ${ }^{2}$ Is it compact? Here Mat ${ }_{n \times n}^{\mathbb{C}}$ are square $n \times n$ matrices with complex entries, $A^{\dagger}=\bar{A}^{T}$ is the adjoint matrix (the conjugate-transpose), $\mathbf{1}$ is the unit matrix.
(b) Prove that the special linear group $S L(n, \mathbb{R})=\left\{A \in \operatorname{Mat}_{n \times n} \mid \operatorname{det} A=1\right\}$ is a smooth manifold of dimension $n^{2}-1 .{ }^{3}$

IV (a) Find the tangent space to $S L(n, \mathbb{R})$ at $\mathbf{1}$ as $\operatorname{ker} D F_{\mathbf{1}} \subset \operatorname{Mat}_{n \times n}$ with F : Mat $_{n \times n} \rightarrow \mathbb{R}$ given by $A \mapsto \operatorname{det} A$.
(b) Find the tangent space to $U(n)$ at $\mathbf{1}$ (as a subspace of Mat ${ }_{n \times n}^{\mathbb{C}}$).

[^0]V Let S^{n} be the unit sphere in \mathbb{R}^{n+1} with the atlas ($U^{ \pm}, \phi^{ \pm}$) with

$$
\begin{array}{rlc}
U^{ \pm}=S^{n} \backslash\{(0, \ldots, 0, \pm 1)\} & \xrightarrow{\phi^{ \pm}} & \mathbb{R}^{n} \\
\left(x_{0}, \ldots, x_{n}\right) & \mapsto & \frac{1}{1 \mp x_{n}}\left(x_{0}, \ldots, x_{n-1}\right)
\end{array}
$$

Denote $\left(u_{1}, \ldots, u_{n}\right)$ the coordinates in chart $\left(U^{+}, \phi^{+}\right)$and $\left(v_{1}, \ldots, v_{n}\right)$ the coordinates in the chart $\left(U^{-}, \phi^{-}\right)$. Fix a point $a \in U^{+} \cap U^{-}$.
(a) Let

$$
\begin{equation*}
\alpha=\sum_{i=1}^{n} \alpha_{i}\left(d u_{i}\right)_{a} \quad \in T_{a}^{*} S^{n} \tag{1}
\end{equation*}
$$

be a vector in the cotangent space ${ }^{4}$ at a point $a \in S^{n}$, with α_{i} some fixed real coefficients. Express α defined by (1) in terms of the basis $\left\{\left(d v_{i}\right)_{a}\right\}$ in the cotangent space $T_{a}^{*} S^{n}$ (i.e. find the coefficients in terms of α_{i} 's).
(b) Let

$$
\begin{equation*}
\xi=\sum_{i=1}^{n} \xi_{i}\left(\frac{\partial}{\partial u_{i}}\right)_{a} \quad \in T_{a} S^{n} \tag{2}
\end{equation*}
$$

be a tangent vector to S^{n} at a, with ξ_{i} some coefficients. Express ξ in terms of the basis $\left\{\left(\frac{\partial}{\partial v_{i}}\right)_{a}\right\}$ in the tangent space $T_{a} S^{n}$.

[^1]
[^0]: ${ }^{1}$ Recall that, given a map $F: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{m}$, a point $c \in \mathbb{R}^{m}$ is called a "regular value" of F if for each preimage $a \in F^{-1}(c)$, the differential $D F_{a}: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{m}$ is surjective.
 ${ }^{2}$ Warning: note that the dimension of Mat ${ }_{n \times n}^{\mathrm{C}}$ as a real vector space is $2 n^{2}$, not n^{2}.
 ${ }^{3} \mathrm{~A}$ property of determinants you might find useful: for A an invertible matrix, one has $\operatorname{det}(A+H)=\operatorname{det} A \cdot\left(1+\operatorname{tr}\left(A^{-1} H\right)+r(A, H)\right)$ where $\lim _{H \rightarrow 0} r(A, H) /\|H\|=0$.

[^1]: ${ }^{4}$ In the class we used the notation T_{a}^{*} for the cotangent space; here we are opting for the more explicit notation $T_{a}^{*} S^{n}$ to emphasize that it is the cotangent space to the sphere, not to the ambient \mathbb{R}^{n+1}.

