BASIC GEOMETRY AND TOPOLOGY HOMEWORK 8, DUE 10/16/2020

- I Prove the "regular value level set theorem" for manifolds formulated in class: if $F: M \to N$ is a smooth map of smooth manifolds and $c \in N$ a point such that for any $a \in F^{-1}(c)$, the derivative $DF_a : T_aM \to T_{F(a)}N$ is surjective, then $F^{-1}(c)$ is a submanifold of M. Denoting $\iota: F^{-1}(c) \to M$ the inclusion map, prove that $\operatorname{im}(D\iota_a) = \ker(DF_a)$ for any $a \in M$.¹
- II One calls a smooth map between smooth manifolds $F: M \to N$ an *immersion* if DF_a is injective for each $a \in M$. One calls F a submersion if DF_a is surjective for each $a \in M$.²
 - (a) Is the map $\mathbb{R} \to \mathbb{R}^2$ given by $t \mapsto (t^2, t^3)$ an immersion?

 - (b) Is the map $\mathbb{R} \to \mathbb{R}$ given by $t \to t^3$ a submersion? (c) Is the map $\mathbb{R}^2 \setminus \{0\} \to S^1$ given by $x \mapsto \frac{x}{||x||}$ (with $x \in \mathbb{R}^2 \setminus \{0\}$) a submersion?
- III Denote $\iota: S^2 \to \mathbb{R}^3$ the inclusion of S^2 as a unit sphere in \mathbb{R}^3 . Let $f = \iota^* x_3$ the pullback of the coordinate function x_3 on \mathbb{R}^3 to S^2 by the inclusion. Compute the derivative df_a (for a general point a) in a stereographic chart on S^2 ,

$$\begin{array}{rcccc} S^2 \backslash (0,0,1) & \to & \mathbb{R}^2 \\ (x_1, x_2, x_3) & \mapsto & (u_1, u_2) = \frac{1}{1 - x_3} (x_1, x_2) \end{array}$$

- IV Let $f: M \to \mathbb{R}$ be a smooth function on a smooth manifold M and fix a point $a \in M$. Explain how to identify the derivative $df_a \in T_a^*M$ of f as a function and the derivative $Df_a: T_aM \to T_{f(a)}\mathbb{R}$ of f as a map between manifolds?
- V Consider a one-parameter group of diffeomorphisms of \mathbb{R}^2 given by $\phi_t : (x_1, x_2) \mapsto$ $(\cos(t)x_1 - \sin(t)x_2, \sin(t)x_1 + \cos(t)x_2).$
 - (a) Find the vector field X corresponding to ϕ_t (via differentiation at t = 0).
 - (b) Calculate X(f) where $f = (x_1)^2 + (x_2)^2$.

¹You can use the case $F : \mathbb{R}^{m+n} \to \mathbb{R}^m$ discussed in the class as a starting point.

²Note that the regular value level set theorem implies that each fiber of a submersion $F: M \to M$

N (i.e. preimage $F^{-1}(c)$ of any $c \in N$) is a submanifold of M.