BASIC GEOMETRY AND TOPOLOGY HOMEWORK 9, DUE 10/23/2020

I (a) Consider the vector field $X=\left(1-x^{2}\right) \frac{\partial}{\partial x}$ on the open interval $M=(-1,1)$ Construct explicitly (by solving the ODE) the maximal integral curve of X passing at time $t=0$ through a point $a \in M$. Does the global flow of X exist? (I.e., as a map $\phi: \mathbb{R} \times M \rightarrow M$.) If yes, find it explicitly; otherwise, write find the maximal non-global flow and its domain $U \subset \mathbb{R} \times M$.
(b) Same questions as in (a), for the vector field $Y=\frac{\partial}{\partial x}$ on the same manifold $M=(-1,1)$.

II Conseider the vector fields X, Y from the Problem I and compute their Lie bracket in two ways:
(a) Calculate the Lie bracket of X and Y as 1

$$
[X, Y]_{a}=-\left.\frac{d}{d t}\right|_{t=0}\left(D \phi_{-t}^{Y}\right)_{\phi_{t}^{Y}(a)} X_{\phi_{t}^{Y}(a)}
$$

(b) Compare the result of (c) with the direct computation of the Lie bracket $[X, Y]=X \circ Y-Y \circ X$.

III Let V be an n-dimensional real vector space. The symmetric algebra $S^{\bullet} V$ of V is defined as the quotient of the tensor algebra $T V$ by the ideal generated by elements of the form $v \otimes w-w \otimes v$ with $v, w \in V$. Let $S^{p} V:=\pi\left(V^{\otimes p}\right)$ be the p-th symmetric power of V, where $\pi: T V \rightarrow S^{\bullet} V$ is the quotient map.
(a) Prove that the product in $S^{\bullet} V$ is commutative: for $\alpha \in S^{p} V, \beta \in S^{q} V$, one has $\alpha \beta=\beta \alpha \in S^{p+q} V .{ }^{2}$
(b) Prove that if v_{1}, \ldots, v_{n} is a basis in V then the set of vectors $\left\{v_{i_{1}} \cdots v_{i_{p}}\right\}_{1 \leq i_{1} \leq \cdots \leq i_{p} \leq n}$ forms a basis in $S^{p} V$.
(c) Find the dimension of $S^{p} V$ as a real vector space.

IV Consider the triple of flows ϕ_{t}^{i} on \mathbb{R}^{3} given by rotation by the angle t about the coordinate axis x_{i}, with $i=1,2,3$. 3
(a) Note that one has an action of the group $S O(3)$ on \mathbb{R}^{3} (by matrix-vector multiplication) and flows ϕ_{t}^{i} correspond to three special 1-dimensional subgroups in $S O(3)$; identify these subgroups.
(b) For each flow ϕ_{t}^{i}, find the corresponding vector field R_{i} on \mathbb{R}^{3}.
(c) Prove that we have the following Lie brackets:

$$
\left[R_{1}, R_{2}\right]=-R_{3}, \quad\left[R_{2}, R_{3}\right]=-R_{1}, \quad\left[R_{3}, R_{1}\right]=-R_{2}
$$

[^0]V (a) Let V, W, U be finite-dimensional vector spaces and $\mathbb{B}: V \times W \rightarrow U$ a bilinear map. Let ϕ be the map from U^{*} to bilinear forms on $V \times W$ given by $\phi(\xi)=\xi \circ \mathbb{B}$. Let $\beta: V \otimes W \rightarrow U$ be the dual map to $\phi .^{4}$ Show that then one has $\beta(v \otimes w)=\mathbb{B}(v, w)$, i.e., β is the map making the universal property of the tensor product work for $U \otimes V$ defined as the dual of the space of bilinear forms on $V \times W$.
(b) The general construction of the tensor product (not requiring the vector spaces to be finite-dimensional) is as the quotient space

$$
V \otimes W:=F(V \times W) / \sim
$$

where

$$
F(V \times W)=\left\{\sum_{i} c_{i}\left(v_{i}, w_{i}\right) \mid c_{i} \in \mathbb{R}, v_{i} \in V, w_{i} \in W\right\}
$$

- formal sums of pairs of vectors from V, W with real coefficients, where only finite sums are allowed. ${ }^{5}$ The equivalence relation \sim is generated by $(v, w)+\left(v^{\prime}, w\right) \sim\left(v+v^{\prime}, w\right), \quad(v, w)+\left(v, w^{\prime}\right) \sim\left(v, w+w^{\prime}\right), \quad c(v, w) \sim(c v, w) \sim(v, c w)$

The tensor product $v \otimes w$ of two vectors $v \in V, w \in W$ is defined as the equivalence class of the pair (v, w). Prove that for finite-dimensional vector spaces this construction is equivalent to the one given in class (the dual space to the space of bilinear forms on $V \times W)$.

[^1]
[^0]: ${ }^{1}$ This formula is equivalent to the "geometric" formula for the Lie bracket of vector fields $[X, Y]$ given in the class: the roles of X, Y are interchanged and the total sign is changed.
 ${ }^{2}$ The product in $T V$ is defines as induced from the product in $T V$, i.e., if $\alpha=\pi(a), \beta=\pi(b)$, then $\alpha \beta=\pi(a \otimes b)$.
 ${ }^{3}$ We understand that the rotation is counterclockwise if seen from the positive direction of the axis.

[^1]: ${ }^{4}$ More precisely: the dual map to ϕ goes to $\left(U^{*}\right)^{*}$ and we compose it with the canonical isomorphism $\left(U^{*}\right)^{*} \rightarrow U$ (the inverse of the canonical inclusion $U \rightarrow\left(U^{*}\right)^{*}, u \mapsto\left(\xi \in U^{*} \mapsto \xi(u)\right)$ which for U finite-dimensional is an isomorphism) to obtain β.
 ${ }^{5} F(V \times W)$ is called the "free vector space" on the set $V \times W$.

