BASIC GEOMETRY AND TOPOLOGY HOMEWORK 9, DUE
10/23/2020

I (a) Consider the vector field X = (1—22)-Z on the open interval M = (—1,1)
Construct explicitly (by solving the ODE) the maximal integral curve of
X passing at time ¢ = 0 through a point a € M. Does the global flow of X
exist? (Le.,as amap ¢ : Rx M — M.) If yes, find it explicitly; otherwise,

write find the maximal non-global flow and its domain U C R x M.
(b) Same questions as in (a), for the vector field Y = a% on the same manifold

M = (-1,1).

IT Conseider the vector fields X,Y from the Problem I and compute their Lie
bracket in two ways:
(a) Calculate the Lie bracket of X and Y as’
d Y
(X, Y] =~ at o (D¢—t)¢y(a)X¢f(a)
(b) Compare the result of (¢) with the direct computation of the Lie bracket
[X,)Y]=XoY -YoX.

III Let V' be an n-dimensional real vector space. The symmetric algebra S*V of

V' is defined as the quotient of the tensor algebra T'V by the ideal generated

by elements of the form v ® w — w @ v with v,w € V. Let SPV := 7(V®P) be

the p-th symmetric power of V, where m : TV — S°V is the quotient map.

(a) Prove that the product in S*V is commutative: for o € SPV, g € SV,
one has aff = Ba € SPHIV 2

(b) Prove that ifvy,..., v, is a basis in V then the set of vectors {v;, - - v;, }1<i, <..<i,<n
forms a basis in SPV.

(¢) Find the dimension of SPV as a real vector space.

IV Consider the triple of flows ¢! on R? given by rotation by the angle ¢ about
the coordinate axis x;, with ¢ = 1,2,3.3
(a) Note that one has an action of the group SO(3) on R? (by matrix-vector
multiplication) and flows ¢! correspond to three special 1-dimensional
subgroups in SO(3); identify these subgroups.
(b) For each flow ¢!, find the corresponding vector field R; on R3.
(c) Prove that we have the following Lie brackets:

[R1, R3] = —R3, [Ra,R3]=—Ry, [Rs3,Ri]=—-R;

IThis formula is equivalent to the “geometric” formula for the Lie bracket of vector fields [X, Y]
given in the class: the roles of X,Y are interchanged and the total sign is changed.

2The product in TV is defines as induced from the product in TV, i.e., if a = w(a), B =m(b),
then aff = w(a ® b).

3We understand that the rotation is counterclockwise if seen from the positive direction of the
axis.
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V (a)

(v, W)+, w) ~ (v+v',w), (v,w)+(v,w') ~ (v,w+w’), c(v,w)~ (cv,w) ~ (v, cw)
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Let V,W,U be finite-dimensional vector spaces and B : V x W — U a
bilinear map. Let ¢ be the map from U* to bilinear forms on V' x W given
by ¢(¢) =€oB. Let 3: V ® W — U be the dual map to ¢.* Show that
then one has (v ® w) = B(v, w), i.e., § is the map making the universal
property of the tensor product work for U ® V' defined as the dual of the
space of bilinear forms on V' x W.

The general construction of the tensor product (not requiring the vector
spaces to be finite-dimensional) is as the quotient space

VoW :=FV x W)/~
where
F(VxW)= {Zci(vi,wi) | ci € Ryv; € Viw; € W}

— formal sums of pairs of vectors from V, W with real coefficients, where
only finite sums are allowed.® The equivalence relation ~ is generated by

The tensor product v ® w of two vectors v € V, w € W is defined as the

equivalence class of the pair (v,w). Prove that for finite-dimensional vector
spaces this construction is equivalent to the one given in class (the dual space
to the space of bilinear forms on V' x W).

4More precisely: the dual map to ¢ goes to (U*)* and we compose it with the canonical
isomorphism (U*)* — U (the inverse of the canonical inclusion U — (U*)*, u — (£ € U* — £(u))
which for U finite-dimensional is an isomorphism) to obtain 3.

SF(V x W) is called the “free vector space” on the set V x W.



