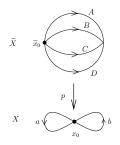
## MIDTERM EXAM, DUE 9/23/2020 AT 11AM

**Problem 1.** Prove that any continuous map  $f : \mathbb{RP}^2 \to S^1$  is homotopic to the constant map  $f_0$  sending each point of  $\mathbb{RP}^2$  to the point  $1 \in S^1$ .<sup>1</sup>

**Problem 2.** Consider the covering



Here  $\widetilde{X}$  and X are understood as graphs (1-dimensional CW complexes);  $\widetilde{X}$  is a graph with two vertices and four edges and X is a graph with one vertex and two edges. The covering map homeomorphically identifies the edges of  $\widetilde{X}$  with the edges of X according to

$$p: A \to a, B \to \overline{a}, C \to b, D \to b$$

where the overline means "traverse the edge in the opposite direction." Describe explicitly<sup>2</sup> the subgroup  $H = p_* \pi_1(\widetilde{X}, \widetilde{x}_0)$  in  $G = \pi_1(X, x_0) = \langle \alpha, \beta \rangle$ . Here  $\alpha = [a]$ ,  $\beta = [b]$  are the homotopy classes of loops a, b.

**Problem 3.** Consider the "line with two origins" – the topological space

$$X = \mathbb{R} \sqcup \mathbb{R} / \sim$$

with the equivalence relation  $(x, 1) \sim (x, 2)$  for any  $x \in \mathbb{R} \setminus \{0\}$ . Here we understand the disjoint union  $\mathbb{R} \sqcup \mathbb{R}$  as  $\mathbb{R} \times \{1, 2\}$ . Prove that X satisfies the axioms of a topological 1-manifold, except that it fails the Hausdorff property.

<sup>&</sup>lt;sup>1</sup>Hint: it may be useful to first prove that f must have a lifting  $\tilde{f} : \mathbb{RP}^2 \to \mathbb{R}$  along the standard covering map  $p : \mathbb{R} \to S^1$ ,  $t \mapsto e^{2\pi i t}$  (i.e. such that  $p \circ \tilde{f} = f$ ). Then prove that  $\tilde{f}$  is homotopic to a constant map  $\mathbb{RP}^2 \to \mathbb{R}$ , mapping everything to zero. Use this homotopy to construct a homotopy between the original map f and the constant map to  $S^1$ .

<sup>&</sup>lt;sup>2</sup>I.e. describe H as a subgroup of G generated by certain explicit elements – words in  $\alpha^{\pm 1}, \beta^{\pm 1}$ .

**Problem 4.** Construct an explicit isomorphism<sup>3</sup> between the fundamental group of the Klein bottle presented as  $\langle a, b | aba^{-1}b = 1 \rangle$  and the fundamental group of  $\mathbb{RP}^2 \# \mathbb{RP}^2$  presented as  $\langle c, d | c^2 d^2 = 1 \rangle$ .<sup>4</sup>

**Problem 5.** Prove that the Grassmanian  $G_k(\mathbb{R}^n)$  – the space of k-dimensional subspaces in  $\mathbb{R}^n$  (with  $0 \le k \le n$ ) – is a *compact* topological space.<sup>5</sup>

<sup>&</sup>lt;sup>3</sup>I.e. give explicitly the value of the isomorphism on the generators.

<sup>&</sup>lt;sup>4</sup>Hint: it might be useful to inspect in detail the homeomorphism  $K \approx \mathbb{RP}^2 \# \mathbb{RP}^2$ . – One can track where do the curves represented by the sides of the square out of which K is glued go under this homeomorphism.

<sup>&</sup>lt;sup>5</sup>Recall that one has a surjective map  $p: V_k(\mathbb{R}^n) \to G_k(\mathbb{R}^n)$  from the Stiefel manifold  $V_k(\mathbb{R}^n) = \{(v_1, \ldots, v_k) \mid v_i \in \mathbb{R}^n, v_i \cdot v_j = \delta_{ij}\}$  where p maps an orthonormal k-tuple of vectors  $(v_1, \ldots, v_k)$  to the subspace  $\text{Span}\{v_1, \ldots, v_k\} \subset \mathbb{R}^n$ .