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It turns out locally a sympmfd it sympnope c to Ra Oo



1Ebgt.t5 an dmensionalsymn.meel and peManyrent
Then there is a cord chart U x ok ya gym centered at p sit on U

satisfy is called a Darboux chartiii

me

Thus themodel for a localpieceof a an dim symp mfd is M IR

ie x
if U Xi xa card chart on M the Rdx x n

basis in TIX
Xi X IR

ZETIX can be written as x

deficient
Tta Rm cord chart on TX
am
Eigg ae

def The tautologicalform or Liouville 1 form Le Rt X
is thes formgiven in cotangent cords by 2 22 dxi x

i
The canonical symplectic form on TX is w da I dxindz ENCAX

Rene ditnition x is It if TU U Xi x desert
z Zi charts

the onMenu one has

a zidxi

EE.DE dxy Ez dx 2


