- Normal bundle Let $i: M \xrightarrow{\longrightarrow} X$
then the $\perp \perp \perp$ Riemamian mfd

$$
\operatorname{rank}(N M)=\operatorname{din} X-\operatorname{dim} M .
$$

more generally: we den't have to require a metric on X. Then we set

$$
N_{x} M:=T_{i * x}^{T_{i(x)} X} /\left(T_{x} M\right) \quad N M=\bigcup_{x \in M} N_{x} M
$$

quotient, inskad of ortlog. Cumberert
Ex: for ${\underset{\text { mint sphere }}{n} \subset \mathbb{R}^{n+1}}^{S_{R}} \underset{\mathbb{R}}{n}=\left\{(\vec{x}, \alpha \vec{x}) \mid \vec{x} \in \mathbb{S}^{n}, \alpha \in \mathbb{R}^{n}\right\}$

$$
S^{\mathfrak{R}} \times \mathbb{R}=\{(\vec{x}, \alpha)\}
$$

$$
\text { iso to a trualal } r k=1 \text { bundle! }
$$

- Tautological line bundle over $\mathbb{R} P^{n}$.

$$
\left.\mathbb{R}^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \backslash\{0\}\right\} /\left(x_{0},-, x_{n}\right) \sim\left(\lambda x_{0}, \ldots, \lambda x_{n}\right)=\operatorname{len}_{\text {thrash } 0} \text { in } \mathbb{R}^{n+1}\right\}
$$

$$
\tau=\left\{\left(l \subset \mathbb{R}^{n+1}, \xi \in l\right)\right\}
$$

$$
\text { line through point in } l
$$

the orig:-

$$
\mathbb{R} \mathbb{P}^{n}=\left\{l \subset \mathbb{R}^{n+1}\right\}
$$

Similarly, one has a tautological (complex) line bundle over $\mathbb{E} \mathbb{P}^{n}$,

$$
\theta(-1)=\tau_{\downarrow}^{\mathbb{C}}=\left\{\left(\rho \subset \mathbb{C}^{n+1}, \xi \in l\right\}\right.
$$

$\uparrow \quad \stackrel{\mathbb{P}^{n}}{c_{x}} \quad \stackrel{1}{1-\text { dim subiguce }}$ another notation

$$
\begin{aligned}
& \begin{array}{c}
\text { liber over. } h_{i} f\left(x_{0}: x_{1}, \ldots x_{n}\right) \text { is the ide itself }\left\{\xi=\left(\mu l_{0}, \ldots \mu l_{n}\right) \mid \mu \in \mathbb{R}\right\} \\
\mathbb{R}^{n}
\end{array} \\
& \mathbb{R} \mathbb{P}^{n}
\end{aligned}
$$

Tautological bundle over Grasimannians
Grasismannian $G_{n k}(k, n)=\left\{k\right.$-dimensional fubipacel of $\left.\mathbb{k}^{n}\right\}$,

$$
\mathbb{k}=\mathbb{R} \text { or } \mathbb{C}
$$

$$
\begin{aligned}
& \text { a Grace doth } \\
& \text { mani Rid, } \\
& \operatorname{dim}_{m_{k}}=k(n-k) \\
& \text { (prove:t!) }
\end{aligned}
$$

tautological k-plane bundle over $\operatorname{Gr}(k, n)$

$$
\begin{aligned}
& \tau=\left\{\left(W \subset \mathbb{R}^{n}, \xi \in W\right)\right\} \\
& \downarrow \\
& \operatorname{Gr}(k, n)=\left\{\omega \subset \mathbb{R}^{n}\right\}
\end{aligned}
$$

-and sinilaly fer complex Grasmanians.

- There are many ways to castruct new vector handles out of old ones
(1) Whitney sum $E_{1} \oplus E_{2}:\left(E_{1} \oplus E_{2}\right)_{x}=\left(E_{1}\right)_{x} \oplus\left(E_{2}\right)_{x} \quad t_{\alpha \beta}^{(A)}=t_{\alpha j \beta} \oplus E_{\alpha \beta}(x)$

$$
\left\{\left(p_{1}, p_{2}\right) \in E_{1} \times E_{2} \mid \pi_{1}\left(p_{1}\right)=\pi_{2}\left(p_{2}\right)\right\}=\text { fiber product } E_{1} \times E_{2}
$$

(2) tensor product $E_{1} \otimes E_{2}: \quad\left(E_{1} \otimes E_{2}\right)_{x}=\left(E_{1}\right)_{x} \otimes\left(E_{2}\right)_{x} \quad t_{\alpha \rho}^{E\left(E_{1}\right)}=t_{\alpha \rho}(x) \otimes t_{\alpha \beta}(x)$
(3) dual : $\quad E^{*}:\left(E^{*}\right)_{x}=\left(E_{x}\right)^{*} \quad t_{\text {dual vector space }}^{E^{*}}(x)=\left(t_{\alpha p}^{E}(x)\right)^{-1 T}$
(5) quotient by a sub bundle.

Ex: ${ }^{\text {for }} M \underset{\text { imacrion }}{ } \underset{\mathbb{R}^{n}}{ }$, vormzl bundle: $N M=\underbrace{M \times \mathbb{R}^{n}}_{\text {truubundle }} / T M$ - quotient
(5) symmetric \& exterior posers

Ex: $\Lambda^{P} T^{*} M$ - bundle of p-forms on M
ε_{x} : metric $\in \Gamma\left(M, S_{y m}^{2} T^{*} M\right)$
notation:

$$
\begin{aligned}
& \overline{F(M, E)}=\left\{\text { sections } 6 \text { of } \begin{array}{l}
E \\
\vdots \\
\\
\end{array}\right\}
\end{aligned}
$$

Rem: Generally, if we have a functor
$\phi:(\underbrace{\text { rect }^{I_{s o}}})^{x n} \rightarrow \operatorname{Vect}^{I_{s o}}$
category of virpaces which is smooth on morphisms, then we have with norphirms = isomorphisms an operation on vector bud les,
$\left(E_{1}, \ldots, E_{n}\right) \longrightarrow \phi\left(E_{1}, \ldots, E_{n}\right)$.
(examples $(1,(),(3),(5)$ above are of this type)

Pullback of a fiber bundle.

$$
\text { Given a bundle } \underset{M}{E} \leftarrow F \quad \text { and a map } \quad f: N \longrightarrow M
$$

one can form the pullback bundle $f^{*} E$ where $f^{*} E:=\{(y, p) \in N \times E \mid f(y)=\pi(p)\}$

$$
{\underset{N}{N}}^{\frac{\pi}{\prime}}
$$

$$
C N \times E
$$

$$
\text { proj} 1=\text { bundle projector } \pi^{\prime} \text {, }
$$

$$
\text { projz giver the map } F: f^{*} E \rightarrow E
$$

s.t.

$$
\begin{aligned}
& f^{+} E \longrightarrow E \\
& \pi^{\prime} \downarrow \\
& \sim \\
& \sim
\end{aligned}
$$

- (Fiber of $f^{*} E$ over $\left.y \in N\right)=E_{f(y)}$

Theorem Let $\underset{M}{E}$ be a vector bundle and $f_{0}, f_{1}: N \rightrightarrows M$ two homotopic maps.
The- the pull bade bundles $f_{0}^{*} E, f_{1}^{*} E$ are isomorphic (as vi bundles).
[ref. Hatcher "V.bun. Q $K-$ thy", p.20]

Corollary: every vector bundle over a contractible bare is trivial
[$\operatorname{Sa}_{M}=i d M$

Ex: complex line bundles over $\mathbb{C} \mathbb{P}^{1}$
trivial over disks D_{+}, D_{-}and clasified by a transition fencton $t: D_{+} \cap D_{-} \longrightarrow G L(1, \mathbb{C})$

$$
\text { d: } \tilde{H_{0}} S^{\prime} \times[-\varepsilon, \varepsilon] \quad=\mathbb{C}^{*}
$$

iso classer of bundler $\stackrel{1-1}{\longrightarrow}$ hanotory claver of maps t
-clasified by the unding nember $\in \mathbb{Z}$
more generally, raik $=$ ke $c x$ bundes over S^{n} are clarrified by hanotary clastes of maps $S^{n-1} \rightarrow G L(k, \mathbb{C})$, i.e. by clenents of $\pi_{k} S^{n-1}$
let ti~t2

$$
E_{1,2}=D_{+} \times \mathbb{C} U_{B+1,2} D_{-} \times \mathbb{C} \quad \phi: E_{1} \rightarrow E_{2}
$$

$$
\phi=1 \circ D_{+}
$$

$$
\phi=t_{2} t_{1}^{-1} \circ O_{1} B C D
$$

$$
\begin{aligned}
& \text { snoatily extched } \\
& \text { to D._S }
\end{aligned}
$$

$$
\text { to } D-1 B
$$

Res: vact bu.. in $C^{\text {co }}$ vs. Top cakgey.
cary ponishe if $\mathrm{t}_{2} \mathrm{t}_{1}^{-1}$:
bontepic to cautimap!)

del A proncipal G-budle (with G a topological group) is a fiber bundle $\pi: P \rightarrow M \stackrel{\text { cith fite } F=G}{ }$, with a contanow right action $P \times G \rightarrow P$ preserving fibers of F, Ital base
strace
for each $x \in M$,
i.e., for $p \in P_{x}, p . g \in P_{x} \forall g$, and such that G acts on P_{x}
freely and tranntively. Alro, one has a G-equivariant bcal truvalization in a nbhd U of each $x \in M$:

$$
\pi^{-1}(U)^{G} \frac{⿹^{G}}{\varphi} U \times G^{G} \quad \text {..e. } \varphi(p \cdot g)=\varphi(p) \cdot g
$$

- G-orbids of P are the fises of π
- Pibers of π are " G-torsors" -opies of G withuat a marked unit.
- smooth settng: G-Lie group, all munl in C^{∞}.

Ex: Frame bundle of a mfd M : FM
fiber over $x=\left\{\right.$ frames in $\left.T_{x} M\right\}$.
(corded baser)

