LAST TIME
Prineinal G-buidle

$$
\begin{aligned}
& \text { PPG } P \text { - free acton, trensitive on } \\
& \pi \text {-fibers } \\
& l^{\pi} \\
& M
\end{aligned}
$$

Ex: Frame bundle of a mfd M : FM
fiber over $x=\left\{\right.$ frames in $\left.T_{x} M\right\}$.
(ordued baser)

more generally, for E a rank $=k$ V.L.,
one has the frame bundle FESGL(k)
$\stackrel{L}{M}$

Ex: Hoof bundle (Hoof filiation)

$$
\begin{aligned}
& S^{3}=\left\{\left(z_{0}, z_{1}\right) \in \mathbb{C}^{2}\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}=1\right\} \subseteq S^{\prime} \\
& \downarrow \text { line through } \\
& \left(z_{0}, z_{1}\right) \mapsto\left(e^{i \theta} z_{0}, e^{i \theta} z_{1}\right) \\
& \mathbb{C} P^{1} \underset{\text { life }}{ } S^{2}
\end{aligned}
$$

Sections vi. trivializations
Given an equivar. trivialization $U \times G \vec{\varphi} \pi^{-1}(U)$, we contracts a local section $\left.\sigma\right|_{u}: x \longmapsto \varphi\left(x, \frac{1}{a}\right)$. Ganverely, given a bal section, one constructs a G
an equiv. travalizetion $\varphi(x, g)=\sigma(x) \cdot g$

- \exists a global section \Leftrightarrow pracipal bundle is trivial
[This a specific to principal bundles; it is not true eeg. for vector bundles]

Transition functions:

$$
\left\{\left(U_{\alpha}, \sigma_{\alpha}\right)\right\} \text {-loc.triv. } \quad \sigma_{\beta}(x)=\sigma_{\alpha}(x) \cdot t_{\alpha \beta}(x) \quad x \in U_{\alpha} \cap U_{\beta}
$$

\uparrow
$t_{\alpha \beta}: u_{\alpha} \cap u_{\beta} \rightarrow G \quad$ transition functions.

$$
\begin{aligned}
& \text { Rem: } \\
& \text { Rem: } \quad \pi^{-1}\left(U_{d} \cap U_{f}\right) \\
& \varphi_{2} / \sigma_{2}(x) \cdot g_{1}
\end{aligned}
$$

$$
\begin{aligned}
& (x, g) \\
& \text { (} x, \underbrace{\left.\operatorname{t\beta }^{2}(x) \cdot g\right)}_{\text {so, trasitios henctions oct from the left (os ural })}
\end{aligned}
$$

Associated budle construction
If $P \supset G$-prucipal bundle and $\rho: G \rightarrow G L(V)$ a linear representation of G

$$
\begin{aligned}
& \downarrow^{\pi} \quad \text { then } E=\rho \times V=\left\{(p, v) \in \rho_{\times} V^{2}\right\} \\
& \text { on a v.sp. V, }
\end{aligned}
$$

is the "associated vector bundle". Note: projection

$$
\begin{array}{ll}
E & (p, v) \\
\perp & I \\
M & \pi(p)
\end{array} \quad \text { is well-defined. }
$$

More generally: if

M
Exescise: check that Rear transition functor, one has

$$
t_{\alpha \beta}^{E}=\rho\left(t_{\alpha \beta}^{\beta}\right)
$$

- fiber bundle with transition functions $t_{\alpha \rho}: U_{\alpha} \cap U_{\beta} \rightarrow G \quad G F$
sta. group fiber
and F^{\prime} - another space equipped with G-action,
one can construct an associated bundle $\quad E^{\prime} \leftarrow \underbrace{F^{\prime}}_{n=w}$ fiber with the rome transition functors $t_{\text {ap }}$.

Conrections
def A_{n} (Ehresmann) connection in a fiber bundle \bigsqcup^{E} is
a subbundle $H C T E$ such that

$$
H \oplus \underbrace{V}_{\operatorname{ker}(d \pi: T E \rightarrow T M)}=T E \text { teget } .
$$

space to the fiber

I.e., it is acloice of a spliting of

$$
V \hookrightarrow T E \underset{F \ldots \ldots}{d M} T M
$$

Noter V is canonicol (vertical destribation), whereas H is a cloice (of a hocizontal dustribution)

- projection $A: T E \rightarrow V$ alang H can be seen as a 1 -form $d \in \Omega^{1}(E, V)$
satisfyng $A_{p}(v)=v$ for $v \in V_{p}$.

$$
\text { (i.e. } A \text { is :dentity on } V \text {) }
$$

- Curvature (of the connection)

2-farm $F \in \Omega^{2}(E, V) \quad$ defued by $\left.\quad F(X, Y)=\left[X_{H}, Y_{H}\right]_{V}\right]$
for X, Y two vector feelds on E.

$$
\begin{aligned}
& \text { Exaresse: check thath }{ }^{\text {th }}(x) \text { is } C^{c o}(E) \text {-Pirer } \\
& \text { in } X, Y \text {, so that it des inded defue } \\
& \text { a 2-Re.. }
\end{aligned}
$$

- Parallel transport (or "holonomy")

Let $\gamma:{\underset{[0,1]}{I} \rightarrow M \text { be a curve on the bare, defoe the parallel tranipert as }}_{T} \rightarrow M$ a

$$
H_{o l}: E_{\gamma(0)} \rightarrow E_{\gamma(1)}
$$

$P \longmapsto \tilde{\gamma}(1) \quad$ where $\tilde{\gamma}: I \rightarrow E$ is the horizantel lift of γ starting at P.

$$
\text { I.e. } \tilde{\gamma}(t) \in E_{r(t)}\left(o r: I \xrightarrow[\square]{1_{M}}\right)
$$

$$
\cdot \dot{\tilde{\gamma}}(t) \in H \tilde{\gamma}(t) \quad \text { ODE }
$$

$$
\text { - } \tilde{\gamma}(0)=p
$$

in it cone.

- Curvature measures how $\mathcal{L a r}$ is $\tilde{\gamma}(1)$ from p for y a small closed loop.

In fact, hor γ a small parallelogram with sides $\varepsilon u, \varepsilon v$, with $u, v \in T_{x} M$,

-A connection has zero curvature (is "flat") :Pf H is integrable $([H, H] \subset H$).
Then, by Frobenius theorem, H is tangent to a foliation of E.

Ex: A trinal bundle MxF has the "trivial connection"

$$
\stackrel{\downarrow}{M} \stackrel{H}{H} \quad H=\operatorname{ker}\left(d \operatorname{proj}_{2}\right)
$$

$$
\begin{aligned}
& \mathrm{Hol}_{0}: p \mapsto p+\varepsilon^{2} F\left(\tilde{u}_{p}, \widetilde{v}_{p}\right)+o\left(\varepsilon^{2}\right) \\
& \underbrace{\text { hor.1.fts of } u, v \text { to } H_{p}} \\
& \in V_{p} \text {-vertical shift if } p \text {. }
\end{aligned}
$$

Connection in a vector bundle
For E a vector bundle, one considers Ehresmann connections inducing M linear holonomy maps.

In other words, $H_{(x, \xi)}$ depends linearly on $\xi \in E_{x}$.

$$
\begin{aligned}
& \text { In a trivilizh } \\
& H_{(x, v)}=\left\{\left(U_{2}, \varphi_{2}: u_{\alpha} \times\left. W^{-\mathbb{R}^{k}} \rightarrow E\right|_{u}\right), x \in U, v \in W,\right. \\
&\left.\left.=A_{\alpha}(\theta) \cdot v\right) \mid \theta \in T_{x} M\right\} \subset T_{(x, v)}\left(M_{x} W\right)
\end{aligned}
$$

where $A_{2} \in \Omega^{1}\left(u_{2}\right.$, End W)
(mathx-valued)

- the ${ }^{1}$-form of the connection
(and

$$
\begin{aligned}
& H_{p}=d_{(x v)}\left(H_{(x, v)}\right) \\
& T_{p} E \quad \text { for } p=(x, v)
\end{aligned}
$$

Covariant derivative
Cover. derivative of a section along a vector field :

$$
\begin{aligned}
& P=\tilde{\gamma}(0) \mapsto \tilde{\gamma}(t) \\
& \text { for } \gamma:[0,1] \rightarrow M \text { a carve starting at } x \text { with } \\
& \text { aitial vebcity } \dot{\gamma}(0)=X(a) \\
& \rightarrow \nabla: \Gamma(M, E) \rightarrow \Omega^{1}(M, E) \\
& \text { (1) order) } \\
& \text { - differential operator } \\
& \text { (with } \nabla_{x} \sigma=L_{x}(\nabla \sigma) \text {) } \\
& \text { satisfying Leibniz rule } \nabla(f \sigma)=f \cdot \nabla \sigma+d f \cdot \sigma
\end{aligned}
$$

One can extend ∇ to a operator

$$
\nabla: \quad \Omega^{P}(M, E) \rightarrow \Omega^{p+1}(M, E), \quad 0 \leq p<\operatorname{dim} M
$$

by Leibniz rule $\nabla(\alpha \sigma)=d \alpha \cdot \sigma+(-1)^{p} \alpha \wedge \nabla \sigma$

$$
p-\hat{h}_{-m} \hat{s}_{\text {section }}
$$

