Covariant derivative
Cover. derivative of a section along a vector field:

$$
\sim \nabla: \Gamma(M, E) \rightarrow \Omega^{1}(M, E)
$$

(1storder)

$$
\left(\text { with } \nabla_{x} \sigma=l_{x}(\nabla \sigma)\right)
$$

$$
\text { satisfying Leibniz rule } \nabla(f \sigma)=f \cdot \nabla \sigma+d f \cdot \sigma
$$

$$
\begin{aligned}
& \left(\nabla_{x} \sigma^{\sigma}\right)(x)=\left.\frac{d}{d t}\right|_{t=0}(\underbrace{\left.H_{0} l_{\gamma}\right)^{-1}} \sigma(r(t)) \\
& \text { v.ffon } M \text { section of } E \quad \underbrace{}_{E_{x} \rightarrow E_{\gamma(t)}} \\
& P=\tilde{\gamma}(0) \mapsto \tilde{\gamma}(t) \\
& \text { for } \gamma:[0,1] \rightarrow M \text { a carve starting at } x \text { with } \\
& \text { initial vebcity } \dot{\gamma}(0)=X(a) \\
& \text { initial vebcity } \dot{\gamma}(0)=X(G)
\end{aligned}
$$

One can extend ∇ to a operator

$$
\nabla: \quad \Omega^{P}(M, E) \rightarrow \Omega^{p+1}(M, E), \quad 0 \leq p<\operatorname{dim} M
$$

by Leibniz rule $\nabla(\alpha \sigma)=d \alpha \cdot \sigma+(-1)^{p} \alpha_{1} \nabla \sigma$ (+ linearity)

$$
\underset{p-\lambda_{1 m}}{ } \hat{v}_{\text {section }}
$$

Locally, in a trivializing ibid $\left(U_{\alpha}, \varphi_{\alpha}\right)$, one has

$$
\nabla: \quad \sigma_{\alpha}(x) \longmapsto\left(d+A_{\alpha}\right) \sigma_{\alpha}(x)
$$

$$
\pi^{-1}\left(u_{\alpha}\right) \in \frac{\varphi_{2}}{u_{\alpha}} \times W
$$

$$
\circ \uparrow
$$

$U_{\alpha} \int_{* \rightarrow 1}\left(+i_{2}^{b_{2}} \alpha^{(x)}\right.$ local matrix-valued connectio-1-form

$$
\begin{aligned}
& \text { G same } A_{2} \text { as in } \\
& H_{(x, v)}=\text { graph }\left(-A_{\alpha^{\circ}} v\right) \\
& T_{x} M \rightarrow T_{v} W \\
& \text { (Ehremann deraription) }
\end{aligned}
$$

or: $\begin{aligned} & \sum_{a} e_{a} \delta^{a}(x) \\ & \uparrow \\ & \text { bails sectors } \\ &\left.\text { (over } U_{\alpha}\right)\end{aligned}$

- $\nabla^{2}=F_{1}$

with $F \in \Omega^{2}(M, E n d E) \quad$| curvature |
| :---: |
| $2-$ form |
| |

(relation to Ehreiman curvature 2-form:

$$
F \in \Omega^{2}(E, V), \quad F_{(x, \xi)}(X, Y)=F_{x}(d \pi(X), d \pi(Y)) \cdot \xi
$$

Exercise: (1) Show that locally one has $F=d A+\frac{1}{2}[A, A]$
(2) Sou that on an overlap $U_{\alpha} \cap U_{\beta}$ one has
$A_{\beta}=t_{\alpha \beta}^{-1} A_{\alpha} t_{\alpha \beta}+t_{\alpha \beta}^{-1} d t_{\alpha \beta} \quad$ with $t_{\alpha \beta}$ the travitusflenation

Lemma a) connections :- $\begin{gathered}E \\ \downarrow \\ \downarrow\end{gathered}$ exist
b) the space of comections in $\underset{M}{E}$ ir an afthe rpace modiled on $\Omega^{\prime}(M, E n d(E))$

Proof (a) Let $\left\{u_{2}, \varphi_{\alpha}\right\}$ be a loc.trus. and $\left\{\psi_{2}\right\}$-pertition of wenity sulordinate to $\left\{U_{\alpha}\right\}$. Chosse 1 - e_{0}
Set $U=\sum_{\alpha} \pi^{*}\left(\psi_{\alpha}\right) l_{\alpha}$
(b) Given two conections $\nabla_{1} \nabla_{2}$ in $E, \nabla_{2}-\nabla_{1}=\alpha \wedge$ - multinticater voradar by some 1 -form $\alpha \in \Omega^{\prime}(M, E \cap d(E))$ Sone 1-form $\alpha \in \mathbb{R}^{\prime}(M, E \cap d(E))$
$\left(C^{\circ}(n)\right.$ inearity R Rollos) Ron Leibniz for $\left.\nabla_{1,2}\right)$
and $\nabla_{2}=\nabla_{1}+\alpha A$ is $\quad\left(c^{\infty}(n)\right.$-1.ne
a conecton Ler ∇_{1} a omn. a.d $\alpha \in \Omega^{\prime}(M$, ,ndE $)$
any 1-form.

Connections in a principal bundle

Connection 1-form $d \in \Omega^{\prime}\left(P, \mathscr{y}^{\operatorname{Lie}(G)}\right.$
sat.sfies (1) Equivariance $\quad R_{g}^{*} d=\operatorname{Ad}_{g^{-1}}(\mathcal{A})$
(2) Normalization ${ }^{L_{X}} \mathcal{A}=\xi$ with any $\xi \in \mathcal{Y}$ and X_{ξ} the corresponding Sundementil vect. Rield on P

Curvature: $F=\operatorname{ded}+\frac{1}{2}[d, d] \in \Omega^{2}(P, y)$

$$
\text { It corusponds to a } 2 \text {-foim on tha base } F \in \Omega^{2}(M, \underbrace{\operatorname{ad}(P)}_{\mathcal{P} x_{a} y} \text { - "adjoint hande" }
$$

- In a trivivalzaing nbid U_{2} with section S_{2},
- G-equivariant, honzontel 2-form
$F_{\alpha}:=\sigma_{\alpha}^{*} F \in \Omega^{2}\left(u_{\alpha}, y\right)$
on $u_{\alpha} \cap u_{\beta}, F_{\beta}=\underbrace{\operatorname{ad}\left(t_{p \alpha}\right)} \cdot F_{\alpha}$
crrect trimeriton function for the bundle ad (P)
- Another way to comarae F and $F: \quad G$-obbit

$$
F_{x}(d \pi(X), d \pi(Y))=\left[\left(p, F_{p}(X, Y)\right)\right] \quad \text { for } p \in \mathcal{P}_{x}, X, Y \in T_{p} P
$$

In fact, one has a gaveal $\in \operatorname{ad}(P)_{x}$

Lemma

$$
\begin{aligned}
& \begin{array}{l}
\text { vect. risce } \\
\text { carryunga }
\end{array}
\end{aligned}
$$

Cor. Srace of conncections on ${\underset{M}{\downarrow}}^{\downarrow}$ is an affine space modeled on $\Omega^{1}(M$, ad $(P))$
Proof: A diffcrence of two connection 1-forms $\mathcal{d}_{2}-d_{1}$ is equivar. and horizanta)

$$
\Rightarrow U_{2}-d_{1} \in \Omega^{1}(P, y)^{\text {equiv }} \simeq \Omega^{1}(M, a d(P))
$$

$$
\text { fron } L_{x} \mathcal{L}_{1}, 2=\xi
$$

Remark:- Reduction of structure group - examples.
Given a real v.b. $\begin{array}{r}\text { E } \\ \text { I } \\ \\ \end{array}$, we can choose a metrican.c :- fibers $g_{x}: E_{x} \otimes E_{x} \rightarrow \mathbb{R}$ (symmetric, positive)

$$
\text { smoothly dereendny on } x \in M . \quad\left(I . e ., g \in \Gamma\left(M, S_{y m}{ }^{2} E^{*}\right)\right)
$$ -defuite)

- Can choose loc.trivialization to respect g (ie., $\varphi_{2}^{*} g=$ stand. metric on fib e $\left.\mathbb{R}^{k}\right)$

Then transition functions $t_{\alpha \beta}(x) \in O(k) \subset G L(k)$
-"reduction of structure group to $O(k)$."

- Likewise, for a ca V.b. $\underset{\underset{M}{E}}{\frac{1}{2}}$, one can choose a fiberwise Hemiitian metric.

$$
\text { Then } t_{\alpha \beta}(x) \in U(k) \subset G L(k, \mathbb{C})
$$

- reduction of struck group to $u(k)$
- A $r k=k$ real usb. E is called orientable if $\Lambda^{k} E$ is trivial.

Then, one can choose a fiber volume form $\omega \in \Gamma\left(M, \Lambda^{k} E^{*}\right)$
~ reduction of structure group to $S L(k) \subset G L(k)$

- Trivialization of $E \sim$ reduction of str. group to $1 \subset G L(k)$

Generally: if $H \subset G$ a subgroup, an "H-structure" on a G-bundle $\underset{M}{D}$ is an H-buddle $\int^{P^{\prime}} \mathrm{L} \mathrm{L}$ H and H-equive induction
bundle with strigyp reduced to H
\mathcal{E}_{x} : Given a fiber metric on avi. \mathbb{L}, one has $F_{0 / n} E \longrightarrow F E$
-reduction of str group from $G L(k)$ to $O(k)$

$$
\Sigma_{m} \swarrow
$$

