Stiefel-Whitney classes.
context: real v.bun.
(ref: Milnor-Stasheff)
context: in Top
Axioms
(1) To each vectorbundle E of rank $=k$, there corresponds a sequence of cohomology classes $w_{i}(E) \in H^{i}(M, \underbrace{\mathbb{Z}_{2}}_{\{0,1\}}), i=0,1,2, \ldots$ - the "Stiefel-Whiturey with $\omega_{0}(E)=1 \in H^{0}\left(M, \mathbb{Z}_{2}\right)$

$$
w>k(E)=0
$$

inducing isomorphisms on fibers a bundle map,
then $w_{i}(E)=f^{*} w_{i}\left(E^{\prime}\right)$

Cor If E and E^{\prime} are somophis then $\omega_{i}(E)=\omega_{i}\left(E^{\prime}\right)$.
Cor For $E \simeq \mathbb{R}^{k}$ a trivial vi bun., $\omega_{>0}(E)=0$
(since E is into pull back of \mathbb{R}^{k})
(3) Whitney product axiom: Giver v.bundles $\begin{aligned} & E, E^{\prime} \\ & M\end{aligned} \frac{1}{M}$, ore has

$$
\begin{aligned}
& \omega_{m}\left(E \oplus E^{\prime}\right)=\sum_{i=0}^{m} w_{i}(E) \cup w_{m-i}\left(E^{\prime}\right) \\
& E \cdot g \cdot w_{1}\left(E \oplus E^{\prime}\right)= \\
& w_{1}(E)+w_{1}\left(E \oplus E^{\prime}\right) \\
& w_{2}(E)+w_{1}(E) w_{1}\left(E^{\prime}\right)+w_{2}\left(E^{\prime}\right)
\end{aligned}
$$

Cor $w_{i}\left(E \oplus \mathbb{R}^{l}\right)=w_{i}(E)$ fri bin any E
Cor if E possesses a nowhere vanishing section, then $\omega_{k}(E)=0$. if E has l everywhere linindep. sections, then $\omega_{k}(E)=\omega_{k-1}(E)=\ldots=\omega_{k-l+1}(E)=0$ (since E then splits as $E^{\prime} \oplus \mathbb{R}^{l}$)
(4) For $\underset{\mathbb{R} \mathbb{P}^{\prime}}{\tau}$ the tautological bundle, $\quad \omega_{1}(\tau) \neq 0$.

Total Stiefel-Whitney class:
$\in H^{\circ}\left(M, \bar{I}_{2}\right)$ - formal sur of colon.

$$
\omega(E):=1+\omega_{1}(E)+\omega_{2}(E)+\ldots
$$

$$
\text { graded amelgetra } / \mathbb{I}_{2}
$$

classes
(3) $\Leftrightarrow w\left(E \oplus E^{\prime}\right)=w(E) \cdot w\left(E^{\prime}\right)$

Rem elements of $\operatorname{bom} \omega=\underset{=}{=}+\omega_{1}+\omega_{2}+\cdots \in H^{0}\left(M, I_{2}\right)$ form a commutative group under multiplication.
In particular, there is an inverse $\omega^{-1}=1+\bar{w}_{1}+\bar{w}_{2} \not \ldots$

- Can find \bar{w}_{i} inductively from $\quad \bar{\omega}_{m}=\omega_{1} \bar{w}_{m-1}+\omega_{2} \bar{\omega}_{m-2}+\ldots+\omega_{m-1} \bar{\omega}_{1}+\omega_{m}$

$$
\Rightarrow \bar{w}_{1}=w_{1}, \bar{w}_{2}=w_{1}^{2}+w_{2}, \bar{w}_{3}=w_{1}^{3}+w_{3}, \bar{w}_{3}=\omega_{1}^{4}+w_{1}^{2} w_{2}+w_{2}^{2}+\omega_{4}, \ldots
$$

Another way: $\omega^{-1}=\left(1+\left(w_{1}+w_{2}+\ldots\right)\right)^{-1}=1-\left(w_{1}+w_{2}+\ldots\right)+\left(w_{1}+w_{2}+\ldots\right)^{2} \ldots$.

Cor (of (3)) if $E \oplus E^{\prime}$ is a trivial bundle, then

$$
\omega\left(E^{\prime}\right)=\omega(E)^{-1}
$$

"Whitney duality then":
nomad bund
$\underset{i}{\text { Ex if if }} M \underset{i}{ } \mathbb{R}^{m}$ immersion, then $T M \oplus N^{\ell} M=i^{*} T \mathbb{R}^{m}$-rival bundle

$$
\Rightarrow w(T M)=w(N M)^{-1}
$$

So, for $T S^{n}$, ane has $\omega_{j}=0, j>0$.
(1.e. TS n cannot be dirstngiviled tron the triubundle by S-W clares)

Lemma a) $H^{i}\left(\mathbb{R} \mathbb{P}^{n}, \mathbb{Z}_{2}\right)= \begin{cases}\mathbb{Z}_{2}, & 0 \leq i \leq n \\ 0, & i>n\end{cases}$
b) denote a the generator of $H^{1}\left(\mathbb{R} \mathbb{R}^{n}, \mathbb{\mathbb { Z }}_{2}\right)$.

Then $H^{i}\left(\mathbb{R} \mathbb{P}^{n}, \mathbb{Z}_{2}\right)$ is generated by $a^{i}=a \cup a \cup \ldots . . a$
I.e. $H^{*}\left(\mathbb{R} \mathbb{P}^{n}, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}[a] / a^{n+1}=0$
unital algebra over \mathbb{Z}_{2} generated by a with relation $a^{n+1}=0$

Ex: for $\mathbb{R} \mathbb{P}^{1}, \omega(\tau)=1+a$ tavisline bundle $T_{\text {from (2) no highertens duc to (1). }}$

- for $\mathbb{R} \mathbb{P}^{n}$, alro $\omega(T)=1+a$
because one has a bandle morphismen

$$
\Rightarrow \quad \omega_{1}\left(\tau_{1}\right)=j^{*} \omega_{1}\left(\tau_{n}\right)
$$

- standard incluion
(2) $\neq 0$

$$
\begin{aligned}
\Rightarrow \omega_{1}\left(T_{-}\right) \neq 0 \Rightarrow & \omega_{1}\left(T_{-}\right)=a \\
& \left(\text { a.d agan by }(1) \quad \omega_{\geqslant 2}=0\right)
\end{aligned}
$$

Then $\omega\left(\tau^{1}\right)=\omega(\tau)^{-1}=(1+a)^{-1}=1+a+a^{2}+\ldots+a^{n}$
i.e. all ω_{j} classer are $\neq 0$ for $j \leq n$

Thim 4.5 in M-S Notation: $\omega(M):=\omega(T M)$-S-L) dass of the tengent bandle of amfd
Thm $w\left(\mathbb{R}^{n}\right)=(1+a)^{n+1}=1+\binom{n+1}{1} a+\binom{n+1}{2} a^{2}+\ldots+\binom{n+1}{n} a^{n}$
Idea of proof: 1) $T \mathbb{R} \mathbb{P}^{n} \simeq \operatorname{Hom}\left(\tau, \tau^{\perp}\right)$
2)

$\tau^{*} \oplus \ldots{ }^{\prime \prime} \epsilon^{x}$
$\tau \uplus 12 \oplus \tau \longleftarrow \tau=\tau^{*}$, hice τ ha a Enclidan motion

$$
\Rightarrow \omega\left(\mathbb{R P}^{n}\right)=(1+a)^{n+1}
$$

Ex

n	$\omega\left(\mathbb{R} \mathbb{R}^{n}\right)$	
0	1	$(1+a$
1	1	$\sim\left(1+a+a^{2}\right.$
2	1	
3	$1+a+a^{4}$	
4	$1+a^{2}+a^{4}$	
5	$1+a^{5}$	
6	$1+a+a^{2}+a^{7}+a^{5}+a^{5}+a^{6}$	
7	1	

- $w\left(\mathbb{R}^{n}\right)=1$ iff $n=2^{p}-1, p=0,1,2,1, \ldots$

Infact, $T \mathbb{R} \mathbb{P}^{n}$ is trivial iff $n \in\{0,1,3,7\} \quad$ (cf. Theorem 4.7:n MS) ~unit spleres in norred division algebhes $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ ar perallelias ble gratanion octonior

SW classes as obstructions to immession
if $i: M \longrightarrow \mathbb{R}^{n+k}$:Amerrion, then $\omega(N M)=\omega(M)^{-1} \quad$ (Whithey duality $\uparrow_{n-m p d}$

$$
\Rightarrow \quad \bar{\omega}_{i}(M)=0 \text { for } i>k
$$

$\varepsilon_{x}:$

n	$w\left(\mathbb{R} \mathbb{P}^{n}\right)^{-1}$
0	1
1	1
2	$1+a$
0	1
4	$1+a+a^{2}+a^{3}$
5	$1+a^{2}$

2.g. for $\bar{\omega}_{3}\left(\mathbb{R} \mathbb{P}^{4}\right) \neq 0$
$\Rightarrow \quad \mathbb{R} \mathbb{P}^{3}$ cannot be immersed ito \mathbb{R}^{1+2}
[Whitrey Thm: any $C^{\infty} c_{c t}$ mfd M of $d: m=n>1$ can be inmessed into $\mathbb{R}^{2 n-1}$.

- This bound is suturated for $\mu=\mathbb{R} \mathbb{P}^{n}$ for $n=2^{P}$ -tuy cannot be inversed ito $\mathbb{R}^{<2 n-1}$

