
INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 10,

11/12/2021. HAMILTONIAN VECTOR FIELDS.

1. (Harmonic oscillator.) Consider the plane R2 with coordinates q, p and stan-
dard symplectic form ω = dq ∧ dp. Let H = 1

2 (p2 + q2). Find the corresponding
Hamiltonian vector field XH and its flow in time t ∈ R.

2. (Pendulum.) Consider the symplectic manifold M = T ∗S1 with coordinate
θ ∈ R/2πZ on the base and p the coordinate on the cotangent fiber, and with
the canonical symplectic form of the cotangent bundle, ω = dθ ∧ dp. Let

H =
1

2
p2 − cos θ

Find the corresponding Hamiltonian vector field XH . Analyze qualitatively the
flow ρt of XH :
(a) Draw a sketch of the integral curves of XH (orbits of ρt).
(b) Does ρt have constant orbits? Which of them are stable (perturbing the

initial condition yields an orbit that stays near the constant one), which are
unstable?

(c) Does ρt have non-closed orbits?
(d) Do closed orbits of ρt all have the same period? If not, how does the period

behave depending on the orbit?
(e) Find a closed (integral) formula for the period of a periodic orbit.

3. (Angular momentum.) Consider M = T ∗R3; denote q ∈ R3 a point in the
base and p ∈ (R3)∗ ' R3 a point in the cotangent fiber. For any vector ν ∈ R3,
define a Hamiltonian function Jν = (ν, q × p) where (, ) is the interior product
of vectors in R3 and × the exterior product.
(a) Describe the flow of the Hamiltonian vector field XJν .
(b) Show that the Poisson brackets1 are {Jν , Jµ} = Jν×µ.

(c) Show that J defines a homomorphism of Lie algebras so(3)
J−→ C∞(T ∗R3)

which fits into a sequence of homomorphisms

so(3)
J−→ C∞(T ∗R3)

X···−−→ X(R3)

Here the Lie algebra structure on C∞ is given by the Poisson bracket and
Lie algebra structure on vector fields is the usual Lie bracket of vector fields.

4. (Integrals of motion.)
(a) Let (M,ω) be a symplectic manifold, H a Hamiltonian function on M and

I another function such that {H, I} = 0.2 Show that if γ is an integral
curve of the Hamiltonian vector field XH , then I is constant along γ (i.e.
d
dtI(γ(t)) = 0).

1For f, g two functions on a symplectic manifold (M,ω), the Poisson bracket is defined as
{f, g} : = LXf g – the Lie derivative of g along the Hamiltonian vector field corresponding to f.

2Such I is called an “integral of motion” – where the motion is understood as determined by
XH .
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(b) LetM =
∏n
i=1 T

∗R. A point inM is given by q1, . . . , qn ∈ R and p1, . . . , pn ∈
R∗; the symplectic form is

∑
i dqi ∧ dpi. Let H =

∑
i
1
2p

2
i +

∑
i 6=j V (qi − qj)

with V ∈ C∞(R) some fixed function.3 Show that the “total momentum”
P =

∑
i pi is an integral of motion. Describe the flow of the Hamiltonian

vector field XP generated by P .

(c) Let M = T ∗R3 with canonical symplectic structure, let H = (p,p)
2 + V (q)

with V (q) = f(||q||) a function on R3 depending only on the norm of q.
Show that in this system, the angular momentum Jν = (ν, q × p) for any
vector ν ∈ R3 is an integral of motion.

5. Let (M,ω) be a symplectic manifold of dimension 2n and let H1, . . . ,Hk be a
collection of functions on M satisfying {Hi, Hj} = 0 for any i, j. Consider the
map M → Rm given by µ(x) = (H1(x), . . . ,Hm(x)). Assuming that c ∈ Rm is
a regular value of µ, show that µ−1(c) is a coisotropic submanifold of M . Show
that if additionally m = n, then µ−1(c) is a Lagrangian submanifold of M .4

3The physical interpretation of this system is: n particles on a real line (with positions qi and
momenta pi), of mass 1, with a pairwise interaction via a force potential V depending only on the
distance.

4Such a situation – a maximal collection of Poisson-commuting Hamiltonians on a symplectic
manifold is called an (Liouville-) integrable system.


