INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 10, 11/12/2021. HAMILTONIAN VECTOR FIELDS.

- 1. (Harmonic oscillator.) Consider the plane \mathbb{R}^2 with coordinates q, p and standard symplectic form $\omega = dq \wedge dp$. Let $H = \frac{1}{2}(p^2 + q^2)$. Find the corresponding Hamiltonian vector field X_H and its flow in time $t \in \mathbb{R}$.
- 2. (**Pendulum.**) Consider the symplectic manifold $M = T^*S^1$ with coordinate $\theta \in \mathbb{R}/2\pi\mathbb{Z}$ on the base and p the coordinate on the cotangent fiber, and with the canonical symplectic form of the cotangent bundle, $\omega = d\theta \wedge dp$. Let

$$H = \frac{1}{2}p^2 - \cos\theta$$

Find the corresponding Hamiltonian vector field X_H . Analyze qualitatively the flow ρ_t of X_H :

- (a) Draw a sketch of the integral curves of X_H (orbits of ρ_t).
- (b) Does ρ_t have constant orbits? Which of them are stable (perturbing the initial condition yields an orbit that stays near the constant one), which are unstable?
- (c) Does ρ_t have non-closed orbits?
- (d) Do closed orbits of ρ_t all have the same period? If not, how does the period behave depending on the orbit?
- (e) Find a closed (integral) formula for the period of a periodic orbit.
- 3. (Angular momentum.) Consider $M = T^* \mathbb{R}^3$; denote $q \in \mathbb{R}^3$ a point in the base and $p \in (\mathbb{R}^3)^* \simeq \mathbb{R}^3$ a point in the cotangent fiber. For any vector $\nu \in \mathbb{R}^3$, define a Hamiltonian function $J_{\nu} = (\nu, q \times p)$ where (,) is the interior product of vectors in \mathbb{R}^3 and \times the exterior product.
 - (a) Describe the flow of the Hamiltonian vector field $X_{J_{\nu}}.$
 - (b) Show that the Poisson brackets¹ are $\{J_{\nu}, J_{\mu}\} = J_{\nu \times \mu}$.
 - (c) Show that J defines a homomorphism of Lie algebras $\mathfrak{so}(3) \xrightarrow{J} C^{\infty}(T^*\mathbb{R}^3)$ which fits into a sequence of homomorphisms

$$\mathfrak{so}(3) \xrightarrow{J} C^{\infty}(T^*\mathbb{R}^3) \xrightarrow{X_{\cdots}} \mathfrak{X}(\mathbb{R}^3)$$

Here the Lie algebra structure on C^{∞} is given by the Poisson bracket and Lie algebra structure on vector fields is the usual Lie bracket of vector fields.

4. (Integrals of motion.)

(a) Let (M, ω) be a symplectic manifold, H a Hamiltonian function on M and I another function such that $\{H, I\} = 0.^2$ Show that if γ is an integral curve of the Hamiltonian vector field X_H , then I is constant along γ (i.e. $\frac{d}{dt}I(\gamma(t)) = 0$).

¹For f, g two functions on a symplectic manifold (M, ω) , the Poisson bracket is defined as $\{f, g\}$: = $\mathcal{L}_{X_f}g$ – the Lie derivative of g along the Hamiltonian vector field corresponding to f.

²Such I is called an "integral of motion" – where the motion is understood as determined by X_{H} .

- (b) Let $M = \prod_{i=1}^{n} T^* \mathbb{R}$. A point in M is given by $q_1, \ldots, q_n \in \mathbb{R}$ and $p_1, \ldots, p_n \in \mathbb{R}^*$; the symplectic form is $\sum_i dq_i \wedge dp_i$. Let $H = \sum_i \frac{1}{2}p_i^2 + \sum_{i \neq j} V(q_i q_j)$ with $V \in C^{\infty}(\mathbb{R})$ some fixed function.³ Show that the "total momentum" $P = \sum_i p_i$ is an integral of motion. Describe the flow of the Hamiltonian vector field X_P generated by P.
- (c) Let $M = T^* \mathbb{R}^3$ with canonical symplectic structure, let $H = \frac{(p,p)}{2} + V(q)$ with V(q) = f(||q||) a function on \mathbb{R}^3 depending only on the norm of q. Show that in this system, the angular momentum $J_{\nu} = (\nu, q \times p)$ for any vector $\nu \in \mathbb{R}^3$ is an integral of motion.
- 5. Let (M, ω) be a symplectic manifold of dimension 2n and let H_1, \ldots, H_k be a collection of functions on M satisfying $\{H_i, H_j\} = 0$ for any i, j. Consider the map $M \to \mathbb{R}^m$ given by $\mu(x) = (H_1(x), \ldots, H_m(x))$. Assuming that $c \in \mathbb{R}^m$ is a regular value of μ , show that $\mu^{-1}(c)$ is a coisotropic submanifold of M. Show that if additionally m = n, then $\mu^{-1}(c)$ is a Lagrangian submanifold of M.⁴

³The physical interpretation of this system is: n particles on a real line (with positions q_i and momenta p_i), of mass 1, with a pairwise interaction via a force potential V depending only on the distance.

⁴Such a situation – a maximal collection of Poisson-commuting Hamiltonians on a symplectic manifold is called an *(Liouville-) integrable system.*