INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 10, 11/12/2021. HAMILTONIAN VECTOR FIELDS.

1. (Harmonic oscillator.) Consider the plane \mathbb{R}^{2} with coordinates q, p and standard symplectic form $\omega=d q \wedge d p$. Let $H=\frac{1}{2}\left(p^{2}+q^{2}\right)$. Find the corresponding Hamiltonian vector field X_{H} and its flow in time $t \in \mathbb{R}$.
2. (Pendulum.) Consider the symplectic manifold $M=T^{*} S^{1}$ with coordinate $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$ on the base and p the coordinate on the cotangent fiber, and with the canonical symplectic form of the cotangent bundle, $\omega=d \theta \wedge d p$. Let

$$
H=\frac{1}{2} p^{2}-\cos \theta
$$

Find the corresponding Hamiltonian vector field X_{H}. Analyze qualitatively the flow ρ_{t} of X_{H} :
(a) Draw a sketch of the integral curves of X_{H} (orbits of ρ_{t}).
(b) Does ρ_{t} have constant orbits? Which of them are stable (perturbing the initial condition yields an orbit that stays near the constant one), which are unstable?
(c) Does ρ_{t} have non-closed orbits?
(d) Do closed orbits of ρ_{t} all have the same period? If not, how does the period behave depending on the orbit?
(e) Find a closed (integral) formula for the period of a periodic orbit.
3. (Angular momentum.) Consider $M=T^{*} \mathbb{R}^{3}$; denote $q \in \mathbb{R}^{3}$ a point in the base and $p \in\left(\mathbb{R}^{3}\right)^{*} \simeq \mathbb{R}^{3}$ a point in the cotangent fiber. For any vector $\nu \in \mathbb{R}^{3}$, define a Hamiltonian function $J_{\nu}=(\nu, q \times p)$ where (,) is the interior product of vectors in \mathbb{R}^{3} and \times the exterior product.
(a) Describe the flow of the Hamiltonian vector field $X_{J_{\nu}}$.
(b) Show that the Poisson brackets ${ }^{1}$ are $\left\{J_{\nu}, J_{\mu}\right\}=J_{\nu \times \mu}$.
(c) Show that J defines a homomorphism of Lie algebras $\mathfrak{s o}(3) \xrightarrow{J} C^{\infty}\left(T^{*} \mathbb{R}^{3}\right)$ which fits into a sequence of homomorphisms

$$
\mathfrak{s o}(3) \xrightarrow{J} C^{\infty}\left(T^{*} \mathbb{R}^{3}\right) \xrightarrow{X \ldots} \mathfrak{X}\left(\mathbb{R}^{3}\right)
$$

Here the Lie algebra structure on C^{∞} is given by the Poisson bracket and Lie algebra structure on vector fields is the usual Lie bracket of vector fields.

4. (Integrals of motion.)

(a) Let (M, ω) be a symplectic manifold, H a Hamiltonian function on M and I another function such that $\{H, I\}=0 .^{2}$ Show that if γ is an integral curve of the Hamiltonian vector field X_{H}, then I is constant along γ (i.e. $\left.\frac{d}{d t} I(\gamma(t))=0\right)$.

[^0](b) Let $M=\prod_{i=1}^{n} T^{*} \mathbb{R}$. A point in M is given by $q_{1}, \ldots, q_{n} \in \mathbb{R}$ and $p_{1}, \ldots, p_{n} \in$ \mathbb{R}^{*}; the symplectic form is $\sum_{i} d q_{i} \wedge d p_{i}$. Let $H=\sum_{i} \frac{1}{2} p_{i}^{2}+\sum_{i \neq j} V\left(q_{i}-q_{j}\right)$ with $V \in C^{\infty}(\mathbb{R})$ some fixed function. ${ }^{3}$ Show that the "total momentum" $P=\sum_{i} p_{i}$ is an integral of motion. Describe the flow of the Hamiltonian vector field X_{P} generated by P.
(c) Let $M=T^{*} \mathbb{R}^{3}$ with canonical symplectic structure, let $H=\frac{(p, p)}{2}+V(q)$ with $V(q)=f(\|q\|)$ a function on \mathbb{R}^{3} depending only on the norm of q. Show that in this system, the angular momentum $J_{\nu}=(\nu, q \times p)$ for any vector $\nu \in \mathbb{R}^{3}$ is an integral of motion.
5. Let (M, ω) be a symplectic manifold of dimension $2 n$ and let H_{1}, \ldots, H_{k} be a collection of functions on M satisfying $\left\{H_{i}, H_{j}\right\}=0$ for any i, j. Consider the $\operatorname{map} M \rightarrow \mathbb{R}^{m}$ given by $\mu(x)=\left(H_{1}(x), \ldots, H_{m}(x)\right)$. Assuming that $c \in \mathbb{R}^{m}$ is a regular value of μ, show that $\mu^{-1}(c)$ is a coisotropic submanifold of M. Show that if additionally $m=n$, then $\mu^{-1}(c)$ is a Lagrangian submanifold of $M .{ }^{4}$

[^1]
[^0]: ${ }^{1}$ For f, g two functions on a symplectic manifold (M, ω), the Poisson bracket is defined as $\{f, g\}:=\mathcal{L}_{X_{f}} g-$ the Lie derivative of g along the Hamiltonian vector field corresponding to f .
 ${ }^{2}$ Such I is called an "integral of motion" - where the motion is understood as determined by X_{H}.

[^1]: ${ }^{3}$ The physical interpretation of this system is: n particles on a real line (with positions q_{i} and momenta p_{i}), of mass 1 , with a pairwise interaction via a force potential V depending only on the distance.
 ${ }^{4}$ Such a situation - a maximal collection of Poisson-commuting Hamiltonians on a symplectic manifold is called an (Liouville-) integrable system.

