## INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 11, 11/19/2021.

1. (Coisotropic reduction.) Let $(M, \omega)$ be a symplectic manifold and $C \subset M$ a coisotropic submanifold. Consider the subbundle $\chi$ of the tangent bundle of $C$ given by $\chi_{x}=\left(T_{x} C\right)^{\perp}$ for $x \in C$ (where $\left(T_{x} C\right)^{\perp}$ is the symplectic orthogonal of $T_{x} C$ in $\left.\left(T_{x} M, \omega_{x}\right)\right) . \chi$ is called the "characteristic distribution" on $C .{ }^{1}$
(a) Show that an equivalent definition of $\chi$ is:

$$
\begin{equation*}
\chi_{x}=\operatorname{ker}\left(\left.\omega_{x}\right|_{T_{x} C}\right)^{\#} \tag{1}
\end{equation*}
$$

where $\left.\left(\omega_{x}\right)\right|_{T_{x} C}: T_{x} C \times T_{x} C \rightarrow \mathbb{R}$ is the restriction of the symplectic form evaluated at $x$ to tangent vectors to $C$ and $\left(\left.\omega_{x}\right|_{T_{x} C}\right)^{\#}: T_{x} C \rightarrow T_{x}^{*} C$ is the corresponding linear map. (One can also write (1) as $\chi=\operatorname{ker}\left(\left.\omega\right|_{C}\right)$.)
(b) Show that the distribution $\chi$ is involutive. (And thus, by Frobenius theorem, integrates into a foliation.)
(c) Assume that $\chi$ integrates to a fibration, i.e., that there exists a (smooth) fiber bundle $\pi: C \rightarrow B$ such that $\chi=\operatorname{ker} d \pi$ is the corresponding vertical tangent bundle on $C$. Then the base $B$ (the space parameterizing the leaves $\lambda$ of the foliation integrating $\chi$; one denotes it $C / \chi$ or $\underline{C}$ ) is called the coisotropic reduction of $C$. Show that $\underline{C}$ is a symplectic manifold, with a natural symplectic 2-form $\underline{\omega}$ inherited from $\omega$ on $M$.
(d) (Example.) Let $M=T^{*} \mathbb{R}^{2}$ with base coordinates $q_{1}, q_{2}$, cotangent fiber coordinates $p_{1}, p_{2}$ and the canonical symplectic form $\omega=\sum_{i=1}^{2} d q_{i} \wedge d p_{i}$. Let $C$ be the submanifold cut out by the equation $p_{2}=0$. Describe the coisotropic reduction $\underline{C}$.
(e) (Example.) Let again $M=T^{*}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ and let $C$ be defined by the equation $q_{1} p_{2}-q_{2} p_{1}=0$. Describe the coisotropic reduction $\underline{C}$.
(f) (Example.) Let $M=T^{*} \mathbb{R}$ with $C$ given by $\frac{p^{2}+q^{2}}{2}=E$ for some fixed positive number $E$. Describe $\underline{C}$.
2. (Poisson algebras, Casimir elements.) Let $\mathfrak{g}$ be a Lie algebra.
(a) Show that there exists a unique Poisson algebra structure on the symmetric algebra $S^{\bullet} \mathfrak{g}$ with standard commutative associative algebra structure of the symmetric algebra and with Poisson bracket satisfying $\{X, Y\}=[X, Y]$ for $X, Y \in \mathfrak{g}=S^{1} \mathfrak{g} .{ }^{2}$

[^0](b) Assume that $\mathfrak{g}$ is equipped with a symmetric bilinear form $K: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ which is non-degenerate (i.e. $K^{\#}: \mathfrak{g} \rightarrow \mathfrak{g}^{*}$ is an isomorphism) and invariant (i.e. $K\left(\operatorname{ad}_{X} Y, Z\right)+K\left(Y, a d_{X} Z\right)=0$ for $\left.X, Y, Z \in \mathfrak{g}\right)$. Let $T^{a}$ be some basis in $\mathfrak{g}$ and $T_{a}$ the dual basis in $\mathfrak{g}$ (with respect to $K$ ). Set $Q=\sum T^{a} T_{a} \in S^{2} \mathfrak{g}$ (the "quadratic Casimir element"). Prove that $Q$ is a central element for the Poisson bracket of (2a), i.e., $\{Q, u\}=0$ for any $u \in S^{\bullet} \mathfrak{g} .{ }^{3}$
(c) Let $(M, \omega)$ be a symplectic manifold and consider the Poisson algebra structure on $C^{\infty}(M)$. Describe all central elements of the Poisson bracket.
3. (Coadjoint orbits.) Let $G$ be a Lie group, $\mathfrak{g}$ its Lie algebra and $\mathfrak{g}^{*}$ the linear dual space of $\mathfrak{g} . \mathfrak{g}^{*}$ carries the coadjoint action Ad*: $G \times \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ of $G$ defined by $\left\langle\operatorname{Ad}_{g}^{*} \xi, X\right\rangle=\left\langle\xi, \operatorname{Ad}_{g^{-1}} X\right\rangle$ with $\xi \in \mathfrak{g}^{*}, X \in \mathfrak{g}, g \in G,\langle$,$\rangle the canonical$ pairing between $\mathfrak{g}$ and $\mathfrak{g}^{*}, \operatorname{Ad}_{g} X=\left.\frac{d}{d t}\right|_{t=0}\left(g e^{t X} g^{-1}\right)$ the adjoint action of $G$ on $\mathfrak{g}$. Likewise, $\mathfrak{g}^{*}$ carries the cadjoint action of the Lie algebra $\mathfrak{g}$, ad ${ }^{*}: \mathfrak{g} \times \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ defined by $\left\langle\operatorname{ad}_{X}^{*} \xi, Y\right\rangle=-\langle\xi,[X, Y]\rangle$. One has an equivalence relation on $\mathfrak{g}^{*}$ where two points $\xi, \xi^{\prime}$ are equivalent if $\xi^{\prime}=\operatorname{Ad}_{g}^{*}(\xi)$ for some $g \in G$. Equivalence classes of this relation are called "coadjoint orbits."
(a) Let $O \subset \mathfrak{g}^{*}$ be a coadjoint orbit and $\xi \in O$ a point in it. Show that the tangent space $T_{\xi} O \subset T_{\xi} \mathfrak{g}^{*} \simeq \mathfrak{g}^{*}$ has the form $T_{\xi} O=\left\{\operatorname{ad}_{X}^{*}(\xi) \mid X \in \mathfrak{g}\right\} \subset \mathfrak{g}^{*}$. More precisely, show that $T_{\xi} O$ fits in a short exact sequence
$$
\operatorname{stab}(\xi) \hookrightarrow \mathfrak{g} \stackrel{\sigma}{\rightarrow} T_{\xi} O
$$
where $\sigma$ maps $X$ to $\operatorname{ad}_{X}^{*}$ and $\operatorname{stab}(\xi)=\left\{X \in \mathfrak{g} \mid \operatorname{ad}_{X}^{*}(\xi)=0\right\} \subset \mathfrak{g}$ is the stabilizer of $\xi$ under the coadjoint action of the Lie algebra.
(b) Let $\omega_{\xi}: T_{\xi} O \times T_{\xi} O \rightarrow \mathbb{R}$ be the bilinear form on the tangent space to the orbit defined by $\omega_{\xi}(\sigma(X), \sigma(Y))=\langle\xi,[X, Y]\rangle$. Show that $\omega_{\xi}$ is well-defined (independent of preimages $X, Y$ of tangent vectors to the orbit in $\mathfrak{g}$ ), is skew-symmetric and non-degenerate.
(c) Show that the family of bilinear forms $\omega_{\xi}$ for points $\xi$ of a fixed coadjoint orbit $O$ arrange into a symplectic form $\omega$ on $O$ (in particular, show that $\omega$ is a closed form).
(d) Study the coadjoint orbits in the example $G=S O(3)$. Prove that under the identification of $\mathfrak{s o}(3)$ with $\mathbb{R}^{3}$ with exterior vector product, and under identification of $\mathfrak{g}^{*}$ with $\mathfrak{g}$ using the inner product, the coadjoint orbits are 2 -spheres centered at the origin. Find the symplectic area of a coadjoint orbit passing through a vector $\xi \in \mathfrak{g}^{*} \simeq \mathbb{R}^{3}$.

[^1]
[^0]:    ${ }^{1}$ Recall that a "distribution" $D$ on a manifold $N$ is a subbundle of the tangent bundle $T N$. A distribution is said to be "involutive" if for any $X, Y \in \Gamma(N, D)$ - two vector fields on $N$ belonging (parallel) to $D$, their Lie bracket $[X, Y]$ is also in $D$. Frobenius theorem says that an involutive distibution is integrable - (locally) integrates to a foliation, $N \underset{\text { open }}{\supset} U=\cup_{\alpha} \lambda_{\alpha}$, with $\lambda_{\alpha}$ submanifolds ("leaves"), of dimension equal to the rank of $D$, so that $D_{x}=T_{x} \lambda$ where $\lambda$ is the leaf of the foliation through $x$. In adapted local coordinates $x_{1}, \ldots, x_{n}$ on $N$, leaves of the foliation are given by equations $x_{1}=x_{1}^{0}, \ldots, x_{n-k}=x_{n-k}^{0}$, where $k$ is the rank of $D$ and $x_{\ldots}^{0}$. are fixed numbers.
    ${ }^{2}$ This Poisson algebra is called the Kirillov-Kostant-Souriaux Poisson algebra.

[^1]:    ${ }^{3}$ In the context of Poisson algebras, one generally calls central elements for the Poisson bracket the "Casimir elements."

