
INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 11,

11/19/2021.

1. (Coisotropic reduction.) Let (M,ω) be a symplectic manifold and C ⊂M a
coisotropic submanifold. Consider the subbundle χ of the tangent bundle of C
given by χx = (TxC)⊥ for x ∈ C (where (TxC)⊥ is the symplectic orthogonal of
TxC in (TxM,ωx)). χ is called the “characteristic distribution” on C.1

(a) Show that an equivalent definition of χ is:

(1) χx = ker(ωx|TxC)#

where (ωx)|TxC : TxC × TxC → R is the restriction of the symplectic form
evaluated at x to tangent vectors to C and (ωx|TxC)# : TxC → T ∗xC is the
corresponding linear map. (One can also write (1) as χ = ker(ω|C).)

(b) Show that the distribution χ is involutive. (And thus, by Frobenius theorem,
integrates into a foliation.)

(c) Assume that χ integrates to a fibration, i.e., that there exists a (smooth)
fiber bundle π : C → B such that χ = ker dπ is the corresponding vertical
tangent bundle on C. Then the base B (the space parameterizing the leaves
λ of the foliation integrating χ; one denotes it C/χ or C) is called the
coisotropic reduction of C. Show that C is a symplectic manifold, with a
natural symplectic 2-form ω inherited from ω on M .

(d) (Example.) Let M = T ∗R2 with base coordinates q1, q2, cotangent fiber

coordinates p1, p2 and the canonical symplectic form ω =
∑2
i=1 dqi ∧ dpi.

Let C be the submanifold cut out by the equation p2 = 0. Describe the
coisotropic reduction C.

(e) (Example.) Let again M = T ∗(R2\{0}) and let C be defined by the equation
q1p2 − q2p1 = 0. Describe the coisotropic reduction C.

(f) (Example.) Let M = T ∗R with C given by p2+q2

2 = E for some fixed positive
number E. Describe C.

2. (Poisson algebras, Casimir elements.) Let g be a Lie algebra.
(a) Show that there exists a unique Poisson algebra structure on the symmetric

algebra S•g with standard commutative associative algebra structure of the
symmetric algebra and with Poisson bracket satisfying {X,Y } = [X,Y ] for
X,Y ∈ g = S1g.2

1Recall that a “distribution” D on a manifold N is a subbundle of the tangent bundle TN .
A distribution is said to be “involutive” if for any X,Y ∈ Γ(N,D) – two vector fields on N
belonging (parallel) to D, their Lie bracket [X,Y ] is also in D. Frobenius theorem says that an

involutive distibution is integrable – (locally) integrates to a foliation, N ⊃
open

U = ∪αλα, with

λα submanifolds (“leaves”), of dimension equal to the rank of D, so that Dx = Txλ where λ is

the leaf of the foliation through x. In adapted local coordinates x1, . . . , xn on N , leaves of the
foliation are given by equations x1 = x01, . . . , xn−k = x0n−k, where k is the rank of D and x0··· are

fixed numbers.
2This Poisson algebra is called the Kirillov-Kostant-Souriaux Poisson algebra.
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(b) Assume that g is equipped with a symmetric bilinear form K : g × g → R
which is non-degenerate (i.e. K# : g→ g∗ is an isomorphism) and invariant
(i.e. K(adXY, Z) +K(Y, adXZ) = 0 for X,Y, Z ∈ g). Let T a be some basis
in g and Ta the dual basis in g (with respect to K). Set Q =

∑
T aTa ∈ S2g

(the “quadratic Casimir element”). Prove that Q is a central element for
the Poisson bracket of (2a), i.e., {Q, u} = 0 for any u ∈ S•g.3

(c) Let (M,ω) be a symplectic manifold and consider the Poisson algebra struc-
ture on C∞(M). Describe all central elements of the Poisson bracket.

3. (Coadjoint orbits.) Let G be a Lie group, g its Lie algebra and g∗ the linear
dual space of g. g∗ carries the coadjoint action Ad∗ : G× g∗ → g∗ of G defined
by 〈Ad∗gξ,X〉 = 〈ξ,Adg−1X〉 with ξ ∈ g∗, X ∈ g, g ∈ G, 〈, 〉 the canonical

pairing between g and g∗, AdgX = d
dt

∣∣
t=0

(getXg−1) the adjoint action of G on

g. Likewise, g∗ carries the cadjoint action of the Lie algebra g, ad∗ : g× g∗ → g∗

defined by 〈ad∗Xξ, Y 〉 = −〈ξ, [X,Y ]〉. One has an equivalence relation on g∗

where two points ξ, ξ′ are equivalent if ξ′ = Ad∗g(ξ) for some g ∈ G. Equivalence
classes of this relation are called “coadjoint orbits.”
(a) Let O ⊂ g∗ be a coadjoint orbit and ξ ∈ O a point in it. Show that the

tangent space TξO ⊂ Tξg∗ ' g∗ has the form TξO = {ad∗X(ξ) |X ∈ g} ⊂ g∗.
More precisely, show that TξO fits in a short exact sequence

stab(ξ) ↪→ g
σ
� TξO

where σ maps X to ad∗X and stab(ξ) = {X ∈ g|ad∗X(ξ) = 0} ⊂ g is the
stabilizer of ξ under the coadjoint action of the Lie algebra.

(b) Let ωξ : TξO × TξO → R be the bilinear form on the tangent space to the
orbit defined by ωξ(σ(X), σ(Y )) = 〈ξ, [X,Y ]〉. Show that ωξ is well-defined
(independent of preimages X,Y of tangent vectors to the orbit in g), is
skew-symmetric and non-degenerate.

(c) Show that the family of bilinear forms ωξ for points ξ of a fixed coadjoint
orbit O arrange into a symplectic form ω on O (in particular, show that ω
is a closed form).

(d) Study the coadjoint orbits in the example G = SO(3). Prove that under
the identification of so(3) with R3 with exterior vector product, and under
identification of g∗ with g using the inner product, the coadjoint orbits are
2-spheres centered at the origin. Find the symplectic area of a coadjoint
orbit passing through a vector ξ ∈ g∗ ' R3.

3In the context of Poisson algebras, one generally calls central elements for the Poisson bracket
the “Casimir elements.”


