INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 11, 11/19/2021.

(Coisotropic reduction.) Let (M, ω) be a symplectic manifold and C ⊂ M a coisotropic submanifold. Consider the subbundle χ of the tangent bundle of C given by χ_x = (T_xC)[⊥] for x ∈ C (where (T_xC)[⊥] is the symplectic orthogonal of T_xC in (T_xM, ω_x)). χ is called the "characteristic distribution" on C.¹
(a) Show that an equivalent definition of χ is:

(1)
$$\chi_x = \ker(\omega_x|_{T_xC})^{\#}$$

where $(\omega_x)|_{T_xC}: T_xC \times T_xC \to \mathbb{R}$ is the restriction of the symplectic form evaluated at x to tangent vectors to C and $(\omega_x|_{T_xC})^{\#}: T_xC \to T_x^*C$ is the corresponding linear map. (One can also write (1) as $\chi = \ker(\omega|_C)$.)

- (b) Show that the distribution χ is involutive. (And thus, by Frobenius theorem, integrates into a foliation.)
- (c) Assume that χ integrates to a fibration, i.e., that there exists a (smooth) fiber bundle $\pi: C \to B$ such that $\chi = \ker d\pi$ is the corresponding vertical tangent bundle on C. Then the base B (the space parameterizing the leaves λ of the foliation integrating χ ; one denotes it C/χ or \underline{C}) is called the coisotropic reduction of C. Show that \underline{C} is a symplectic manifold, with a natural symplectic 2-form $\underline{\omega}$ inherited from ω on M.
- (d) (Example.) Let $M = T^* \mathbb{R}^2$ with base coordinates q_1, q_2 , cotangent fiber coordinates p_1, p_2 and the canonical symplectic form $\omega = \sum_{i=1}^2 dq_i \wedge dp_i$. Let C be the submanifold cut out by the equation $p_2 = 0$. Describe the coisotropic reduction <u>C</u>.
- (e) (Example.) Let again $M = T^*(\mathbb{R}^2 \setminus \{0\})$ and let C be defined by the equation $q_1p_2 q_2p_1 = 0$. Describe the coisotropic reduction <u>C</u>.
- (f) (Example.) Let $M = T^* \mathbb{R}$ with C given by $\frac{p^2 + q^2}{2} = E$ for some fixed positive number E. Describe \underline{C} .

2. (Poisson algebras, Casimir elements.) Let \mathfrak{g} be a Lie algebra.

(a) Show that there exists a unique Poisson algebra structure on the symmetric algebra $S^{\bullet}\mathfrak{g}$ with standard commutative associative algebra structure of the symmetric algebra and with Poisson bracket satisfying $\{X, Y\} = [X, Y]$ for $X, Y \in \mathfrak{g} = S^1\mathfrak{g}^2$

¹Recall that a "distribution" D on a manifold N is a subbundle of the tangent bundle TN. A distribution is said to be "involutive" if for any $X, Y \in \Gamma(N, D)$ – two vector fields on N belonging (parallel) to D, their Lie bracket [X, Y] is also in D. Frobenius theorem says that an involutive distibution is integrable – (locally) integrates to a foliation, $N \supseteq_{\text{open}} U = \bigcup_{\alpha} \lambda_{\alpha}$, with λ_{α} submanifolds ("leaves"), of dimension equal to the rank of D, so that $D_x = T_x \lambda$ where λ is the leaf of the foliation through x. In adapted local coordinates x_1, \ldots, x_n on N, leaves of the foliation are given by equations $x_1 = x_1^0, \ldots, x_{n-k} = x_{n-k}^0$, where k is the rank of D and x_{\ldots}^0 are fixed numbers.

²This Poisson algebra is called the Kirillov-Kostant-Souriaux Poisson algebra.

- (b) Assume that \mathfrak{g} is equipped with a symmetric bilinear form $K : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ which is non-degenerate (i.e. $K^{\#} : \mathfrak{g} \to \mathfrak{g}^*$ is an isomorphism) and invariant (i.e. $K(\mathrm{ad}_X Y, Z) + K(Y, ad_X Z) = 0$ for $X, Y, Z \in \mathfrak{g}$). Let T^a be some basis in \mathfrak{g} and T_a the dual basis in \mathfrak{g} (with respect to K). Set $Q = \sum T^a T_a \in S^2 \mathfrak{g}$ (the "quadratic Casimir element"). Prove that Q is a central element for the Poisson bracket of (2a), i.e., $\{Q, u\} = 0$ for any $u \in S^{\bullet} \mathfrak{g}$.³
- (c) Let (M, ω) be a symplectic manifold and consider the Poisson algebra structure on $C^{\infty}(M)$. Describe all central elements of the Poisson bracket.
- 3. (Coadjoint orbits.) Let G be a Lie group, \mathfrak{g} its Lie algebra and \mathfrak{g}^* the linear dual space of \mathfrak{g} . \mathfrak{g}^* carries the coadjoint action $\operatorname{Ad}^* : G \times \mathfrak{g}^* \to \mathfrak{g}^*$ of G defined by $\langle \operatorname{Ad}_g^* \xi, X \rangle = \langle \xi, \operatorname{Ad}_{g^{-1}} X \rangle$ with $\xi \in \mathfrak{g}^*$, $X \in \mathfrak{g}$, $g \in G$, \langle , \rangle the canonical pairing between \mathfrak{g} and \mathfrak{g}^* , $\operatorname{Ad}_g X = \frac{d}{dt} \Big|_{t=0} (ge^{tX}g^{-1})$ the adjoint action of G on \mathfrak{g} . Likewise, \mathfrak{g}^* carries the cadjoint action of the Lie algebra \mathfrak{g} , $\operatorname{ad}^* : \mathfrak{g} \times \mathfrak{g}^* \to \mathfrak{g}^*$ defined by $\langle \operatorname{ad}_X^* \xi, Y \rangle = -\langle \xi, [X, Y] \rangle$. One has an equivalence relation on \mathfrak{g}^* where two points ξ, ξ' are equivalent if $\xi' = \operatorname{Ad}_g^*(\xi)$ for some $g \in G$. Equivalence classes of this relation are called "coadjoint orbits."
 - (a) Let $O \subset \mathfrak{g}^*$ be a coadjoint orbit and $\xi \in O$ a point in it. Show that the tangent space $T_{\xi}O \subset T_{\xi}\mathfrak{g}^* \simeq \mathfrak{g}^*$ has the form $T_{\xi}O = \{\mathrm{ad}_X^*(\xi) \mid X \in \mathfrak{g}\} \subset \mathfrak{g}^*$. More precisely, show that $T_{\xi}O$ fits in a short exact sequence

$$\operatorname{stab}(\xi) \hookrightarrow \mathfrak{g} \xrightarrow{\sigma} T_{\xi}O$$

where σ maps X to ad_X^* and $\operatorname{stab}(\xi) = \{X \in \mathfrak{g} | \operatorname{ad}_X^*(\xi) = 0\} \subset \mathfrak{g}$ is the stabilizer of ξ under the coadjoint action of the Lie algebra.

- (b) Let $\omega_{\xi} : T_{\xi}O \times T_{\xi}O \to \mathbb{R}$ be the bilinear form on the tangent space to the orbit defined by $\omega_{\xi}(\sigma(X), \sigma(Y)) = \langle \xi, [X, Y] \rangle$. Show that ω_{ξ} is well-defined (independent of preimages X, Y of tangent vectors to the orbit in \mathfrak{g}), is skew-symmetric and non-degenerate.
- (c) Show that the family of bilinear forms ω_{ξ} for points ξ of a fixed coadjoint orbit O arrange into a symplectic form ω on O (in particular, show that ω is a closed form).
- (d) Study the coadjoint orbits in the example G = SO(3). Prove that under the identification of $\mathfrak{so}(3)$ with \mathbb{R}^3 with exterior vector product, and under identification of \mathfrak{g}^* with \mathfrak{g} using the inner product, the coadjoint orbits are 2-spheres centered at the origin. Find the symplectic area of a coadjoint orbit passing through a vector $\xi \in \mathfrak{g}^* \simeq \mathbb{R}^3$.

³In the context of Poisson algebras, one generally calls central elements for the Poisson bracket the "Casimir elements."