INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 2, 9/3/2021

- 1. Consider the Hopf fibration $S^3 \to \mathbb{CP}^1$ as a principal S^1 -bundle. Show that the associated complex line bundle (using the standard action of $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ on \mathbb{C} by multiplication) is isomorphic to the tautological line bundle τ over \mathbb{CP}^1 .
- 2. Consider an Ehresmann connection in a trivial vector bundle $\pi \colon U \times \mathbb{R}^k \to U$ given by a horizontal distribution assigning to a point $(x,v) \in U \times \mathbb{R}^k$ the subspace $H_{(x,v)} = \operatorname{graph}(-A \circ v) \subset T_{(x,v)}(U \times \mathbb{R}^k)$. Here $A \in \Omega^1(U,\mathfrak{gl}(k))$ a matrix-valued 1-form on the base.
 - (a) Show that the corresponding covariant derivative operator $^1 \nabla \colon \Omega^p(U, \underline{\mathbb{R}}^k) \to \Omega^{p+1}(U, \underline{\mathbb{R}}^k)$ acts as $\nabla = d + A.^2$
 - (b) Show that the curvature 2-form on the total space $\mathcal{F} \in \Omega^2(U \times \mathbb{R}^k, V)$, defined by $\mathcal{F}(X,Y) = [X_H, Y_H]_V$ for X,Y vector fields on the total space, has the form $\mathcal{F} = \pi^* F$ where

$$F = dA + \frac{1}{2}[A, A] \in \Omega^2(U, \mathfrak{gl}(k))$$

- a matrix-valued 2-form on the base.
- 3. Consider the trivial principal G-bundle $\mathcal{P} = U \times G$ over U with G a matrix Lie group. Assume the bundle \mathcal{P} is equipped with a connection defined by a 1-form $\mathcal{A} \in \Omega^1(\mathcal{P}, \mathfrak{g})$ on the total space. Let $\sigma \colon x \mapsto (x,1)$ be the unit section of \mathcal{P} and let $A = \sigma^* \mathcal{A} \in \Omega^1(U, \mathfrak{g})$ be the connection 1-form on the base. Show that \mathcal{A} can be expressed in terms of A as

$$\mathcal{A}|_{(x,g)} = g^{-1}dg + g^{-1}A|_x g$$

where $(x, g) \in U \times G$ is a point in the total space.

- 4. (a) Assume that a connection in a vector bundle $E \to M$ of rank k is described in a local trivialization $\{U_\alpha, \phi_\alpha\}$ by matrix-valued 1-forms $A_\alpha \in \Omega^1(U_\alpha, \mathfrak{gl}(k))$. (I.e. in a trivialization the covariant derivative is $\nabla = d + A_\alpha$.) Show that on an overlap $U_\alpha \cap U_\beta$, one has
- (1) $A_{\beta} = t_{\beta\alpha} A_{\alpha} t_{\alpha\beta} + t_{\beta\alpha} dt_{\alpha\beta}$ with $t_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to GL(k)$ the transition functions.

0 to time t.

¹Recall that we define ∇ on sections by $(\nabla \sigma)(v) = \frac{d}{dt}\Big|_{t=0}$ (Hol $_{\gamma_0^t})^{-1}\sigma(\gamma(t))$ where $v \in T_xU$ is a tangent vector on a base at a point $x \in U$, γ is any curve $\gamma \colon [0,1] \to U$ satisfying $\gamma(0) = x$, $\dot{\gamma}(0) = v$. Hol $_{\gamma_0^t} \colon \underbrace{E_x}_{\mathbb{R}^k} \to \underbrace{E_{\gamma(t)}}_{\mathbb{R}^k}$ is the parallel transport along the stretch of the curve γ from time

²First consider the case p=0, i.e., show that ∇ maps a section σ (understood as a vector-valued function on U) to $d\sigma + A \circ \sigma$, then extend the result to p>0 by Leibniz identity.

- 2
- (b) Assume we have a connection in a principal G-bundle $\mathcal{P} \to M$ determined by a 1-form $\mathcal{A} \in \Omega^1(\mathcal{P}, \mathfrak{g})$. Assume that \mathcal{P} is trivialized over a cover $\{U_\alpha\}$ of M with trivializing local sections $\{\sigma_\alpha \colon U_\alpha \to \mathcal{P}|_{U_\alpha}\}$. Define local 1-forms of the connection as pullbacks $A_\alpha = \sigma_\alpha^* \mathcal{A} \in \Omega^1(U_\alpha, \mathfrak{g})$. Show that on an overlap $U_\alpha \cap U_\beta$ one has again the relation (1) between local connection 1-forms, where now transition functions take values in G.
- 5. (a) Prove that for any connection in the tautological line bundle τ over \mathbb{CP}^1 , the integral of the curvature 2-form $F \in \Omega^2(\mathbb{CP}^1)$ is

$$\int_{\mathbb{CP}^1} F = 2\pi i$$

(In particular, there is no flat connection in τ .)⁴

(b) Prove that for any connection in $\tau^{\otimes n}$, $n \in \mathbb{Z}$, one has

$$\int_{\mathbb{CP}^1} F = 2\pi i n$$

³Here we assume for simplicity that G is a matrix Lie group. More generally, instead of (1), we should write $A_{\beta}=\mathrm{Ad}_{t_{\beta\alpha}}A_{\alpha}+t_{\alpha\beta}^{*}\mu$ where $\mu\in\Omega^{1}(G,\mathfrak{g})$ is the Maurer-Cartan left-invariant 1-form on the group (which for a matrix group has the form $\mu=g^{-1}dg$).

⁴Hint: cut \mathbb{CP}^1 into two disks B_{\pm} contained in open sets D_{\pm} of the trivializing cover for τ from Exercise sheet 1. A connection is represented by local 1-forms A_{\pm} on D_{\pm} , related on the overlap. Use this to evaluate $\int_{\mathbb{CP}^1} F$ as $\int_{B_+} F + \int_{B_-} F$ where the two integrals can be evaluated in terms of local connection 1-forms A_{\pm} .

 $^{^5}$ By convention for any line bundle L, the inverse L^{-1} is understood as the dual bundle L^* . Thus, e.g., $\tau^{\otimes (-5)} = (\tau^*)^{\otimes 5}$. (Generally, isomorphism classes of line bundles over a fixed base M form a group under tensor product, with unit being the trivial line bundle and the inverse given by dualization.)