INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 2, $9 / 3 / 2021$. UPDATED VERSION.

1. Consider the Hopf fibration $S^{3} \rightarrow \mathbb{C P}^{1}$ as a principal S^{1}-bundle. Show that the associated complex line bundle (using the standard action of $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ on \mathbb{C} by multiplication) is isomorphic to the tautological line bundle τ over $\mathbb{C} \mathbb{P}^{1}$.
2. Consider an Ehresmann connection in a trivial vector bundle $\pi: U \times \mathbb{R}^{k} \rightarrow U$ given by a horizontal distribution assigning to a point $(x, v) \in U \times \mathbb{R}^{k}$ the subspace $H_{(x, v)}=\operatorname{graph}(-A \circ v) \subset T_{(x, v)}\left(U \times \mathbb{R}^{k}\right)$. Here $A \in \Omega^{1}(U, \mathfrak{g l}(k))-\mathrm{a}$ matrix-valued 1-form on the base.
(a) Show that the corresponding covariant derivative operator ${ }^{1} \nabla: \Omega^{p}\left(U, \mathbb{R}^{k}\right) \rightarrow$ $\Omega^{p+1}\left(U, \underline{\mathbb{R}}^{k}\right)$ acts as $\nabla=d+A .^{2}$
(b) Show that the curvature 2 -form on the total space $\mathcal{F} \in \Omega^{2}\left(U \times \mathbb{R}^{k}, V\right)$, defined by ${ }^{3}$

$$
\begin{equation*}
\mathcal{F}(X, Y)=-\left[X_{H}, Y_{H}\right]_{V} \tag{1}
\end{equation*}
$$

for X, Y vector fields on the total space, has the form $\mathcal{F}=\pi^{*} F$ where

$$
F=d A+\frac{1}{2}[A, A] \quad \in \Omega^{2}(U, \mathfrak{g l}(k))
$$

- a matrix-valued 2-form on the base. ${ }^{4}$

3. Consider the trivial principal G-bundle $\mathcal{P}=U \times G$ over U with G a matrix Lie group. Assume the bundle \mathcal{P} is equipped with a connection defined by a 1 -form $\mathcal{A} \in \Omega^{1}(\mathcal{P}, \mathfrak{g})$ on the total space. Let $\sigma: x \mapsto(x, 1)$ be the unit section of \mathcal{P} and

[^0]let $A=\sigma^{*} \mathcal{A} \in \Omega^{1}(U, \mathfrak{g})$ be the connection 1-form on the base. Show that \mathcal{A} can be expressed in terms of A as
\[

$$
\begin{equation*}
\left.\mathcal{A}\right|_{(x, g)}=g^{-1} d g+\left.g^{-1} A\right|_{x} g \tag{3}
\end{equation*}
$$

\]

where $(x, g) \in U \times G$ is a point in the total space. ${ }^{5}$
4. (a) Assume that a connection in a vector bundle $E \rightarrow M$ of rank k is described in a local trivialization $\left\{U_{\alpha}, \phi_{\alpha}\right\}$ by matrix-valued 1-forms $A_{\alpha} \in \Omega^{1}\left(U_{\alpha}, \mathfrak{g l}(k)\right)$. (I.e. in a trivialization the covariant derivative is $\nabla=d+A_{\alpha}$.) Show that on an overlap $U_{\alpha} \cap U_{\beta}$, one has

$$
\begin{equation*}
A_{\beta}=t_{\beta \alpha} A_{\alpha} t_{\alpha \beta}+t_{\beta \alpha} d t_{\alpha \beta} \tag{4}
\end{equation*}
$$

with $t_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L(k)$ the transition functions. ${ }^{6}$
(b) Assume we have a connection in a principal G-bundle $\mathcal{P} \rightarrow M$ determined by a 1 -form $\mathcal{A} \in \Omega^{1}(\mathcal{P}, \mathfrak{g})$. Assume that \mathcal{P} is trivialized over a cover $\left\{U_{\alpha}\right\}$ of M with trivializing local sections $\left\{\sigma_{\alpha}:\left.U_{\alpha} \rightarrow \mathcal{P}\right|_{U_{\alpha}}\right\}$. Define local 1-forms of the connection as pullbacks $A_{\alpha}=\sigma_{\alpha}^{*} \mathcal{A} \in \Omega^{1}\left(U_{\alpha}, \mathfrak{g}\right)$. Show that on an overlap $U_{\alpha} \cap U_{\beta}$ one has again the relation (4) between local connection 1-forms, where now transition functions take values in $G .^{7}{ }^{8}$
5. (a) Prove that for any connection in the tautological line bundle τ over $\mathbb{C P}^{1}$, the integral of the curvature 2 -form $F \in \Omega^{2}\left(\mathbb{C P}^{1}\right)$ is

$$
\int_{\mathbb{C P}^{1}} F=2 \pi i
$$

(In particular, there is no flat connection in $\tau.)^{9}$

[^1](b) Prove that for any connection in $\tau^{\otimes n}, n \in \mathbb{Z},{ }^{10}$ one has
$$
\int_{\mathbb{C P}^{1}} F=2 \pi i n
$$

[^2]
[^0]: ${ }^{1}$ Recall that we define ∇ on sections by $(\nabla \sigma)(v)=\left.\frac{d}{d t}\right|_{t=0}\left(\operatorname{Hol}_{\gamma_{0}^{t}}\right)^{-1} \sigma(\gamma(t))$ where $v \in T_{x} U$ is a tangent vector on a base at a point $x \in U, \gamma$ is any curve $\gamma:[0,1] \rightarrow U$ satisfying $\gamma(0)=x$, $\dot{\gamma}(0)=v . \operatorname{Hol}_{\gamma_{0}^{t}}: \underbrace{E_{x}}_{\mathbb{R}^{k}} \rightarrow \underbrace{E_{\gamma(t)}}_{\mathbb{R}^{k}}$ is the parallel transport along the stretch of the curve γ from time 0 to time t.
 ${ }^{2}$ First consider the case $p=0$, i.e., show that ∇ maps a section σ (understood as a vector-valued function on U) to $d \sigma+A \circ \sigma$, then extend the result to $p>0$ by Leibniz identity.
 ${ }^{3}$ I think there should be a minus sign in the definition of Ehresmann curvature (1) for consistency with other sign conventions.
 ${ }^{4}$ Hint: one approach is to use a local coordinate chart on the base and write vector fields on the total space as $X=X^{\mu}(x, v) \frac{\partial}{\partial x^{\mu}}+X^{i}(x, v) \frac{\partial}{\partial v^{i}}$ (with v^{i} the coordinates on the \mathbb{R}^{k}-fiber). Then the horizontal component is $X_{H}=X^{\mu}(x, v) \partial_{\mu}-X^{\mu}(x, v) A_{\mu j}^{i}(x) v^{j} \frac{\partial}{\partial v^{i}}$. (Or if you don't like index notations, write $X=X_{\text {base }}+X_{\text {fiber }}$, then $\left(X_{H}\right)_{x, v}=X_{\text {base }}(x, v)-\iota_{X_{\text {base }}(x, v)} A(x)(v)$.) Calculate the Lie bracket $Z=\left[X_{H}, Y_{H}\right]$ and take the vertical component (with $Z_{V}=Z-Z_{H}$). To simplify the computations, you can first check that the expression $\left[X_{H}, Y_{H}\right]_{V}$ is $C^{\infty}\left(U \times \mathbb{R}^{k}\right)$-linear in X and Y (i.e. $\left[(f X)_{H}, Y_{H}\right]_{V}=f\left[X_{H}, Y_{H}\right]_{V}$ and similarly $\left[X_{H},(f Y)_{H}\right]_{V}=f\left[X_{H}, Y_{H}\right]_{V}$, for f any function on the total space). This observation allows one to disregard all terms with derivatives of X^{μ}, Y^{μ} in the computation of the Lie bracket $\left[X_{H}, Y_{H}\right]$ (since they will anyway disappear after the subsequent projection to V).

[^1]: ${ }^{5}$ Hint: using the normalization condition $\iota_{X_{\xi}} \mathcal{A}=\xi$ show that \mathcal{A} on the unit section must satisfy $\mathcal{A}_{x, 1}(\theta, \xi)=\xi+A_{x}(\theta)$ for $(\theta, \xi) \in T_{x} U \times T_{1} G=T_{x} U \times \mathfrak{g}$ (for that, first show that the fundamental vector field X_{ξ} arising from the derivative of right G-action on G has the form $\left(X_{\xi}\right)_{x, g}=g \xi \in T_{g} G$; in particular, $\left.\left(X_{\xi}\right)_{x, 1}=\xi\right)$. Next, show that G-equivariance allows one to extend \mathcal{A} from the unit section to the entire $U \times G: \mathcal{A}_{x, g}(\theta, \underbrace{\xi g}_{=\psi \in T_{g} G})=\left(R_{g}^{*} \mathcal{A}\right)_{x, 1}(\theta, \xi)=$ $\left(\operatorname{Ad}_{g-1}\right)_{x, 1}(\theta, \xi)=g^{-1} \xi g+g^{-1} A_{x}(\theta) g=g^{-1} \psi+g^{-1} A_{x}(\theta) g$, which corresponds to (3).
 ${ }^{6}$ Hint: use that on $U_{\alpha} \cap U_{\beta}$, one has $t_{\beta \alpha}\left(d+A_{\alpha}\right) \sigma_{\alpha}=\left(d+A_{\beta}\right) \sigma_{\beta}$ for $\sigma_{\beta}=t_{\beta \alpha} \sigma_{\alpha}$, for any local section $\sigma_{\alpha}\left(\mathbb{R}^{k}\right.$-valued function) over U_{α}. The equality comes from two ways to write locally $\nabla \sigma$.
 ${ }^{7}$ Here we assume for simplicity that G is a matrix Lie group. More generally, instead of (4), we should write $A_{\beta}=\operatorname{Ad}_{t_{\beta \alpha}} A_{\alpha}+t_{\alpha \beta}^{*} \mu$ where $\mu \in \Omega^{1}(G, \mathfrak{g})$ is the Maurer-Cartan left-invariant 1-form on the group (which for a matrix group has the form $\mu=g^{-1} d g$).
 ${ }^{8}$ Hint: use (3). More explicitly, write the connection 1-form on the total space as $\mathcal{A}=g_{\alpha}^{-1} d g_{\alpha}+$ $g_{\alpha}^{-1} A_{\alpha} g_{\alpha}$ in one trivialization chart (at a point $\phi_{\alpha}\left(x, g_{\alpha}\right)=s_{\alpha} g_{\alpha}$, with $\left.\left(x, g_{\alpha}\right) \in U_{\alpha} \times G\right)$ and as $\mathcal{A}=g_{\beta}^{-1} d g_{\beta}+g_{\beta}^{-1} A_{\beta} g_{\beta}$ in the other chart (at the same point in the total space). From $g_{\beta}=t_{\beta \alpha}(x) g_{\alpha}$, obtain a relation between A_{β} and A_{α}.
 ${ }^{9}$ Hint: cut $\mathbb{C P}^{1}$ into two disks $B_{ \pm}$contained in open sets $D_{ \pm}$of the trivializing cover for τ from Exercise sheet 1. A connection is represented by local 1-forms $A_{ \pm}$on $D_{ \pm}$, related on the overlap. Use this to evaluate $\int_{\mathbb{C P}^{1}} F$ as $\int_{B_{+}} F+\int_{B_{-}} F$ where the two integrals can be evaluated in terms of local connection 1-forms $A_{ \pm}$.

[^2]: ${ }^{10} \mathrm{By}$ convention for any line bundle L, the inverse L^{-1} is understood as the dual bundle L^{*}. Thus, e.g., $\tau^{\otimes(-5)}=\left(\tau^{*}\right)^{\otimes 5}$. (Generally, isomorphism classes of line bundles over a fixed base M form a group under tensor product, with unit being the trivial line bundle and the inverse given by dualization.)

