INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 2, 9/3/2021. UPDATED VERSION.

- 1. Consider the Hopf fibration $S^3 \to \mathbb{CP}^1$ as a principal S^1 -bundle. Show that the associated complex line bundle (using the standard action of $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ on \mathbb{C} by multiplication) is isomorphic to the tautological line bundle τ over \mathbb{CP}^1 .
- 2. Consider an Ehresmann connection in a trivial vector bundle $\pi: U \times \mathbb{R}^k \to U$ given by a horizontal distribution assigning to a point $(x, v) \in U \times \mathbb{R}^k$ the subspace $H_{(x,v)} = \operatorname{graph}(-A \circ v) \subset T_{(x,v)}(U \times \mathbb{R}^k)$. Here $A \in \Omega^1(U, \mathfrak{gl}(k))$ – a matrix-valued 1-form on the base.
 - (a) Show that the corresponding covariant derivative operator $^{1} \nabla \colon \Omega^{p}(U, \underline{\mathbb{R}}^{k}) \to \Omega^{p+1}(U, \underline{\mathbb{R}}^{k})$ acts as $\nabla = d + A^{2}$.
 - (b) Show that the curvature 2-form on the total space $\mathcal{F} \in \Omega^2(U \times \mathbb{R}^k, V)$, defined by³

(1)
$$\mathcal{F}(X,Y) = -[X_H,Y_H]_V$$

for X, Y vector fields on the total space, has the form $\mathcal{F} = \pi^* F$ where

(2)
$$F = dA + \frac{1}{2}[A, A] \in \Omega^2(U, \mathfrak{gl}(k))$$

- a matrix-valued 2-form on the base.⁴

3. Consider the trivial principal *G*-bundle $\mathcal{P} = U \times G$ over *U* with *G* a matrix Lie group. Assume the bundle \mathcal{P} is equipped with a connection defined by a 1-form $\mathcal{A} \in \Omega^1(\mathcal{P}, \mathfrak{g})$ on the total space. Let $\sigma \colon x \mapsto (x, 1)$ be the unit section of \mathcal{P} and

0 to time t.

²First consider the case p = 0, i.e., show that ∇ maps a section σ (understood as a vector-valued function on U) to $d\sigma + A \circ \sigma$, then extend the result to p > 0 by Leibniz identity.

 3 I think there should be a minus sign in the definition of Ehresmann curvature (1) for consistency with other sign conventions.

⁴Hint: one approach is to use a local coordinate chart on the base and write vector fields on the total space as $X = X^{\mu}(x, v) \frac{\partial}{\partial x^{\mu}} + X^{i}(x, v) \frac{\partial}{\partial v^{i}}$ (with v^{i} the coordinates on the \mathbb{R}^{k} -fiber). Then the horizontal component is $X_{H} = X^{\mu}(x, v)\partial_{\mu} - X^{\mu}(x, v)A_{\mu j}^{i}(x)v^{j} \frac{\partial}{\partial v^{i}}$. (Or if you don't like index notations, write $X = X_{\text{base}} + X_{\text{fiber}}$, then $(X_{H})_{x,v} = X_{\text{base}}(x, v) - \iota_{X_{\text{base}}(x,v)}A(x)(v)$.) Calculate the Lie bracket $Z = [X_{H}, Y_{H}]$ and take the vertical component (with $Z_{V} = Z - Z_{H})$. To simplify the computations, you can first check that the expression $[X_{H}, Y_{H}]_{V}$ is $C^{\infty}(U \times \mathbb{R}^{k})$ -linear in X and Y (i.e. $[(fX)_{H}, Y_{H}]_{V} = f[X_{H}, Y_{H}]_{V}$ and similarly $[X_{H}, (fY)_{H}]_{V} = f[X_{H}, Y_{H}]_{V}$, for f any function on the total space). This observation allows one to disregard all terms with derivatives of X^{μ}, Y^{μ} in the computation of the Lie bracket $[X_{H}, Y_{H}]$ (since they will anyway disappear after the subsequent projection to V).

¹Recall that we define ∇ on sections by $(\nabla \sigma)(v) = \left. \frac{d}{dt} \right|_{t=0} (\operatorname{Hol}_{\gamma_0^t})^{-1} \sigma(\gamma(t))$ where $v \in T_x U$ is a tangent vector on a base at a point $x \in U$, γ is any curve $\gamma \colon [0, 1] \to U$ satisfying $\gamma(0) = x$, $\dot{\gamma}(0) = v$. $\operatorname{Hol}_{\gamma_0^t} \colon \underbrace{E_x}_{\mathbb{R}^k} \to \underbrace{E_{\gamma(t)}}_{\mathbb{R}^k}$ is the parallel transport along the stretch of the curve γ from time

let $A = \sigma^* \mathcal{A} \in \Omega^1(U, \mathfrak{g})$ be the connection 1-form on the base. Show that \mathcal{A} can be expressed in terms of A as

(3)
$$\mathcal{A}|_{(x,g)} = g^{-1}dg + g^{-1}A|_xg$$

where $(x, g) \in U \times G$ is a point in the total space.⁵

4. (a) Assume that a connection in a vector bundle $E \to M$ of rank k is described in a local trivialization $\{U_{\alpha}, \phi_{\alpha}\}$ by matrix-valued 1-forms $A_{\alpha} \in \Omega^{1}(U_{\alpha}, \mathfrak{gl}(k))$. (I.e. in a trivialization the covariant derivative is $\nabla = d + A_{\alpha}$.) Show that on an overlap $U_{\alpha} \cap U_{\beta}$, one has

(4)
$$A_{\beta} = t_{\beta\alpha} A_{\alpha} t_{\alpha\beta} + t_{\beta\alpha} dt_{\alpha\beta}$$

with $t_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to GL(k)$ the transition functions.⁶

- (b) Assume we have a connection in a principal *G*-bundle $\mathcal{P} \to M$ determined by a 1-form $\mathcal{A} \in \Omega^1(\mathcal{P}, \mathfrak{g})$. Assume that \mathcal{P} is trivialized over a cover $\{U_\alpha\}$ of *M* with trivializing local sections $\{\sigma_\alpha : U_\alpha \to \mathcal{P}|_{U_\alpha}\}$. Define local 1-forms of the connection as pullbacks $A_\alpha = \sigma_\alpha^* \mathcal{A} \in \Omega^1(U_\alpha, \mathfrak{g})$. Show that on an overlap $U_\alpha \cap U_\beta$ one has again the relation (4) between local connection 1-forms, where now transition functions take values in *G*.⁷ ⁸
- 5. (a) Prove that for any connection in the tautological line bundle τ over \mathbb{CP}^1 , the integral of the curvature 2-form $F \in \Omega^2(\mathbb{CP}^1)$ is

$$\int_{\mathbb{CP}^1} F = 2\pi i$$

(In particular, there is no flat connection in τ .)⁹

⁵Hint: using the normalization condition $\iota_{X_{\xi}}\mathcal{A} = \xi$ show that \mathcal{A} on the unit section must satisfy $\mathcal{A}_{x,1}(\theta,\xi) = \xi + A_x(\theta)$ for $(\theta,\xi) \in T_xU \times T_1G = T_xU \times \mathfrak{g}$ (for that, first show that the fundamental vector field X_{ξ} arising from the derivative of right *G*-action on *G* has the form $(X_{\xi})_{x,g} = g\xi \in T_gG$; in particular, $(X_{\xi})_{x,1} = \xi$). Next, show that *G*-equivariance allows one to extend \mathcal{A} from the unit section to the entire $U \times G$: $\mathcal{A}_{x,g}(\theta, \underbrace{\xi g}_{=\psi \in T_gG}) = (R_g^*\mathcal{A})_{x,1}(\theta,\xi) =$ $=\psi \in T_gG$

 $^{(\}mathrm{Ad}_{q^{-1}})_{x,1}(\theta,\xi) = g^{-1}\xi g + g^{-1}A_x(\theta)g = g^{-1}\psi + g^{-1}A_x(\theta)g, \text{ which corresponds to } (3).$

⁶Hint: use that on $U_{\alpha} \cap U_{\beta}$, one has $t_{\beta\alpha}(d + A_{\alpha})\sigma_{\alpha} = (d + A_{\beta})\sigma_{\beta}$ for $\sigma_{\beta} = t_{\beta\alpha}\sigma_{\alpha}$, for any local section σ_{α} (\mathbb{R}^{k} -valued function) over U_{α} . The equality comes from two ways to write locally $\nabla \sigma$.

 $[\]nabla \sigma$. ⁷Here we assume for simplicity that *G* is a matrix Lie group. More generally, instead of (4), we should write $A_{\beta} = \operatorname{Ad}_{t_{\beta\alpha}} A_{\alpha} + t^*_{\alpha\beta} \mu$ where $\mu \in \Omega^1(G, \mathfrak{g})$ is the Maurer-Cartan left-invariant 1-form on the group (which for a matrix group has the form $\mu = g^{-1}dg$).

⁸Hint: use (3). More explicitly, write the connection 1-form on the total space as $\mathcal{A} = g_{\alpha}^{-1} dg_{\alpha} + g_{\alpha}^{-1} A_{\alpha} g_{\alpha}$ in one trivialization chart (at a point $\phi_{\alpha}(x, g_{\alpha}) = s_{\alpha} g_{\alpha}$, with $(x, g_{\alpha}) \in U_{\alpha} \times G$) and as $\mathcal{A} = g_{\beta}^{-1} dg_{\beta} + g_{\beta}^{-1} A_{\beta} g_{\beta}$ in the other chart (at the same point in the total space). From $g_{\beta} = t_{\beta\alpha}(x)g_{\alpha}$, obtain a relation between A_{β} and A_{α} .

⁹Hint: cut \mathbb{CP}^1 into two disks B_{\pm} contained in open sets D_{\pm} of the trivializing cover for τ from Exercise sheet 1. A connection is represented by local 1-forms A_{\pm} on D_{\pm} , related on the overlap. Use this to evaluate $\int_{\mathbb{CP}^1} F$ as $\int_{B_+} F + \int_{B_-} F$ where the two integrals can be evaluated in terms of local connection 1-forms A_{\pm} .

(b) Prove that for any connection in $\tau^{\otimes n}$, $n \in \mathbb{Z}$,¹⁰ one has

$$\int_{\mathbb{CP}^1} F = 2\pi i n$$

¹⁰By convention for any line bundle L, the inverse L^{-1} is understood as the dual bundle L^* . Thus, e.g., $\tau^{\otimes(-5)} = (\tau^*)^{\otimes 5}$. (Generally, isomorphism classes of line bundles over a fixed base M form a group under tensor product, with unit being the trivial line bundle and the inverse given by dualization.)