INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 3, 9/10/2021.

1. Cellular cohomology of projective spaces.

(a) Calculate the cellular cohomology of \mathbb{RP}^n with coefficients in \mathbb{Z}^2 . Use the standard CW model of \mathbb{RP}^n induced via the covering map $p: S^n \to \mathbb{RP}^n$ by the CW decomposition of S^n with two k-cells

$$B_{+}^{k} = \{(x_{0}, \dots, x_{k-1}, x_{k}, 0 \dots, 0) \in S^{n} \subset \mathbb{R}^{n+1} \mid x_{k} > 0\},\$$

$$B_{-}^{k} = \{(x_{0}, \dots, x_{k-1}, x_{k}, 0 \dots, 0) \in S^{n} \subset \mathbb{R}^{n+1} \mid x_{k} < 0\}$$

in each dimension k = 0, 1, ..., n. Show that

$$H^{k}(\mathbb{RP}^{n},\mathbb{Z}_{2}) = \begin{cases} \mathbb{Z}_{2}, & 0 \leq k \leq n \\ 0, & k > n \end{cases}$$

(as abelian groups).

- (b) (Optional.) Calculate the cup product in $H^{\bullet}(\mathbb{RP}^2, \mathbb{Z}_2)$. In particular, show that the cup square $a \cup a$ of the generator a of $H^1(\mathbb{RP}^2, \mathbb{Z}_2)$ is nonzero.¹
- (c) Calculate homology and cohomology of \mathbb{RP}^n with coefficients in \mathbb{Z} .² What does the cup product in $H^{\bullet}(\mathbb{RP}^n, \mathbb{Z})$ look like?
- (d) (Optional.) Recover the answer of (1a) from the answer of (1c) and the universal coefficient theorem.
- (e) Calculate $H^{\bullet}(\mathbb{CP}^n,\mathbb{Z})$. Use the standard CW decomposition of \mathbb{CP}^n with a single cell

 $e^{2k} = \{(z_0 : \ldots : z_{k-1} : 1 : 0 : \cdots : 0) \in \mathbb{CP}^n \mid z_0, \ldots, z_{k-1} \in \mathbb{C}\}$

in each even dimension $2k, k = 0, 1, \ldots, n$.

2. Compute all Stiefel-Whitney numbers for $(\mathbb{RP}^2 \times \mathbb{RP}^2) \sqcup \mathbb{RP}^4$.

¹One possible route is as follows. Switch to singular homology/cohomology. Use Poincaré duality $H^i(M, \mathbb{Z}_2) \xrightarrow{\sim} H_{\dim M-i}(M, \mathbb{Z}_2)$ to convert the question to computing the intersection in homology $H_{\bullet}(\mathbb{RP}^2, \mathbb{Z}_2)$. The interesting case is showing that $b \cap b = 1 \in H_0(\mathbb{RP}^2, \mathbb{Z}_2)$ – the homology class of a point, where b is the generator of $H_1(\mathbb{RP}^2, \mathbb{Z}_2)$ Poincaré dual to a, the generator of $H^1(\mathbb{RP}^2, \mathbb{Z}_2)$.

²First show that the CW chain complex takes the form $0 \leftarrow \underbrace{\mathbb{Z}}_{C_0} \xleftarrow{0}_{C_1} \underbrace{\mathbb{Z}}_{C_2} \xleftarrow{0}_{C_2} \underbrace{\mathbb{Z}}_{C_3} \xleftarrow{0}_{C_3} \xleftarrow{2}_{C_3}$

 $[\]underbrace{\mathbb{Z}}_{C_4} \xleftarrow{0} \cdots \xleftarrow{\mathbb{Z}}_{C_n} \xleftarrow{0} 0. \text{ I.e. the boundary map alternates between the zero map and multiplication} by 2.$