INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 3, 9/10/2021.

1. Cellular cohomology of projective spaces.
(a) Calculate the cellular cohomology of $\mathbb{R} \mathbb{P}^{n}$ with coefficients in \mathbb{Z}^{2}. Use the standard CW model of $\mathbb{R} \mathbb{P}^{n}$ induced via the covering map $p: S^{n} \rightarrow \mathbb{R P}^{n}$ by the CW decomposition of S^{n} with two k-cells

$$
\begin{aligned}
B_{+}^{k} & =\left\{\left(x_{0}, \ldots, x_{k-1}, x_{k}, 0 \ldots, 0\right) \in S^{n} \subset \mathbb{R}^{n+1} \mid x_{k}>0\right\} \\
B_{-}^{k} & =\left\{\left(x_{0}, \ldots, x_{k-1}, x_{k}, 0 \ldots, 0\right) \in S^{n} \subset \mathbb{R}^{n+1} \mid x_{k}<0\right\}
\end{aligned}
$$

in each dimension $k=0,1, \ldots, n$.
Show that

$$
H^{k}\left(\mathbb{R P}^{n}, \mathbb{Z}_{2}\right)=\left\{\begin{array}{lc}
\mathbb{Z}_{2}, & 0 \leq k \leq n \\
0, & k>n
\end{array}\right.
$$

(as abelian groups).
(b) (Optional.) Calculate the cup product in $H^{\bullet}\left(\mathbb{R P}^{2}, \mathbb{Z}_{2}\right)$. In particular, show that the cup square $a \cup a$ of the generator a of $H^{1}\left(\mathbb{R P}^{2}, \mathbb{Z}_{2}\right)$ is nonzero. ${ }^{1}$
(c) Calculate homology and cohomology of $\mathbb{R} \mathbb{P}^{n}$ with coefficients in $\mathbb{Z}^{2}{ }^{2}$ What does the cup product in $H^{\bullet}\left(\mathbb{R} \mathbb{P}^{n}, \mathbb{Z}\right)$ look like?
(d) (Optional.) Recover the answer of (1a) from the answer of (1c) and the universal coefficient theorem.
(e) Calculate $H^{\bullet}\left(\mathbb{C P}^{n}, \mathbb{Z}\right)$. Use the standard CW decomposition of $\mathbb{C P}^{n}$ with a single cell

$$
e^{2 k}=\left\{\left(z_{0}: \ldots: z_{k-1}: 1: 0: \cdots: 0\right) \in \mathbb{C P}^{n} \mid z_{0}, \ldots, z_{k-1} \in \mathbb{C}\right\}
$$

in each even dimension $2 k, k=0,1, \ldots, n$.
2. Compute all Stiefel-Whitney numbers for $\left(\mathbb{R P}^{2} \times \mathbb{R P}^{2}\right) \sqcup \mathbb{R} \mathbb{P}^{4}$.

[^0] by 2 .

[^0]: ${ }^{1}$ One possible route is as follows. Switch to singular homology/cohomology. Use Poincaré duality $H^{i}\left(M, \mathbb{Z}_{2}\right) \xrightarrow{\sim} H_{\operatorname{dim} M-i}\left(M, \mathbb{Z}_{2}\right)$ to convert the question to computing the intersection in homology $H_{\bullet}\left(\mathbb{R P}^{2}, \mathbb{Z}_{2}\right)$. The interesting case is showing that $b \cap b=1 \in H_{0}\left(\mathbb{R P}^{2}, \mathbb{Z}_{2}\right)$ - the homology class of a point, where b is the generator of $H_{1}\left(\mathbb{R}^{2}, \mathbb{Z}_{2}\right)$ Poincaré dual to a, the generator of $H^{1}\left(\mathbb{R P}^{2}, \mathbb{Z}_{2}\right)$.
 ${ }^{2}$ First show that the CW chain complex takes the form $0 \leftarrow \underbrace{\mathbb{Z}}_{C_{0}} \stackrel{0}{\leftarrow} \underbrace{\mathbb{Z}}_{C_{1}} \stackrel{2 \cdot}{\leftarrow} \underbrace{\mathbb{Z}}_{C_{2}} \stackrel{0}{\leftarrow} \underbrace{\mathbb{Z}}_{C_{3}} \stackrel{2}{\leftarrow}$ $\underbrace{\mathbb{Z}}_{C_{4}} \stackrel{0}{\leftarrow} \cdots \leftarrow \underbrace{\mathbb{Z}}_{C_{n}} \leftarrow 0$. I.e. the boundary map alternates between the zero map and multiplication

