INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 4, 9/17/2021. THOM ISOMORPHISM IN DE RHAM COHOMOLOGY.

All vector bundles in this exercise sheet will be smooth, real, oriented.

Definition. For E an oriented (real, smooth) vector bundle over a manifold M of rank k, we call a *Thom form* any k-form on the total space $\omega \in \Omega_{fcs}^k(E)$ (subscript "fcs" stands for "compactly supported in fibers") such that

- (i) ω is closed,
- (ii) For each $x \in M$, $\int_{E_x} \omega = 1.^1$

We call the de Rham cohomology class $[\omega] \in H^k_{fcs}(E;\mathbb{R})$ the *Thom class* of the vector bundle in de Rham cohomology.

- 1. (Thom isomorphism) Let ω be a Thom form for a vector bundle $E \to M$. Consider the map $\phi: H^i(M) \to H^i_{fcs}(E)$ in de Rham cohomology given by mapping the class of an *i*-form $\alpha \in \Omega^i(M)$ to the class of $\omega \wedge \pi^* \alpha \in \Omega^{i+k}_{fcs}(E)$. Prove that ϕ is well-defined (does not depend on the choice of a representative of the class $[\alpha]$) and is an isomorphism, with the inverse given by the fiber integration map $\pi_*: H^{i+k}_{fcs}(E) \to H^i(M).^2$
- 2. (Euler form) Let ω be a Thom form for $E \to M$. Given a section $\sigma: M \to E$, define the Euler form as the pullback $\mathbf{e} = \sigma^* \omega \in \Omega^k(M)$. Show that \mathbf{e} is a closed form and that its class in de Rham cohomology is independent of the choice of the section σ .
- 3. (Gaussian Thom form a toy example) Consider the trivial rank one bundle E = M × ℝ over ℝ. We will be calling the ξ the coordinate in the fiber.
 (a) Show that for any ε > 0 the 1-form

$$\omega = \frac{1}{\sqrt{\pi\epsilon}} d\xi \ e^{-\frac{\xi^2}{\epsilon}} \quad \in \Omega^1(E)$$

$$\pi_* \colon \ \Omega^i_{fcs}(U \times \mathbb{R}^k) \cong \bigoplus_{j=0}^k \Omega^{i-j}(U) \widehat{\otimes} \Omega^j_{cs}(\mathbb{R}^k) \xrightarrow{(-1)^{k(i-k)} \mathrm{id} \otimes \int_{\mathbb{R}^k}} \Omega^{i-k}(U)$$

given by selecting the j = k term on the left and integrating the k-form on \mathbb{R}^k over \mathbb{R}^k ; $\widehat{\otimes}$ is the completed tensor product; the conventional sign $(-1)^{k(i-k)}$ comes from passing the degree -k operation of integration over \mathbb{R}^k through a (i-k)-form on U. Note that $\pi_* \colon \Omega^i_{fcs}(E) \to \Omega^{i-k}(M)$ is a chain map: $d\pi_* = (-1)^k \pi_* d$ (by Stokes' theorem on \mathbb{R}^k).

¹More pedantically: if $i_x : E_x \hookrightarrow E$ is the inclusion of the fiber in the total space, $\int_{E_x} \iota_x^* \omega = 1$. ²For an oriented vector bundle $\pi : E \to M$ of rank k, one has the fiber integration map $\pi_* : \Omega_{fcs}^i(E) \to \Omega^{i-k}(M)$. In a local trivialization it is given by

satisfies conditions (i), (ii) of the Definition. Thus ω is a Thom form, which is "Gaussian-shaped" in fibers of E, rather than being compactly supported in fibers.³

(b) Show that for a section σ of E given by $x \mapsto (x, f(x))$, for a function $f \in C^{\infty}(M)$, one has the Euler form

$$\mathbf{e} \colon = \sigma^* \omega = \frac{1}{\sqrt{\pi\epsilon}} df \ e^{-\frac{f^2}{\epsilon}} \quad \in \Omega^1(M)$$

Show that **e** is an exact 1-form and hence represents the zero class in $H^1(M)$.

- (c) Fix a small positive number α . Fix some Riemannian metric on M. Show that for $\epsilon \to 0$ and f a fixed function on M with isolated zeros, \mathbf{e} is very small outside the union of balls of radius $\epsilon^{\frac{1}{2}-\alpha}$ around each zero of f.
- 4. (Gaussian Thom form a nontrivial example) Consider the sphere $S^2 \sim \mathbb{CP}^1$ with standard complex charts $D_+ = \{(z : 1) | z \in \mathbb{C}\}, D_- = \{(1 : w) | w \in \mathbb{C}\}$. We will be writing tangent vectors to S^2 as $v = \alpha \frac{\partial}{\partial z} + \bar{\alpha} \frac{\partial}{\partial \bar{z}} \in T_z S^2$ (for $\alpha, \bar{\alpha}$ two complex conjugated numbers) over a point in D_+ and similarly as $v = \beta \frac{\partial}{\partial w} + \bar{\beta} \frac{\partial}{\partial \bar{w}}$ over a point in D_- . Fix $\epsilon > 0$ and consider the 2-form ω on the total space of the tangent bundle $\pi: TS^2 \to S^2$ defined on $\pi^{-1}(D_+)$ by

(1)
$$\omega_{+} = \frac{i}{2\pi\epsilon} (1+z\bar{z})^{-2} \left(\left(d\alpha - \frac{2\alpha\bar{z}dz}{1+z\bar{z}} \right) \left(d\bar{\alpha} - \frac{2\bar{\alpha}zd\bar{z}}{1+z\bar{z}} \right) + 2\epsilon dz d\bar{z} \right) e^{-\frac{\alpha\bar{\alpha}}{\epsilon(1+z\bar{z})^{2}}}$$

and by the same formula with z replaced by w and α replaced by β on $\pi^{-1}(D_{-})$ – let us denote the resulting form on $\pi^{-1}(D_{-})$ by ω_{-} .

- (a) Show that forms ω_+ and ω_- agree on $\pi^{-1}(D_+ \cap D_-)$ and thus indeed they together define a smooth form on TS^2 .
- (b) Show that $d\omega = 0.^4$
- (c) Show that for any $x \in S^2$, $\int_{T_x} \omega = 1$. Thus, ω is a Thom form on TS^2 (again, a Gaussian-shaped one, rather than compactly supported in fibers).
- (d) Show that the Euler form $\mathbf{e} = \sigma^* \omega \in \Omega^2(S^2)$ for any section $\sigma \colon S^2 \to TS^2$ satisfies $\int_{S^2} \mathbf{e} = 2$ (which agrees with the Euler characteristic $\chi(S^2) = 2$).⁵
- (e) Think what happens if we take the section σ to be a vector field on S^2 with isolated zeroes and take ϵ in (1) to be a very small positive number. What shape will $\sigma^*\omega$ take? How is it related to Poincaré-Hopf theorem?

³One can in fact replace in the discussion of the Thom isomorphism forms compactly supported forms by forms rapidly decreasing in the fiber direction (i.e., decreasing faster than $|\xi|^{-N}$ for any N).

⁴It is a somewhat computationally heavy exercise – skip it if you don't like long computations.

⁵It is easiest to check it for σ the zero-section, and extend to arbitrary σ by the result of problem 2.