INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 4, 9/17/2021. THOM ISOMORPHISM IN DE RHAM COHOMOLOGY.

All vector bundles in this exercise sheet will be smooth, real, oriented.
Definition. For E an oriented (real, smooth) vector bundle over a manifold M of rank k, we call a Thom form any k-form on the total space $\omega \in \Omega_{f c s}^{k}(E)$ (subscript "fcs" stands for "compactly supported in fibers") such that
(i) ω is closed,
(ii) For each $x \in M, \int_{E_{x}} \omega=1 .{ }^{1}$

We call the de Rham cohomology class $[\omega] \in H_{f c s}^{k}(E ; \mathbb{R})$ the Thom class of the vector bundle in de Rham cohomology.

1. (Thom isomorphism) Let ω be a Thom form for a vector bundle $E \rightarrow M$. Consider the map $\phi: H^{i}(M) \rightarrow H_{f c s}^{i}(E)$ in de Rham cohomology given by mapping the class of an i-form $\alpha \in \Omega^{i}(M)$ to the class of $\omega \wedge \pi^{*} \alpha \in \Omega_{f c s}^{i+k}(E)$. Prove that ϕ is well-defined (does not depend on the choice of a representative of the class $[\alpha]$) and is an isomorphism, with the inverse given by the fiber integration map $\pi_{*}: H_{f c s}^{i+k}(E) \rightarrow H^{i}(M) .{ }^{2}$
2. (Euler form) Let ω be a Thom form for $E \rightarrow M$. Given a section $\sigma: M \rightarrow E$, define the Euler form as the pullback $\mathrm{e}=\sigma^{*} \omega \in \Omega^{k}(M)$. Show that e is a closed form and that its class in de Rham cohomology is independent of the choice of the section σ.
3. (Gaussian Thom form - a toy example) Consider the trivial rank one bundle $E=M \times \mathbb{R}$ over \mathbb{R}. We will be calling the ξ the coordinate in the fiber.
(a) Show that for any $\epsilon>0$ the 1 -form

$$
\omega=\frac{1}{\sqrt{\pi \epsilon}} d \xi e^{-\frac{\xi^{2}}{\epsilon}} \quad \in \Omega^{1}(E)
$$

[^0]satisfies conditions (i), (ii) of the Definition. Thus ω is a Thom form, which is "Gaussian-shaped" in fibers of E, rather than being compactly supported in fibers. ${ }^{3}$
(b) Show that for a section σ of E given by $x \mapsto(x, f(x))$, for a function $f \in$ $C^{\infty}(M)$, one has the Euler form
$$
\mathrm{e}:=\sigma^{*} \omega=\frac{1}{\sqrt{\pi \epsilon}} d f e^{-\frac{f^{2}}{\epsilon}} \quad \in \Omega^{1}(M)
$$

Show that e is an exact 1-form and hence represents the zero class in $H^{1}(M)$.
(c) Fix a small positive number α. Fix some Riemannian metric on M. Show that for $\epsilon \rightarrow 0$ and f a fixed function on M with isolated zeros, e is very small outside the union of balls of radius $\epsilon^{\frac{1}{2}-\alpha}$ around each zero of f.
4. (Gaussian Thom form - a nontrivial example) Consider the sphere $S^{2} \sim \mathbb{C P}^{1}$ with standard complex charts $D_{+}=\{(z: 1) \mid z \in \mathbb{C}\}, D_{-}=\{(1: w) \mid w \in \mathbb{C}\}$. We will be writing tangent vectors to S^{2} as $v=\alpha \frac{\partial}{\partial z}+\bar{\alpha} \frac{\partial}{\partial \bar{z}} \in T_{z} S^{2}$ (for $\alpha, \bar{\alpha}$ two complex conjugated numbers) over a point in D_{+}and similarly as $v=\beta \frac{\partial}{\partial w}+\bar{\beta} \frac{\partial}{\partial \bar{w}}$ over a point in D_{-}. Fix $\epsilon>0$ and consider the 2-form ω on the total space of the tangent bundle $\pi: T S^{2} \rightarrow S^{2}$ defined on $\pi^{-1}\left(D_{+}\right)$by

$$
\begin{equation*}
\omega_{+}=\frac{i}{2 \pi \epsilon}(1+z \bar{z})^{-2}\left(\left(d \alpha-\frac{2 \alpha \bar{z} d z}{1+z \bar{z}}\right)\left(d \bar{\alpha}-\frac{2 \bar{\alpha} z d \bar{z}}{1+z \bar{z}}\right)+2 \epsilon d z d \bar{z}\right) e^{-\frac{\alpha \bar{\alpha}}{\epsilon(1+z \bar{z})^{2}}} \tag{1}
\end{equation*}
$$

and by the same formula with z replaced by w and α replaced by β on $\pi^{-1}\left(D_{-}\right)$ - let us denote the resulting form on $\pi^{-1}\left(D_{-}\right)$by ω_{-}.
(a) Show that forms ω_{+}and ω_{-}agree on $\pi^{-1}\left(D_{+} \cap D_{-}\right)$and thus indeed they together define a smooth form on $T S^{2}$.
(b) Show that $d \omega=0 .{ }^{4}$
(c) Show that for any $x \in S^{2}, \int_{T_{x}} \omega=1$. Thus, ω is a Thom form on $T S^{2}$ (again, a Gaussian-shaped one, rather than compactly supported in fibers).
(d) Show that the Euler form $\mathrm{e}=\sigma^{*} \omega \in \Omega^{2}\left(S^{2}\right)$ for any section $\sigma: S^{2} \rightarrow T S^{2}$ satisfies $\int_{S^{2}} \mathrm{e}=2$ (which agrees with the Euler characteristic $\left.\chi\left(S^{2}\right)=2\right) .{ }^{5}$
(e) Think what happens if we take the section σ to be a vector field on S^{2} with isolated zeroes and take ϵ in (1) to be a very small positive number. What shape will $\sigma^{*} \omega$ take? How is it related to Poincaré-Hopf theorem?

[^1]
[^0]: ${ }^{1}$ More pedantically: if $i_{x}: E_{x} \hookrightarrow E$ is the inclusion of the fiber in the total space, $\int_{E_{x}} \iota_{x}^{*} \omega=1$.
 ${ }^{2}$ For an oriented vector bundle $\pi: E \rightarrow M$ of rank k, one has the fiber integration map $\pi_{*}: \Omega_{f c s}^{i}(E) \rightarrow \Omega^{i-k}(M)$. In a local trivialization it is given by

 $$
 \pi_{*}: \quad \Omega_{f c s}^{i}\left(U \times \mathbb{R}^{k}\right) \cong \bigoplus_{j=0}^{k} \Omega^{i-j}(U) \widehat{\otimes} \Omega_{c s}^{j}\left(\mathbb{R}^{k}\right) \xrightarrow{(-1)^{k(i-k)} \mathrm{id} \otimes \int_{\mathbb{R}^{k}}} \Omega^{i-k}(U)
 $$

 given by selecting the $j=k$ term on the left and integrating the k-form on \mathbb{R}^{k} over $\mathbb{R}^{k} ; \widehat{\otimes}$ is the completed tensor product; the conventional sign $(-1)^{k(i-k)}$ comes from passing the degree $-k$ operation of integration over \mathbb{R}^{k} through a $(i-k)$-form on U. Note that $\pi_{*}: \Omega_{f c s}^{i}(E) \rightarrow \Omega^{i-k}(M)$ is a chain map: $d \pi_{*}=(-1)^{k} \pi_{*} d$ (by Stokes' theorem on \mathbb{R}^{k}).

[^1]: ${ }^{3}$ One can in fact replace in the discussion of the Thom isomorphism forms compactly supported forms by forms rapidly decreasing in the fiber direction (i.e., decreasing faster than $|\xi|^{-N}$ for any $N)$.
 ${ }^{4}$ It is a somewhat computationally heavy exercise - skip it if you don't like long computations.
 ${ }^{5}$ It is easiest to check it for σ the zero-section, and extend to arbitrary σ by the result of problem 2.

