INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 6, 10/1/2021.

1. Prove that a principal G-bundle \mathcal{P} over any compact 3 -manifold M for $G=$ $S U(2)$ (or more generally for any compact simply-connected Lie group ${ }^{1} G$) is necessarily a trivial bundle. ${ }^{2}$

For a principal $S U(2)$-bundle \mathcal{P} over M, for the second Chern class one has the Chern-Weil representative

$$
\begin{equation*}
c_{2}(\mathcal{P})=\left[\frac{1}{8 \pi^{2}} \operatorname{tr}\left(F_{\mathcal{A}} \wedge F_{\mathcal{A}}\right)\right] \in H_{\mathrm{de} \mathrm{Rham}}^{4}(M) \tag{1}
\end{equation*}
$$

for \mathcal{A} any connection in \mathcal{P}.
2. Consider manifold X of dimension $n \geq 4$, let $\mathcal{P}=X \times S U(2)$ be the trivial $S U(2)$-bundle, and let $\omega=\frac{1}{8 \pi^{2}} \operatorname{tr}\left(F_{\mathcal{A}} \wedge F_{\mathcal{A}}\right) \in \Omega^{4}(X)$ be the Chern-Weil 4-form representing $c_{2}(\mathcal{P})$ (with \mathcal{A} some connection which due to triviality of \mathcal{P} can be represented by a global 1-form $A \in \Omega^{1}(X, \mathfrak{s u}(2))$). Show that ω is exact, $\omega=d \psi$ with

$$
\begin{equation*}
\psi=\frac{1}{8 \pi^{2}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right) \quad \in \Omega^{3}(X) \tag{2}
\end{equation*}
$$

(This ψ is called the Chern-Simons 3-form.)
3. Let \mathcal{P} be a principal $S U(2)$-bundle over S^{4} defined by the clutching function $t: S^{3} \rightarrow S U(2)$ (where S^{3} is the equator of S^{4}). Show that for the second Chern class one has ${ }^{3}$

$$
\left\langle c_{2}(\mathcal{P}),\left[S^{4}\right]\right\rangle=\operatorname{degree}(f)
$$

4. Let M be a compact oriented 3 -manifold equipped with a trivial $S U(2)$-bundle \mathcal{P}. Prove that if we set ${ }^{g} A=g A g^{-1}+g d g^{-1}$ - the gauge transformation of a connection 1-form, then

$$
\begin{equation*}
\int_{M} \psi\left({ }^{g} A\right)-\int_{M} \psi(A) \in \mathbb{Z} \tag{3}
\end{equation*}
$$

[^0]with $\psi(A)$ as in (2). ${ }^{4}$
${ }^{4}$ Idea: use that the oriented cobordism group $\Omega_{3}=0$, i.e. that an oriented closed M is a boundary of some compact oriented 4-manifold $N=N_{+}$; let N_{-}be a copy of N with reversed orientation. Let $\mathcal{P}_{ \pm}$be the trivial $S U(2)$-bundle over $N_{ \pm}$. Let A_{+}be a connection on \mathcal{P}_{+} restricting to A on the boundary $M=\partial N_{+}$, and let A_{-}be a connection on \mathcal{P}_{-}restricting to ${ }^{g} A$ on the boundary M. Show that connections $A_{ \pm}$can be glued into a connection $\tilde{\mathcal{A}}$ on the $S U(2)$ bundle $\tilde{\mathcal{P}}$ over $\tilde{N}=N_{+} \cup_{M} N_{-}$which is trivial over $N_{ \pm}$and has transition function $t_{-+}=g$ on (a tubular neighborhood of) $M \subset N$. Show that $\left\langle c_{2}(\mathcal{P}),[N]\right\rangle$ on the one hand is an integer and on the other hand is the l.h.s. of (3).

[^0]: ${ }^{1}$ You may use the fact $\pi_{2}(G)=0$ for any compact group G.
 ${ }^{2}$ Hint: recall that for X an n-dimensional CW complex and Y an n-connected topological space (i.e., $\pi_{j}(Y)=0$ for $j=0, \ldots, n$), any continuous map is homotopic to a constant map. To transition to smooth setting, use Whitney approximation theorem (if X, Y are smooth manifolds, then for any continuous map $f: X \rightarrow Y$ there is a homotopic smooth map $\tilde{f}: X \rightarrow Y)$.
 ${ }^{3}$ Hint: use (1). Let $D_{ \pm}$be the top/bottom 3-disks into which S^{4} is cut by the equator. Set $A_{-}=0$ on D_{-}and $A_{+}=g^{-1} d g$ (the pullback of the Maurer-Cartan 1-form by g) on D_{+}, where $g: D_{+} \rightarrow G$ is a group-valued function on the disk with boundary restriction $\left.g\right|_{\partial D_{+}}=f=t_{-+}$ - the given transition (clutching) function. Check that $A_{ \pm}$glues into a connection on \mathcal{P}. Show that $\int_{S^{4}} \frac{1}{8 \pi^{2}} \operatorname{tr} F \wedge F=\int_{D_{+}} d \psi\left(A_{+}\right)+\int_{D_{-}} d \psi\left(A_{-}\right)=\int_{S^{3}} \psi\left(f^{-1} d f\right)=\int_{S^{3}} f^{*} \Theta$ where $\Theta=$ $-\frac{1}{24 \pi^{2}} \operatorname{tr}\left(h^{-1} d h\right)^{\wedge 3} \in \Omega^{3}(S U(2))$ is a volume form on $S U(2)$ satisfying (you don't have to check it) $\int_{S U(2)} \Theta=1$. Here $h \in S U(2)$ and $h^{-1} d h \in \Omega^{1}(S U(2), \mathfrak{s u}(2))$ the Maurer-Cartan 1-form.

