INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 6, 10/1/2021.

1. Prove that a principal G-bundle \mathcal{P} over any compact 3-manifold M for G = SU(2) (or more generally for any compact simply-connected Lie group¹ G) is necessarily a trivial bundle.²

For a principal SU(2)-bundle \mathcal{P} over M, for the second Chern class one has the Chern-Weil representative

(1)
$$c_2(\mathcal{P}) = \left[\frac{1}{8\pi^2} \operatorname{tr} \left(F_{\mathcal{A}} \wedge F_{\mathcal{A}}\right)\right] \in H^4_{\operatorname{de Rham}}(M)$$

for \mathcal{A} any connection in \mathcal{P} .

2. Consider manifold X of dimension $n \geq 4$, let $\mathcal{P} = X \times SU(2)$ be the trivial SU(2)-bundle, and let $\omega = \frac{1}{8\pi^2} \operatorname{tr}(F_{\mathcal{A}} \wedge F_{\mathcal{A}}) \in \Omega^4(X)$ be the Chern-Weil 4-form representing $c_2(\mathcal{P})$ (with \mathcal{A} some connection which due to triviality of \mathcal{P} can be represented by a global 1-form $A \in \Omega^1(X, \mathfrak{su}(2))$). Show that ω is exact, $\omega = d\psi$ with

(2)
$$\psi = \frac{1}{8\pi^2} \operatorname{tr} \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right) \quad \in \Omega^3(X)$$

(This ψ is called the Chern-Simons 3-form.)

3. Let \mathcal{P} be a principal SU(2)-bundle over S^4 defined by the clutching function $t: S^3 \to SU(2)$ (where S^3 is the equator of S^4). Show that for the second Chern class one has³

$$\langle c_2(\mathcal{P}), [S^4] \rangle = \operatorname{degree}(f)$$

4. Let M be a compact oriented 3-manifold equipped with a trivial SU(2)-bundle \mathcal{P} . Prove that if we set ${}^{g}A = gAg^{-1} + gdg^{-1}$ – the gauge transformation of a connection 1-form, then

(3)
$$\int_{M} \psi({}^{g}A) - \int_{M} \psi(A) \in \mathbb{Z}$$

¹You may use the fact $\pi_2(G) = 0$ for any compact group G.

²Hint: recall that for X an n-dimensional CW complex and Y an n-connected topological space (i.e., $\pi_j(Y) = 0$ for j = 0, ..., n), any continuous map is homotopic to a constant map. To transition to smooth setting, use Whitney approximation theorem (if X, Y are smooth manifolds, then for any continuous map $f: X \to Y$ there is a homotopic smooth map $\tilde{f}: X \to Y$).

³Hint: use (1). Let D_{\pm} be the top/bottom 3-disks into which S^4 is cut by the equator. Set $A_- = 0$ on D_- and $A_+ = g^{-1}dg$ (the pullback of the Maurer-Cartan 1-form by g) on D_+ , where $g: D_+ \to G$ is a group-valued function on the disk with boundary restriction $g|_{\partial D_+} = f = t_{-+}$ – the given transition (clutching) function. Check that A_{\pm} glues into a connection on \mathcal{P} . Show that $\int_{S^4} \frac{1}{8\pi^2} \text{tr } F \wedge F = \int_{D_+} d\psi(A_+) + \int_{D_-} d\psi(A_-) = \int_{S^3} \psi(f^{-1}df) = \int_{S^3} f^*\Theta$ where $\Theta = -\frac{1}{24\pi^2} \text{tr } (h^{-1}dh)^{\wedge 3} \in \Omega^3(SU(2))$ is a volume form on SU(2) satisfying (you don't have to check it) $\int_{SU(2)} \Theta = 1$. Here $h \in SU(2)$ and $h^{-1}dh \in \Omega^1(SU(2), \mathfrak{su}(2))$ the Maurer-Cartan 1-form.

2 INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 6, 10/1/2021.

with $\psi(A)$ as in (2).⁴

⁴Idea: use that the oriented cobordism group $\Omega_3 = 0$, i.e. that an oriented closed M is a boundary of some compact oriented 4-manifold $N = N_+$; let N_- be a copy of N with reversed orientation. Let \mathcal{P}_{\pm} be the trivial SU(2)-bundle over N_{\pm} . Let A_+ be a connection on \mathcal{P}_+ restricting to A on the boundary $M = \partial N_+$, and let A_- be a connection on \mathcal{P}_- restricting to gA on the boundary M. Show that connections A_{\pm} can be glued into a connection $\tilde{\mathcal{A}}$ on the SU(2)bundle $\tilde{\mathcal{P}}$ over $\tilde{N} = N_+ \cup_M N_-$ which is trivial over N_{\pm} and has transition function $t_{-+} = g$ on (a tubular neighborhood of) $M \subset N$. Show that $\langle c_2(\tilde{\mathcal{P}}), [\tilde{N}] \rangle$ on the one hand is an integer and on the other hand is the l.h.s. of (3).