INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 7, 10/8/2021.

1. (Berezin integral.) Let

 $\mathbb{A}_n = \mathbb{C} \langle \theta^1, \dots, \theta^n \rangle / \theta^i \theta^j = -\theta^j \theta^i \quad \forall i, j$

be the supercommutative algebra generated by anticommuting generators $\theta^1, \ldots, \theta^n$. Show that an element $f \in \mathbb{A}_n$ can be uniquely represented as

(1)
$$f = \sum_{k=0}^{n} \sum_{0 \le i_1 < \dots < i_k \le n} f_{i_1 \cdots i_k} \theta^{i_1} \cdots \theta^{i_k}$$

with $f_{i_1\cdots i_k} \in \mathbb{C}$ some constants (including $f_{\emptyset} \in \mathbb{C}$ giving a constant term in f). Define a linear map $B: \mathbb{A}_n \to \mathbb{C}$ (the "Berezin integral") which maps f to the coefficient $f_{12\cdots n}$ of the top monomial $\theta^1 \cdots \theta^n$ in (1). For F an anti-symmetric $n \times n$ matrix with entries F_{ij} , prove that

(2)
$$\mathsf{B}(e^F) = \mathrm{Pf}(F)$$

where $\hat{F} = \sum_{1 \le i < j \le n} F_{ij} \theta^i \theta^j \in \mathbb{A}_n$ is the quadratic polynomial associated to Fand Pf(F) is the Pfaffian.¹

More abstractly, for V an n-dimensional vector space and a fixed element $\mu \in \wedge^n V$ (a "Berezinian"), one has a map $\mathsf{B}_{\mu} \colon \wedge^{\bullet} V^* \to \mathbb{C}$ which maps $f \mapsto \left\langle \mu, f^{(n)} \right\rangle$ where $f^{(n)}$ is the component of f in the top exterior power and $\left\langle , \right\rangle$ is the pairing between $\wedge^n V$ and $\wedge^n V^*$ defined by $\left\langle v_n \wedge \cdots \wedge v_1, \alpha^1 \wedge \cdots \wedge \alpha^n \right\rangle \colon = \det(\langle v_i, \alpha^j \rangle)_{i,j}$ with $\langle v_i, \alpha^j \rangle = \alpha^j(v_i)$ the canonical pairing between V and V^{*}.

- 2. (Levi-Civita connection on S^2 in complex coordinates.)
 - (a) Show that the Riemannian metric on $\mathbb{CP}^1 = S^2$ induced from the standard metric $\sum_{i=1}^3 (dx^i)^2$ on \mathbb{R}^3 via the embedding $S^2 \hookrightarrow \mathbb{R}^3$ as a unit sphere locally has the form²

(3)
$$g|_{D_+} = \frac{dz \cdot d\bar{z}}{(1+z\bar{z})^2}, \quad g|_{D_-} = \frac{dw \cdot d\bar{w}}{(1+w\bar{w})^2}$$

Here $D_+ = \{(1:z) | z \in \mathbb{C}\}, D_- = \{(w:1) | w \in \mathbb{C}\}\$ are the standard complex charts on $S^2 = \mathbb{CP}^1$.

(b) Levi-Civita connection (the unique torsion-free connection compatible with metric, i.e., with parallel transport preserving the inner product of tangent vectors) in the tangent bundle of a Riemannian manifold M with metric g is

¹Recall that for *n* odd, the Pfaffian of an $n \times n$ anti-symmetric matrix is defined to be zero. ²Note that $dz \cdot d\bar{z} = \frac{1}{2}(dz \otimes d\bar{z} + d\bar{z} \otimes dz)$ is the commutative product, not the wedge product. E.g., if z = u + iv, $\bar{z} = u - iv$ for local real coordinates u, v, then $dz \cdot d\bar{z} = (du)^2 + (dv)^2$.

locally given by the covariant derivative operator acting on sections of TM (vector fields) as $\nabla \colon X \mapsto dx^j \frac{\partial X^i}{\partial x^j} \underline{\partial}_i + dx^j \Gamma^i_{jk} X^k \underline{\partial}_i$. Here the summation convention over repeated indices is implied, $X = X^i \underline{\partial}_i, \ \underline{\partial}_i = \frac{\partial}{\partial x^i}$ are the basis vectors in $T_x M$ associated to the coordinate chart $\{x^i\}$;³

$$\Gamma^{i}_{jk} = \frac{1}{2} (g^{-1})^{il} (\partial_j g_{lk} + \partial_k g_{lj} - \partial_l g_{jk})$$

are the "Christoffel symbols." Here g_{ij} are the components of the metric in local coordinates: $g = g_{ij} dx^i dx^j$; $(g^{-1})^{ij}$ are the entries of the inverse matrix. Calculate the Christoffel symbols on S^2 using coordinates $x^1 = z, x^2 = \bar{z}$ and metric as in (2a). Show that on D_+ one has

(4)
$$\Gamma_{zz}^{z} = -\frac{2\bar{z}}{1+z\bar{z}}, \ \Gamma_{\bar{z}\bar{z}}^{\bar{z}} = -\frac{2z}{1+z\bar{z}}$$

while all other components vanish $\Gamma_{z\bar{z}}^z = \Gamma_{\bar{z}\bar{z}}^z = \cdots = 0$. Put another way, the covariant derivative operator $\nabla \colon \Omega^{\bullet}(S^2, TS^2) \to \Omega^{\bullet+1}(S^2, TS^2)$ is

(5)
$$\nabla = dz \frac{\partial}{\partial z} - dz \frac{2\bar{z}}{1 + z\bar{z}} \underline{\partial}_z \otimes dz + c.c.$$

c.c. stands for "complex conjugate." In D_{-} one has similar expressions (replacing z with w everywhere).

Write the local expression for the Ehresmann connection 1-form $\mathcal{A} \in \Omega^1(TS^2, \pi^*TS^2)$ as a form on the total space (with $\pi: TS^2 \to S^2$ the bundle projection and $\pi^*TS^2 = T^{\text{vert}}(TS^2)$) the vertical tangent bundle of TS^2).

(c) The curvature of the Levi-Civita connection (the Riemann curvature tensor⁴) $R \in \Omega^2(M, \operatorname{End}(TM))$ is locally given in terms of Christoffel symbols as $R = R_{ijl}^{\ \ k} (dx^i \wedge dx^j) \otimes (\underline{\partial}_k \otimes dx^l)$ with components

$$R_{ij}^{\ k} = \partial_i \Gamma_{jl}^k - \partial_j \Gamma_{il}^k + \Gamma_{ir}^k \Gamma_{jl}^r - \Gamma_{jr}^k \Gamma_{il}^r$$

Calculate the curvature of the Levi-Civita connection on S^2 found in (2b) – show that⁵

(6)
$$R = \frac{2dz \wedge d\bar{z}}{(1+z\bar{z})^2} (\underline{\partial}_z \otimes dz - \underline{\partial}_{\bar{z}} \otimes d\bar{z})$$

(d) (Example of Gauss-Bonnet.) Show that $e_1 = (1 + z\bar{z})(\underline{\partial}_z + \underline{\partial}_{\bar{z}}), \quad e_2 = i(1 + z\bar{z})(\underline{\partial}_z - \underline{\partial}_{\bar{z}})$ is an orthonormal (w.r.t. the metric (3)) real basis in the tangent space to S^2 compatible with the standard orientation of S^2 . Show that in terms of this basis, one has, locally on D_+ ,

$$R = \begin{pmatrix} 0 & R_{12} \\ -R_{12} & 0 \end{pmatrix} \in \Omega^2(D^+) \otimes \mathfrak{so}(2)$$

with

$$R_{12} = \frac{2i \, dz \wedge d\bar{z}}{(1+z\bar{z})^2}$$

 $\mathbf{2}$

³The notation convention here is that $\underline{\partial}_i$ with underline is a basis vector in $T_x M$ whereas ∂_i without underline is the differential operator $\frac{\partial}{\partial x^i}$.

 $^{{}^{4}}$ A historical convention is to use R rather than F to denote the curvature of Levi-Civita connection.

 $^{{}^{5}}$ Another way to get the result is to calculate the square of the differential operator (5).

Show that

$$\frac{1}{2\pi} \int_{S^2} R_{12} = 2$$

– the Euler characteristic of the 2-sphere.

MATHAI-QUILLEN REPRESENTATIVE OF THE THOM CLASS

For details, see E. Getzler "The Thom class of Mathai-Quillen and probability theory," https://cpb-us-e1.wpmucdn.com/sites.northwestern.edu/dist/ c/2278/files/2019/08/thom.pdf

Let $\pi: E \to M$ be an oriented real vector bundle of rank n with metric (,)in fibers. Mathai-Quillen representative for the Thom class of E is defined as follows. Let $Y = \bigoplus_{i \ge 0} \Omega^i(E, \wedge^i \pi^* E)$ viewed as a commutative algebra (with the product coming from the wedge product in forms on E and wedge product in coefficients $\wedge^{\bullet}\pi^*E$). Let $\Xi \in \Gamma(E, \pi^*E)$ be the tautological section $(x, \xi \in E_x) \mapsto \xi$. Choose some connection in E compatible with metric, represented by a 1-form $\mathcal{A} \in \Omega^1(E, \pi^*E)$, with curvature 2-form on the base $F \in \Omega^2(M, \mathfrak{so}(E))$ ($\mathfrak{so}(E)$ is a vector bundle with fiber over x being the space of skew-symmetric endomorphisms of E_x). Identifying $\mathfrak{so}(E) \simeq \wedge^2 E$,⁶ we have $F \in \Omega^2(M, \wedge^2 E)$, thus we can construct the element

(7)
$$S = \underbrace{-\frac{1}{\epsilon}(\Xi,\Xi)}_{S_0} + \underbrace{\mathcal{A} + \frac{\epsilon}{2}\pi^* F}_{S'} \in Y$$

with $\epsilon > 0$ a fixed number. Consider the differential form

(8)
$$\omega \colon = (\pi \epsilon)^{-\frac{n}{2}} \mathsf{B}(e^S) = (\pi \epsilon)^{-\frac{n}{2}} e^{S_0} \mathsf{B}(e^{S'}) \quad \in \quad \Omega^n(E)$$

where $\mathsf{B}: Y \to \Omega^n(E)$ is the Berezin integral in fibers of the coefficient bundle $\wedge^{\bullet}\pi^*E$ over E, $\mathsf{B}: (\wedge^i\pi^*E)_{x,\xi} \to \mathbb{C}$ (vanishing unless i = n), corresponding to a canonical Berezinian $\mu_{x,\xi} = v_n \wedge \cdots \wedge v_1$ for $\{v_i\}$ any orthonormal basis in E_x^* compatible with orientation. The form ω turns out to be a Gaussian-shaped Thom form on E, i.e.,

- $\int_{E_r} \omega = 1$,
- $d\omega = 0$,
- Under a change of connection \mathcal{A} (and under a change of ϵ), ω changes by an exact form.

Locally, in a trivialization neighborhood $U \subset M$ for E, one has

(9)
$$S = -\frac{1}{\epsilon}g_{ab}\xi^a\xi^b + \theta_a(d\xi^a + A^a{}_b\xi^b) + \frac{\epsilon}{4}\theta_a\theta_b(g^{-1})^{bc}F^a{}_c$$

Here we chose some (possibly not orthonormal) basis e_a in fibers E_x ; ξ^a are the corresponding coordinates on the fiber E_x ; g_{ab} are the components of the fiber metric; θ_a are generators of the exterior algebra $\wedge^{\bullet} E_x$; $A^a_{\ b} \in \Omega^1(U)$ are the components of the local connection 1-form on the base, $A \in \Omega^1(U, \operatorname{End}(E))$; $F^a_{\ b} \in \Omega^2(U)$ are the components of the local curvature 2-form on the base, $F \in \Omega^2(U, \operatorname{End}(E))$.

Then, the Mathai-Quillen Thom form ω is locally written as

(10)
$$\omega = (\pi \epsilon)^{-\frac{n}{2}} \sqrt{\det g} \cdot \mathsf{B}(e^S)$$

⁶We use the following identification between $\mathfrak{so}(V)$ and $\wedge^2 V$ for V a Euclidean vector space: $\Phi \in \mathfrak{so}(V)$ corresponds to $\sum_{i < j} (e_i, \Phi(e_j)) e_i \wedge e_j \in \wedge^2 V$ with $\{e_i\}$ any orthonormal basis in V.

where $\mathsf{B}(\cdots)$ is the Berezin integral over θ_a 's, i.e., it returns the coefficient of $\theta_1 \cdots \theta_n$; det g is the determinant of the matrix g_{ab} .⁷

3. (a) Show that if $s_0: M \to E$ is the zero-section of an oriented vector bundle E of rank n = 2m equipped with fiber metric, then the pullback of the Mathai-Quillen Thom form (8), (10) by s_0 yields

(11)
$$s_0^* \omega = \frac{1}{(2\pi)^m} \operatorname{Pf}(F) \quad \in \Omega^{2m}(M)$$

4

- the Chern-Gauss-Bonnet representative of the Euler class.

- (b) Show that for the trivial rank 1 bundle $E = M \times \mathbb{R}$, the Thom form (10) becomes the form ω from the problem 3(a) from exercise sheet 4.
- (c) Show that the Mathai-Quillen Thom form on TS^2 is given locally on D_+ by (1) from Exercise sheet 4:

(12)
$$\omega = \frac{i}{2\pi\epsilon} (1+z\bar{z})^{-2} \left(\left(d\alpha - \frac{2\alpha\bar{z}dz}{1+z\bar{z}} \right) \left(d\bar{\alpha} - \frac{2\bar{\alpha}zd\bar{z}}{1+z\bar{z}} \right) + 2\epsilon dz \wedge d\bar{z} \right) e^{-\frac{\alpha\bar{\alpha}}{\epsilon(1+z\bar{z})^2}}$$

(in the notations of problem 4 from exercise sheet 4).

⁷The appearance of $\sqrt{\det g}$ in (10) accounts for the fact that a basis-independent Berezinian is $\mu = \sqrt{\det g} \cdot D\theta_n \cdots D\theta_1 = \sqrt{\det g} \cdot (\text{coordinate Berezinian}).$