INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISES 7, 10/8/2021.

1. (Berezin integral.) Let

$$
\mathbb{A}_{n}=\mathbb{C}\left\langle\theta^{1}, \ldots, \theta^{n}\right\rangle / \theta^{i} \theta^{j}=-\theta^{j} \theta^{i} \forall i, j
$$

be the supercommutative algebra generated by anticommuting generators $\theta^{1}, \ldots, \theta^{n}$. Show that an element $f \in \mathbb{A}_{n}$ can be uniquely represented as

$$
\begin{equation*}
f=\sum_{k=0}^{n} \sum_{0 \leq i_{1}<\cdots<i_{k} \leq n} f_{i_{1} \cdots i_{k}} \theta^{i_{1}} \cdots \theta^{i_{k}} \tag{1}
\end{equation*}
$$

with $f_{i_{1} \cdots i_{k}} \in \mathbb{C}$ some constants (including $f_{\varnothing} \in \mathbb{C}$ giving a constant term in f). Define a linear map B: $\mathbb{A}_{n} \rightarrow \mathbb{C}$ (the "Berezin integral") which maps f to the coefficient $f_{12 \cdots n}$ of the top monomial $\theta^{1} \cdots \theta^{n}$ in (1). For F an anti-symmetric $n \times n$ matrix with entries $F_{i j}$, prove that

$$
\begin{equation*}
\mathrm{B}\left(e^{\hat{F}}\right)=\operatorname{Pf}(F) \tag{2}
\end{equation*}
$$

where $\hat{F}=\sum_{1 \leq i<j \leq n} F_{i j} \theta^{i} \theta^{j} \in \mathbb{A}_{n}$ is the quadratic polynomial associated to F and $\operatorname{Pf}(F)$ is the Pfaffian. ${ }^{1}$

More abstractly, for V an n-dimensional vector space and a fixed element $\mu \in$ $\wedge^{n} V$ (a "Berezinian"), one has a map $\mathrm{B}_{\mu}: \wedge^{\bullet} V^{*} \rightarrow \mathbb{C}$ which maps $f \mapsto\left\langle\mu, f^{(n)}\right\rangle$ where $f^{(n)}$ is the component of f in the top exterior power and \langle,$\rangle is the pairing$ between $\wedge^{n} V$ and $\wedge^{n} V^{*}$ defined by $\left\langle v_{n} \wedge \cdots \wedge v_{1}, \alpha^{1} \wedge \cdots \wedge \alpha^{n}\right\rangle:=\operatorname{det}\left(\left\langle v_{i}, \alpha^{j}\right\rangle\right)_{i, j}$ with $\left\langle v_{i}, \alpha^{j}\right\rangle=\alpha^{j}\left(v_{i}\right)$ the canonical pairing between V and V^{*}.
2. (Levi-Civita connection on S^{2} in complex coordinates.)
(a) Show that the Riemannian metric on $\mathbb{C P}^{1}=S^{2}$ induced from the standard metric $\sum_{i=1}^{3}\left(d x^{i}\right)^{2}$ on \mathbb{R}^{3} via the embedding $S^{2} \hookrightarrow \mathbb{R}^{3}$ as a unit sphere locally has the form ${ }^{2}$

$$
\begin{equation*}
\left.g\right|_{D_{+}}=\frac{d z \cdot d \bar{z}}{(1+z \bar{z})^{2}},\left.\quad g\right|_{D_{-}}=\frac{d w \cdot d \bar{w}}{(1+w \bar{w})^{2}} \tag{3}
\end{equation*}
$$

Here $D_{+}=\{(1: z) \mid z \in \mathbb{C}\}, D_{-}=\{(w: 1) \mid w \in \mathbb{C}\}$ are the standard complex charts on $S^{2}=\mathbb{C P}^{1}$.
(b) Levi-Civita connection (the unique torsion-free connection compatible with metric, i.e., with parallel transport preserving the inner product of tangent vectors) in the tangent bundle of a Riemannian manifold M with metric g is

[^0]locally given by the covariant derivative operator acting on sections of $T M$ (vector fields) as $\nabla: X \mapsto d x^{j} \frac{\partial X^{i}}{\partial x^{j}} \underline{\partial}_{i}+d x^{j} \Gamma_{j k}^{i} X^{k} \underline{\partial}_{i}$. Here the summation convention over repeated indices is implied, $X=X^{i} \underline{\partial}_{i}, \underline{\partial}_{i}=\frac{\partial}{\partial x^{i}}$ are the basis vectors in $T_{x} M$ associated to the coordinate chart $\left\{x^{i}\right\} ;{ }^{3}$
$$
\Gamma_{j k}^{i}=\frac{1}{2}\left(g^{-1}\right)^{i l}\left(\partial_{j} g_{l k}+\partial_{k} g_{l j}-\partial_{l} g_{j k}\right)
$$
are the "Christoffel symbols." Here $g_{i j}$ are the components of the metric in local coordinates: $g=g_{i j} d x^{i} d x^{j} ;\left(g^{-1}\right)^{i j}$ are the entries of the inverse matrix. Calculate the Christoffel symbols on S^{2} using coordinates $x^{1}=$ $z, x^{2}=\bar{z}$ and metric as in (2a). Show that on D_{+}one has
$$
\Gamma_{z z}^{z}=-\frac{2 \bar{z}}{1+z \bar{z}}, \Gamma_{\bar{z} \bar{z}}^{\bar{z}}=-\frac{2 z}{1+z \bar{z}}
$$
while all other components vanish $\Gamma_{z \bar{z}}^{z}=\Gamma_{\bar{z} \bar{z}}^{z}=\cdots=0$. Put another way, the covariant derivative operator $\nabla: \Omega^{\bullet}\left(S^{2}, T S^{2}\right) \rightarrow \Omega^{\bullet+1}\left(S^{2}, T S^{2}\right)$ is
\[

$$
\begin{equation*}
\nabla=d z \frac{\partial}{\partial z}-d z \frac{2 \bar{z}}{1+z \bar{z}} \underline{\partial}_{z} \otimes d z+c . c . \tag{5}
\end{equation*}
$$

\]

c.c. stands for "complex conjugate." In D_{-}one has similar expressions (replacing z with w everywhere).
Write the local expression for the Ehresmann connection 1-form $\mathcal{A} \in \Omega^{1}\left(T S^{2}, \pi^{*} T S^{2}\right)$ as a form on the total space (with $\pi: T S^{2} \rightarrow S^{2}$ the bundle projection and $\pi^{*} T S^{2}=T^{\mathrm{vert}}\left(T S^{2}\right)$ the vertical tangent bundle of $\left.T S^{2}\right)$.
(c) The curvature of the Levi-Civita connection (the Riemann curvature tensor ${ }^{4}$) $R \in \Omega^{2}(M, \operatorname{End}(T M))$ is locally given in terms of Christoffel symbols as $R=R_{i j l}^{k}\left(d x^{i} \wedge d x^{j}\right) \otimes\left(\underline{\partial}_{k} \otimes d x^{l}\right)$ with components

$$
R_{i j}^{k}=\partial_{i} \Gamma_{j l}^{k}-\partial_{j} \Gamma_{i l}^{k}+\Gamma_{i r}^{k} \Gamma_{j l}^{r}-\Gamma_{j r}^{k} \Gamma_{i l}^{r}
$$

Calculate the curvature of the Levi-Civita connection on S^{2} found in (2b) show that ${ }^{5}$

$$
\begin{equation*}
R=\frac{2 d z \wedge d \bar{z}}{(1+z \bar{z})^{2}}\left(\underline{\partial}_{z} \otimes d z-\underline{\partial}_{\bar{z}} \otimes d \bar{z}\right) \tag{6}
\end{equation*}
$$

(d) (Example of Gauss-Bonnet.) Show that $e_{1}=(1+z \bar{z})\left(\underline{\partial}_{z}+\underline{\partial}_{\bar{z}}\right), \quad e_{2}=$ $i(1+z \bar{z})\left(\underline{\partial}_{z}-\underline{\partial}_{\bar{z}}\right)$ is an orthonormal (w.r.t. the metric (3)) real basis in the tangent space to S^{2} compatible with the standard orientation of S^{2}. Show that in terms of this basis, one has, locally on D_{+},

$$
R=\left(\begin{array}{cc}
0 & R_{12} \\
-R_{12} & 0
\end{array}\right) \quad \in \Omega^{2}\left(D^{+}\right) \otimes \mathfrak{s o}(2)
$$

with

$$
R_{12}=\frac{2 i d z \wedge d \bar{z}}{(1+z \bar{z})^{2}}
$$

[^1]Show that

$$
\frac{1}{2 \pi} \int_{S^{2}} R_{12}=2
$$

- the Euler characteristic of the 2 -sphere.

Mathai-Quillen representative of the Thom class

For details, see E. Getzler "The Thom class of Mathai-Quillen and probability theory," https://cpb-us-e1.wpmucdn.com/sites.northwestern.edu/dist/ c/2278/files/2019/08/thom.pdf

Let $\pi: E \rightarrow M$ be an oriented real vector bundle of rank n with metric (,) in fibers. Mathai-Quillen representative for the Thom class of E is defined as follows. Let $Y=\oplus_{i \geq 0} \Omega^{i}\left(E, \wedge^{i} \pi^{*} E\right)$ viewed as a commutative algebra (with the product coming from the wedge product in forms on E and wedge product in coefficients $\left.\wedge^{\bullet} \pi^{*} E\right)$. Let $\Xi \in \Gamma\left(E, \pi^{*} E\right)$ be the tautological section $\left(x, \xi \in E_{x}\right) \mapsto \xi$. Choose some connection in E compatible with metric, represented by a 1 -form $\mathcal{A} \in \Omega^{1}\left(E, \pi^{*} E\right)$, with curvature 2-form on the base $F \in \Omega^{2}(M, \mathfrak{s o}(E))(\mathfrak{s o}(E)$ is a vector bundle with fiber over x being the space of skew-symmetric endomorphisms of $\left.E_{x}\right)$. Identifying $\mathfrak{s o}(E) \simeq \wedge^{2} E,{ }^{6}$ we have $F \in \Omega^{2}\left(M, \wedge^{2} E\right)$, thus we can construct the element

$$
\begin{equation*}
S=\underbrace{-\frac{1}{\epsilon}(\Xi, \Xi)}_{S_{0}}+\underbrace{\mathcal{A}+\frac{\epsilon}{2} \pi^{*} F}_{S^{\prime}} \in Y \tag{7}
\end{equation*}
$$

with $\epsilon>0$ a fixed number. Consider the differential form

$$
\begin{equation*}
\omega:=(\pi \epsilon)^{-\frac{n}{2}} \mathrm{~B}\left(e^{S}\right)=(\pi \epsilon)^{-\frac{n}{2}} e^{S_{0}} \mathrm{~B}\left(e^{S^{\prime}}\right) \quad \in \quad \Omega^{n}(E) \tag{8}
\end{equation*}
$$

where $\mathrm{B}: Y \rightarrow \Omega^{n}(E)$ is the Berezin integral in fibers of the coefficient bundle $\wedge^{\bullet} \pi^{*} E$ over $E, \quad \mathrm{~B}:\left(\wedge^{i} \pi^{*} E\right)_{x, \xi} \rightarrow \mathbb{C}$ (vanishing unless $i=n$), corresponding to a canonical Berezinian $\mu_{x, \xi}=v_{n} \wedge \cdots \wedge v_{1}$ for $\left\{v_{i}\right\}$ any orthonormal basis in E_{x}^{*} compatible with orientation. The form ω turns out to be a Gaussian-shaped Thom form on E, i.e.,

- $\int_{E_{x}} \omega=1$,
- $d \omega=0$,
- Under a change of connection \mathcal{A} (and under a change of ϵ), ω changes by an exact form.
Locally, in a trivialization neighborhood $U \subset M$ for E, one has

$$
\begin{equation*}
S=-\frac{1}{\epsilon} g_{a b} \xi^{a} \xi^{b}+\theta_{a}\left(d \xi^{a}+A_{b}^{a} \xi^{b}\right)+\frac{\epsilon}{4} \theta_{a} \theta_{b}\left(g^{-1}\right)^{b c} F_{c}^{a} \tag{9}
\end{equation*}
$$

Here we chose some (possibly not orthonormal) basis e_{a} in fibers $E_{x} ; \xi^{a}$ are the corresponding coordinates on the fiber $E_{x} ; g_{a b}$ are the components of the fiber metric; θ_{a} are generators of the exterior algebra $\wedge^{\bullet} E_{x} ; A^{a}{ }_{b} \in \Omega^{1}(U)$ are the components of the local connection 1-form on the base, $A \in \Omega^{1}(U, \operatorname{End}(E)) ; F_{b}^{a} \in \Omega^{2}(U)$ are the components of the local curvature 2 -form on the base, $F \in \Omega^{2}(U, \operatorname{End}(E))$.

Then, the Mathai-Quillen Thom form ω is locally written as

$$
\begin{equation*}
\omega=(\pi \epsilon)^{-\frac{n}{2}} \sqrt{\operatorname{det} g} \cdot \mathrm{~B}\left(e^{S}\right) \tag{10}
\end{equation*}
$$

[^2]where $B(\cdots)$ is the Berezin integral over θ_{a} 's, i.e., it returns the coefficient of $\theta_{1} \cdots \theta_{n}$; $\operatorname{det} g$ is the determinant of the matrix $g_{a b} .{ }^{7}$
3. (a) Show that if $s_{0}: M \rightarrow E$ is the zero-section of an oriented vector bundle E of rank $n=2 m$ equipped with fiber metric, then the pullback of the Mathai-Quillen Thom form (8), (10) by s_{0} yields
\[

$$
\begin{equation*}
s_{0}^{*} \omega=\frac{1}{(2 \pi)^{m}} \operatorname{Pf}(F) \quad \in \Omega^{2 m}(M) \tag{11}
\end{equation*}
$$

\]

- the Chern-Gauss-Bonnet representative of the Euler class.
(b) Show that for the trivial rank 1 bundle $E=M \times \mathbb{R}$, the Thom form (10) becomes the form ω from the problem $3(\mathrm{a})$ from exercise sheet 4 .
(c) Show that the Mathai-Quillen Thom form on $T S^{2}$ is given locally on D_{+}by (1) from Exercise sheet 4:
(12) $\omega=\frac{i}{2 \pi \epsilon}(1+z \bar{z})^{-2}\left(\left(d \alpha-\frac{2 \alpha \bar{z} d z}{1+z \bar{z}}\right)\left(d \bar{\alpha}-\frac{2 \bar{\alpha} z d \bar{z}}{1+z \bar{z}}\right)+2 \epsilon d z \wedge d \bar{z}\right) e^{-\frac{\alpha \bar{\alpha}}{\epsilon(1+z \bar{z})^{2}}}$
(in the notations of problem 4 from exercise sheet 4).

[^3]
[^0]: ${ }^{1}$ Recall that for n odd, the Pfaffian of an $n \times n$ anti-symmetric matrix is defined to be zero.
 ${ }^{2}$ Note that $d z \cdot d \bar{z}=\frac{1}{2}(d z \otimes d \bar{z}+d \bar{z} \otimes d z)$ is the commutative product, not the wedge product. E.g., if $z=u+i v, \bar{z}=u-i v$ for local real coordinates u, v, then $d z \cdot d \bar{z}=(d u)^{2}+(d v)^{2}$.

[^1]: ${ }^{3}$ The notation convention here is that $\underline{\partial}_{i}$ with underline is a basis vector in $T_{x} M$ whereas ∂_{i} without underline is the differential operator $\frac{\partial}{\partial x^{i}}$.
 ${ }^{4}$ A historical convention is to use R rather than F to denote the curvature of Levi-Civita connection.
 ${ }^{5}$ Another way to get the result is to calculate the square of the differential operator (5).

[^2]: ${ }^{6}$ We use the following identification between $\mathfrak{s o}(V)$ and $\wedge^{2} V$ for V a Euclidean vector space: $\Phi \in \mathfrak{s o}(V)$ corresponds to $\sum_{i<j}\left(e_{i}, \Phi\left(e_{j}\right)\right) e_{i} \wedge e_{j} \in \wedge^{2} V$ with $\left\{e_{i}\right\}$ any orthonormal basis in V.

[^3]: ${ }^{7}$ The appearance of $\sqrt{\operatorname{det} g}$ in (10) accounts for the fact that a basis-independent Berezinian is $\mu=\sqrt{\operatorname{det} g} \cdot D \theta_{n} \cdots D \theta_{1}=\sqrt{\operatorname{det} g} \cdot($ coordinate Berezinian).

