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1. A long introduction: Segal’s picture of 2d conformal field
theory

Lecture 1,
8/24/20221.1. Segal’s axioms of quantum field theory.

1.1.1. The definition of QFT. Segal [35] suggested the following geometrical defi-
nition of a quantum field theory. Segal focused mainly on the case of 2D conformal
theories; Atiyah in [3] described the case of topological theories.1

Data. A D-dimensional QFT is the following assignment:

• A closed oriented (D − 1)-manifold γ is assigned a vector space Hγ over C
(the “space of states”).

• An oriented D-manifold Σ with boundary split into disjoint in- and out-
components such that ∂Σ = −γintγout (minus means orientation reversal),2

is assigned a linear map ZΣ : Hγin
→ Hγout

(the “evolution operator” or
“partition function”).

1Another reference for Segal’s viewpoint on QFT, with motivation from quantization of classical
field theories, is [33]. In the exposition here I was inspired by Losev’s lectures [27].

2We will say that Σ is a cobordism from γin to γout and write γin
Σ−→ γout and think of Σ as

an arrow in a cobordism category, where objects are oriented closed (D − 1)-manifolds. See also

Remark 1.4 below for a more careful definition of a cobordism.
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γoutΣγin

Figure 1. Cobordism.

Axioms.
• Multiplicativity: “t → ⊗” (disjoint unions are mapped to tensor products).

(a) Given two closed (D − 1)-manifolds γ1, γ2, one has

Hγ1tγ2 = Hγ1 ⊗Hγ2 .

(b) Given two D-cobordisms γin
1

Σ1−−→ γout
1 , γin

2
Σ2−−→ γout

2 , one has

ZΣ1tΣ2
= ZΣ1

⊗ ZΣ2

where both sides are linear maps Hγin
1
⊗Hγin

2
→ Hγout

1
⊗Hγout

2
.

Hγ in
1
⊗Hγ in

2

ZΣ1
⊗ZΣ2−−−−−→ Hγout

1
⊗Hγout

2

γin1 γout1Σ1

γin2 γout2Σ2

Figure 2. Multiplicativity with respect to disjoint unions.

• Sewing axiom: “∪ → ◦” (sewing of cobordisms is mapped to composition of

linear maps). Given two cobordisms γ1
Σ′−→ γ2 and γ2

Σ′′−−→ γ3 one can sew3 the

3In the case of a topological theory (cobordisms are smooth oriented manifolds with boundary,

with no extra geometric structure), one can consider cobordisms modulo diffeomorphisms relative

to the boundary, and then sewing is a well-defined operation. In 2d conformal theory, cobordisms
are Riemann surfaces with parametrized boundary and the sewing operation, identifying two

circles along the parametrization, is also well-defined.
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out-boundary of the first one to the in-boundary of the second one, obtaining a
sewn cobordism Σ = Σ′ ∪γ2 Σ′′.

Σ′′Σ′
γ1 γ2 γ3

cutting along γ2

←−
−→

sewing along γ2

γ3
Σ

γ1

Figure 3. Sewing.

Then one has

(1) ZΣ = ZΣ′′ ◦ ZΣ′

or, making domains and codomains explicit,

Hγ3

ZΣ←−− Hγ1
= Hγ3

ZΣ′′←−−− Hγ2

ZΣ′←−− Hγ1
.

• Normalization.

(a) For the empty (D − 1)-manifold, one has

H∅ = C.

(b) For any closed oriented (D− 1) -manifold γ, the partition function for a “very
short” cylinder4 γ × [0, ε] tends to the identity map on the space of states:

lim
ε→0

Zγ×[0,ε] = id: Hγ → Hγ
Additional data.

Action of diffeomorphisms. For φ : γ → γ̃ a diffeomorphism, we have a map

(2) ρ(φ) : Hγ → Hγ̃
which is linear if φ is orientation-preserving and is antilinear if φ is orientation-
reversing. Moreover, this is an action, i.e., ρ(φ2 ◦ φ1) = ρ(φ2) ◦ ρ(φ1).

Geometric data. Cobordisms Σ are equipped with local geometric data ξΣ ∈
GeomΣ of type which depends on the particular QFT.5 Examples of ξΣ:

(1) Riemannian (or pseudo-Riemannian) metric on Σ. This is the case for many
physically relevant QFTs, like, e.g., Yang-Mills theory or electrodynamics.

(2) Conformal structure on Σ (metric up to rescaling by a positive function).
This is the case relevant to us (especially for D = 2).

(3) Nothing. Despite its apparent triviality, actually a very interesting case
corresponding to topological quantum field theories, in the sense of Atiyah
[3].

Boundaries γ should also be equipped with geometric data, ξγ ∈ Geomγ . E.g., in
the cases above the corresponding boundary data is:

4The precise meaning of “very short” depends on the type of geometric data we put on

cobordisms.
5In our notations, GeomΣ is the space of all geometric data of given type on Σ, and ξΣ is a

particular choice.
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(1) A germ of Riemannian bi-collars on γ (a germ of Riemannian metrics on
γ × (−ε, ε)).

(2) A parametrization of a boundary circle γ.
(3) Nothing.

The relation between geometric data for cobordisms and for boundaries is that
one wants that for a sewn cobordism Σ, GeomΣ is the fiber product GeomΣ =
GeomΣ′ ×Geomγ

GeomΣ′′ . I.e., when we sew cobordisms in the sewing axiom, we
also sew the geometric data.

Axioms continued.
Naturality (equivariance under diffeomorphisms).

Given a diffeomorphism between cobordisms, φ : Σ→ Σ̃, one has a commutative
diagram

(3)

Hγin

ZΣ,ξ−−−−→ Hγout

ρ(φ|in)

y
yρ(φ|out)

Hγ̃in
−−−−−−→
Z

Σ̃,ξ̃=φ∗ξ

Hγ̃out

1.1.2. Remarks.

Remark 1.1. For a closed D-manifold ∅ Σ−→ ∅, the partition function is ZΣ : C
·ζ−→ C

– multiplication by some complex number ζ. By abuse of notations, this number ζ
is also called the partition function (and also denoted ZΣ).

Remark 1.2. One may summarize the axioms above by saying that a QFT is a
functor of symmetric monoidal categories

(4) Cob
(H,Z)−−−−→ VectC

where on the left one has the category of spacetimes (a.k.a. geometric cobordism
category), where:

• The objects (γ, ξγ) are closed oriented (D − 1)-manifolds γ equipped with
geometric structure ξγ ∈ Geomγ .
• The morphisms (Σ, ξΣ) are D-dimensional oriented cobordisms with geo-

metric structure ξΣ ∈ GeomΣ.
• Composition is sewing of cobordisms (accompanied by sewing the geometric

data).
• Monoidal tensor product is given by disjoint unions. Monoidal unit is the

empty (D − 1)-manifold.
• Cob is a non-unital category: it does not have identity morphisms. Instead,

it has “almost identity” morphisms – short cylinders.6

The right hand side of (4) is the category of complex vector spaces and linear maps
with obvious monoidal structure given by tensor product.

Naturality axiom says that diffeomorphisms act on the functor (H, Z) by natural
transformations.

Another way to understand diffeomorphisms categorically is as an enhancement
of Cob to a bicategory, where the second type of 1-morphisms is diffeomorphisms

6An exception is the topological case Geom = ∅ where finite cylinders γ × [0, 1] play the role
of identity morphisms on the nose, without having to approximate identity by a family.
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of (D − 1)-manifolds and 2-morphisms are diffeomorphisms of cobordisms. Then
naturality says that (4) extends to a functor of bicategories.

Remark 1.3. It is very interesting to restrict the naturality axiom (3) to the sub-
group SymΣ,ξ ⊂ DiffΣ of diffeomorphisms φ : Σ→ Σ preserving the chosen geomet-
ric data ξ, i.e., satisfying φ∗ξ = ξ. Then, (3) yields symmetries of ZΣ,ξ (the “Ward
identities”):

(5) ZΣ,ξ = ρ(φ|out) ◦ ZΣ,ξ ◦ ρ(φ|in)−1.

Remark 1.4. A careful definition of aD-cobordism is as a quintuple (Σ, γin, γout, iin, iout)
consisting of the following:

• γin, γout two closed oriented (D − 1)-manifolds,
• Σ an oriented D-manifold with boundary,
• two embeddings iin : γin ↪→ ∂Σ, iout : γout → ∂Σ with disjoint images, such

that
– ∂Σ = iin(γin) t iout(γout),
– iin is orientation-reversing and iout is orientation-preserving.

With this definition, one can say that the data of the action of a diffeomorphism
φ on the spaces of states (2) is redundant, as it is already contained in the data
of partition functions assigned to cobordisms, as Z for an infinitesimally short
mapping cylinder
(6)

Mφ =

(
γ × [0, ε], γ, γ,

iin : γ ↪→ γ × [0, ε]
x 7→ (x, 0)

,
iout : γ ↪→ γ × [0, ε]

x 7→ (φ(x), ε)

)
.

From this viewpoint, the naturality axiom (3) is a special case of the sewing
axiom (when one is attaching two short mapping cylinders to the in-/out-ends of a
cobordism). Is this right? One

needs then to adjoin
conjugation ρ(r) as
a separate piece of
data?

Remark 1.5. One has a natural identification between H−γ and the linear dual
of Hγ , since the partition function of a short cylinder, seen as a cobordism γ t
(−γ)

γ×[0,ε]−−−−→ ∅ yields (in ε→ 0 limit) a bilinear pairing

(7) (, ) : Hγ ⊗H−γ → C,

which is nondegenerate.7

Remark 1.6. Given a cobordism, one can always reassign a connected component
of the in-boundary as a component of the out-boundary with reversed orientation.
The corresponding partition functions are equal:

Z
(
γ1 t γ2

Σ−→ γ3

)
= Z

(
γ1

Σ−→ γ3 t (−γ2)
)
,

using the identification H−γ2
= H∗γ2

from Remark 1.5. In [35] this property is called
the “crossing axiom.”

7Nondegeneracy is shown by the following argument. One can consider a second short cylinder

∅
γ×[0,ε]−−−−−→ (−γ) t γ. Attaching −γ from the in-boundary of the first cylinder to the −γ from the

out-boundary of the second cylinder, we obtain a cylinder γ
γ×[0,2ε]−−−−−−→ γ whose partition function

converges to identity. That implies that the pairing (7) cannot have any kernel vectors.
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1.1.3. Unitarity (and its Euclidean counterpart). For any γ (we are suppressing the
geometric data in notation) one has the tautological orientation-reversing mapping
r : γ → −γ mapping each point to itself. By (2), one has a corresponding antilinear
map ρ(r) : Hγ → H−γ . Combining it with pairing (7), one has a sesquilinear form

(8) 〈, 〉 : Hγ ⊗Hγ
ρ(r)⊗id−−−−−→ H−γ ⊗Hγ

(,)−→ C.

Unitarity is an optional collection of assumptions on a QFT which it might
satisfy (or not):

(a) (Hγ , 〈, 〉) is a Hilbert space for each γ. In particular, the sesquilinear form 〈, 〉mention that it
might be good to
drop the complete-
ness assumtion and
refer to Remark 5.4?

is positive definite.
(b) For a cylinder γ × [0, t], the partition function Zγ×[0,t] is a unitary operator
Hγ → Hγ .

(c) The representation of diffeomorphisms on spaces of states (2) is unitary.

We will be studying 2d CFTs in Euclidean signature; they are not unitary theo-
ries in the sense above. In fact, properties (a) and (c) may hold for them (in which
case one talks about a “unitary CFT”), but (b) fails. Instead, (b) gets replaced by
its Euclidean counterpart:

(b’) The partition function of a cobordism γ1
Σ−→ γ2, and of its orientation-reversed

copy γ2
−Σ−−→ γ1 are related by

Z−Σ = Z̄∗Σ,

where bar stands for complex conjugation and star is the dual (transpose) map.8

Note also that if dimH = +∞, (b) is incompatible with the trace-class property
that one wants to have in a CFT.

Lecture 2,
8/26/2022 1.2. Examples of Segal’s QFTs.

1.2.1. TQFTs and a silly example. A Segal’s QFT with no geometric data on cobor-
disms and boundaries is a topological quantum field theory in the sense of Atiyah
[3]. A TQFT assigns to a closed oriented D-manifold a complex number ZΣ ∈ C
– invariant of a D-manifold up to diffeomorphism, behaving nicely with respect to
cutting/gluing.

There are very interesting examples like e.g. D = 3 Chern-Simons theory.
A silly example. For any D we can construct a TQFT with Hγ = C for any γ

and

Z(Σ) = eχ(Σ)−χ(γin)

for any cobordism γin
Σ−→ γout.

9 Here χ is the Euler characteristic. It follows from
the additivity of Euler characteristic that Segal’s axioms are satisfied (in particular,
multiplicativity and sewing).

8In Osterwalder-Schrader axioms, this property is called “reflection positivity.” Segal [35] calls

it “*-functor” property.
9Slightly more generally, we can set Z(Σ) = eχ(Σ)−αχ(γin)−βχ(γout) where α, β are fixed num-

bers such that α+ β = 1. E.g. one can make a symmetric choice α = β = 1
2

.
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1.2.2. D = 1 Riemannian Segal’s QFT – quantum mechanics. Here objects of the
spacetime category (0-manifolds) are collections of points with orientation ±. Fix a
vector spaceH and let the space of states for pt+ beHpt+ : = H. ThenHpt− = H∗.

Morphisms of the spacetime category (1-cobordisms) are collections of oriented
intervals and circles equipped with Riemannian metric. Note that naturality axiom
implies that the partition function for a cobordism depends only on metric modulo
diffeomorphisms, i.e., only on lengths of connected components. Denote the parti-

tion function for an interval of length t (thought of as a cobordism pt+ [0,t]−−→ pt+)
by Zt : H → H.

Sewing intervals of lengths t1 and t2, we get an interval of length t1 + t2. Thus,
the sewing axiom implies the semi-group law

(9) Zt1+t2 = Zt2 ◦ Zt1 .
Assume that we have an improved normalization property:

(10) Zε ∼
ε→0

id +Aε+O(ε2)

with A ∈ End(H) some linear operator. In physical normalization, one writes

A = − i
~Ĥ, then the operator Ĥ ∈ End(H) is called the “quantum Hamiltonian”

(or “Schrödinger operator”). Together, (9) and (10) imply

(11) Zt = (Z t
N

)N = lim
N→∞

(id +A
t

N
+O(

1

N2
))N = eAt = e−

i
~ Ĥt.

(I.e., the idea is that we cut a finite interval into N tiny intervals where Z is
well-approximated by (10), and then reassemble them using the sewing axiom.)

Formula (11), which we recovered from Segal’s axioms, is the standard expression
for the evolution operator in time t in quantum mechanics with quantum Hamil-

tonian Ĥ. In quantum mechanics, one recovers (11) from Shrödinger equation

(12) (i~ ∂t + Ĥ)ψt = 0

for a t-dependent state ψt ∈ H. Equation (12) implies ψt = Zt(ψ0), with Zt given
by (11). One may also say that the Schrödinger equation itself (12), seen from
Segal’s standpoint, expresses the sewing axiom for sewing an infinitesimal interval
of length dt to a finite interval of length t.

Remark 1.7. Recall that H is automatically equipped with a sesquilinear form (8).

The 1D QFT above is unitary if additionally H, 〈, 〉 is a Hilbert space and if Ĥ is
a self-adjoint operator, which implies that the evolution operator (11) is unitary.

Remark 1.8. If we ask Ĥ to be self-adjoint, but consider evolution in imaginary
time t = −iTEucl with TEucl > 0 (the “Euclidean time”), then (11) becomes a
self-adjoint operator

(13) Z = e−
TEucl

~ Ĥ

(instead of unitary) and the theory satisfies (b’) of Section 1.1.3 instead of (b). Comment more on
Wick rotation?

Remark 1.9. It follows from the sewing axiom that the partition function for a
circle of length t is given by the trace of the partition function for the interval of
length t

(14) Z(S1
t ) = trHZt = trHe

− i
~ Ĥt
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This is a shortened
write-up of problem
1 from exercise sheet
1

Example 1.10 (Quantum mechanics of a free particle on a circle). Let X be a
circle of length L. Free particle on X is described by the quantum Hamiltonian

(15) Ĥ = − 1

4π

∂2

∂x2

acting on the Hilbert space H = L2(X); x ∈ R/L · Z is the coordinate on the
circle X. Here for simplicity we adopted the units where ~ = 1 and the mass of
the particle is 2π (this normalization of the Hamiltonian is chosen in order to have
simpler formulae below).

The partition function for an interval of length t is a unitary integral operator

Zt = e−iĤt with integral kernel

(16) Kt(x1, x0) =

∞∑

n=−∞
(it)−

1
2 eπi

(x1−x0+nL)2

t .

The partition function for Σ a circle of length t is then

(17) Z(S1
t ) = trHZt =

∫

X

dxKt(x, x) = L(it)−
1
2

∞∑

n=−∞
eπi

L2

t n
2

We note that another way to obtain trHZt is via the eigenvalue spectrum of the

Hamiltonian (15). The eigenfunctions of Ĥ are ψk = e
2πikx
L and the corresponding

eigenvalues are Ek = π
(
k
L

)2
. Thus, one has

(18) Z(S1
t ) = trHe

−iĤt =

∞∑

k=−∞

e−iEkt =

∞∑

k=−∞

e−πi
t
L2 k

2

One can show directly by Poisson summation formula10 that the right hand sides
of (17) and (18) agree; in Poisson summation, the sum over “winding numbers” n
is transformed into a sum over the dual summation index – the “momentum” k.

We note that one can consider the evolution in Euclidean time t = −iTEucl with
TEucl > 0. Then the operator Zt becomes trace-class and sums (17), (18) become
absolutely convergent.

Denoting for convenience λ : = L2

TEucl
and denoting the partition function for

a circle (17), (18) by ζ(λ), we have an interesting transformation property under
λ→ λ−1:

(19) ζ(λ) = λ−
1
2 ζ(λ−1)

This property can be regarded as a very simple instance of the so-called T -duality
(behavior under inversion of the radius of the target circle). Alternatively, if one
fixes L = 1, (19) becomes a toy 1d model of modular invariance in 2d conformal
field theory, see (28) below.

10 Recall that Poisson summation formula says that for a function f(x) on R decaying

sufficiently fast at x → ±∞, with f̃(p) =
∫

R f(x)e2πipxdx its Fourier transform, one has∑
n∈Z f(n) =

∑
k∈Z f̃(k). One can see this as the equality of distributions

∑
n∈Z δ(x − n) =∑

k∈Z e
2πikx, integrated against a test function f .
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1.3. Quantum observables in Segal’s language (the idea). Fix a Segal’s

QFT. For γin
Σ−→ γout a cobordism, let Γ ⊂ Σ be a CW subcomplex disjoint from

∂Σ.11 Let consider a family of ε-thickenings Uε(Γ) of Γ in Σ, with ε ∈ (0, ε0).12

Γ

Uǫ(Γ)

Γ

Uǫ(Γ)

Figure 4. ε-thickenings.

A quantum observable supported on Γ is a family (parametrized by ε ∈ (0, ε0))
of elements

(20) ÔΓ,ε ∈ H∂Uε(Γ)

I.e. for each ε we have a state on the boundary of the ε-tube around Γ.
The correlator (or VEV – “vacuum expectation value”) of the observable is

defined as

(21) 〈ÔΓ〉Σ : = lim
ε→0

ZΣ−Uε(Γ) ◦ ÔΓ,ε ∈ Hom(Hγin
,Hγout

)

The idea here is that Σ with the tube around Γ cut out has as its boundaries
γin, γout and a new piece of boundary – the boundary of the tube, where we plug
the state given by the observable. An important case is when Σ is closed (i.e.,
γin = γout = ∅). Then the correlator (21) is a complex number.

The ε-dependence in the family (20) is supposed to be such that the limit in
the r.h.s. of (21) exists. One way to arrange it is to require that elements (20) for
different ε are related by

(22) ÔΓ,ε′ = ZUε′ (Γ)−Uε(Γ) ◦ ÔΓ,ε

for 0 < ε < ε′ < ε0. In this case the expression under the limit in (21) does not
depend on ε ∈ (0, ε0) (as follows from the sewing axiom).

For us, the most important case would be when Γ is a collection of points (cor-
relators of point observables). However, in topological and gauge theories it is
natural to consider different Γs, e.g., Wilson loop observable in Chern-Simons and
Yang-Mills theories corresponds to Γ an embedded circle in Σ; its generalization –
Wilson graph – corresponds to Γ an embedded graph in Σ.

1.3.1. Example: point observables in quantum mechanics. In the setting of Section
1.2.2 – quantum mechanics as 1d QFT – consider the cobordism Σ = [tin, tout]
and consider an observable supported at a single point Γ = {t} inside Σ. As the
thickening we can take small intervals

Uε(Γ) = [t− ε, t+ ε].

11It is very interesting to allow Γ to go to intersect the boundary of Σ, but that would lead
us into QFTs with corners (known in the topological case, as extended TQFTs in the sense of
Baez-Dolan-Lurie).

12E.g. we can equip Σ with a metric and define Uε(Γ) as the set of points of distance ≤ ε from
Γ.
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The boundary of the thickening is a pair of points of opposite orientation

∂Uε(Γ) = pt− t pt+.

Thus, a quantum observable is an element

(23) Ô ∈ H∂Uε(Γ) = Hpt−tpt+ = H∗ ⊗H ∼= End(H)

– an operator on the space of states H.

Γ

ttin tout

t − ǫ t + ǫ

Figure 5. Point observable in quantum mechanics.

We can similarly consider several point observables on Σ, supported at Γ =
{t1, . . . , tn} (we assume that tin < t1 < t2 < · · · < tn < tout). The picking a state
on the boundary of ε-thickening of each point amounts to choosing a collection of

operators Ô1, . . . , Ôn ∈ End(H). The correlator (21) then is

〈Ô1(t1) · · · Ôn(tn)〉Σ = e−
i
~ Ĥ(tout−tn)Ôn · · · e−

i
~ Ĥ(t2−t1)Ô1e

− i
~ Ĥ(t1−tin)

Ôn

t1 t2 tntin tout

Ô1 Ô2

Figure 6. Correlator of several point observables in quantum mechanics.

1.4. 2d conformal field theory as a Segal’s QFT. In the main case of inter-
est for us – two-dimensional conformal field theory – the geometric structure on
cobordisms is conformal structure (Riemannian metric up to rescaling by a positive
function), plus orientation; in two dimensions this data is equivalent13 to complex
structure. Thus, cobordisms are (possibly disconnected) Riemann surfaces with
parametrized boundary circles (when sewing in- and out-circles, one should re-
spect the parametrization – points with the same angle parameter are identified).14

Parametrization of boundaries is needed for the sewn surface to have a well-defined
complex structure.15

Such a Riemann surface with n in-circles and m out-circles, tni=1S
1 Σ−→ tmj=1S

1,

is assigned a linear map Z(Σ): H⊗nS1 → H⊗mS1 .

13We will come to this later.
14Parametrization of boundary circles can be seen in terms of Remark 1.4 as the embeddings

iin, iout of unions of standard circles into ∂Σ.
15E.g. sewing the two boundary circles of a cylinder with a twist by angle θ, one obtains

non-equivalent complex tori for different θ.
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(a) mn
(b)

in
out

(c)
in

out
in

in

in

Figure 7. (a) a generic cobordism in 2d CFT and some relevand
cobordisms embedded in C – (b) annulus (coformally equivalent to
a cylinder) and (c) a 2d equivalent of Figure 6 (corresponding to
several point observables).

The space of states for a circle HS1 is a Hilbert space carrying a representation
of the group of diffeomorphisms Diff(S1),

(24) ρ : Diff(S1)→ End(HS1).

Vacuum vector. The space HS1 contains a distinguished vector

(25) |vac〉 ∈ HS1

– “vacuum vector” – the partition function of the disk.16 In (b), (c) of Figure 7,
pairing with |vac〉 for any of the in-boundaries corresponds to removing (or filling
in with the disk) the corresponding hole.

Self-sewing. If the surface Σ̃ is obtained from Σ by gluing i-th in-circle to j-th
out-circle, one has

(26) Z(Σ̃) = trHZ(Σ)

Here on the right hand side we mean a partial trace – the trace taken in the first
factor of

Z(Σ) ∈ Hom
(
HS1

in,i
,HS1

out,j

)⊗
Hom


 ⊗

1≤k≤n,k 6=i

HS1
in,k
,

⊗

1≤l≤m,l 6=j

HS1
out,l


 .

Self-sewing formula (26) is not an extra axiom – it follows from the usual sewing
axiom by attaching an infinitesimally short cylinder to S1

in,i and S1
out,j .

In particular, traces (26) must exist if we have a full CFT.17 Segal in [35] imposes
a slightly stronger condition that traces exist in the sense of absolute convergence,
i.e., that partition functions are trace-class operators.

16This vector is not invariant under Diff(S1). However, as a consequence of naturality, it
is invariant under the 3-dimensional subgroup (isomorphic, via identifying the disk with upper

half-plane, to PSL2(R) – real Möbius transformations) consisting of diffeomorphisms of S1 which
can be extended as conformal transformations over the whole disk.

17One may consider a partial CFT where partition functions are only defined on genus zero

cobordisms. In that case one can make do with partition function for which traces do not exist.
An example of such a model is massless scalar field with values in R; the variant with values in
S1 (a.k.a. “compactified free boson”) is a full CFT existing in all genera.
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1.4.1. Genus one partition function, modular invariance. Given a complex number
τ ∈ C with Im τ > 0, one can consider the Riemann surface

(27) Tτ : = C/(Z⊕ τZ)

– the quotient of C equipped with standard complex structure by a lattice; (27) is
the complex torus with modular parameter τ .

One can evaluate the CFT on Tτ . Denote

Z(τ) : = Z(Tτ ) ∈ C

Then since tori Tτ and T−1/τ are equivalent as complex manifolds (via the holomor-
phic map z 7→ z/τ), Zτ as a function of τ possesses modular invariance property

(28) Z(τ) = Z(−1

τ
)

Also, tori Tτ and Tτ+n are equivalent for any n ∈ Z (via the tautological map
z 7→ z), hence one also has Z(τ + n) = Z(τ).

In particular one can consider the torus (27) with τ = iT , T > 0, as obtained
from a cylider Σ = S1×[0, T ] (we think of S1 as having length 1) by sewing the out-
end to in-end. CFT restricted to cylinders can be regarded as quantum mechanics
with partition functions

(29) Z(S1 × [0, T ]) = e−2πTĤ

for some self-adjoint operator Ĥ ∈ End(HS1) – the Hamiltonian, cf. Section 1.2.2.18

Then by (26) we have

(30) Z(iT ) = trHS1 e
−2πTĤ

As a function of T , (30) has to be invariant under inversion T ↔ 1
T , as a special

case of (28).
The general torus (27), with τ = θ

2π+iT can be obtained from (29) by identifying
boundary circles with a twist by the angle θ:

Tτ =
S1 × [0, T ]

(σ, 0) ∼ (σ + θ
2π , T ), σ ∈ S1

By sewing and naturality axioms, the corresponding partition function is

(31) Z(τ) = trHS1 e
−2πTĤ+iθP̂

where P̂ ∈ End(H) is the infinitesimal generator of the action of the subgroup of

rigid rotations S1 ⊂ Diff(S1) on HS1 (in particular, P̂ is a self-adjoint operator
with integer eigenvalues).

1.4.2. Correction to the picture: conformal anomaly. Conformal field theories one
constructs in reality satisfy Segal’s axioms in a weakened – “projective” – sense:

• The representation of Diff(S1) on HS1 is projective. Put another way, there

is an honest representation of a central extension D̂iff(S1) of the group of
diffeomorphisms on HS1 . This central extension is known as the Virasoro
group.Q: Naturality –

strict or projective?
A: strict. 18Here we are considering evolution in “Euclidean time” T , cf. (13). We also set ~ = 1. The

factor 2π in the exponential is a choice of normalization of the Hamiltonian and is put there for

compatibility with standard CFT conventions.
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• Sewing axiom (1) holds up to a factor in C∗. – One says that (4) is a
projective functor. Equivalently, one can say that partition functions are
operators in Hom(Hin,Hout) defined up to scaling by a factor in C∗.

As another viewpoint, one can understand a projective functor as a strict functor
out of a central extension of the cobordism category (see [35]). This is equivalent
to saying that ZΣ is not a function on GeomΣ but rather a section of a line bundle
on it.19

Yet another viewpoint on the projectivity phenomenon is that CFT partition
functions are well-defined as operators for a given Riemannian metric g on the
surface Σ, but if one changes the metric within its conformal class, g 7→ Ω · g, with
Weyl factor Ω = e2σ, then the partition function scales by a complex factor:

(32) Z(Σ, e2σg) = eicSLiouville(σ,g) · Z(Σ, g).

Here c is a number (the “strength” of the projectivity effect), known as the central
charge of the CFT;

SLiouville(σ, g) =

∫

Σ

1

2
(dσ ∧ ∗dσ + 4σRg dvolg)

is the “Liouville action,” Rg is the scalar curvature.
Lecture 3,
8/29/20221.5. Heuristic motivation for Segal’s axioms from path integral quantiza-

tion. A classical (Lagrangian) field theory on a cobordism γin
Σ−→ γout is determined

by the following data:

(a) The space of fields on Σ,

FieldsΣ = Γ(Σ, E)

– the space of smooth sections of a fiber bundle E over Σ – the bundle of fields.
(For instance, fields could be maps from Σ to some target manifold X, or fields
could be differential forms on E.)

(b) The action functional – a real-valued function on the space of fields of the form

(33) SΣ(φ) =

∫

Σ

L(φ, ∂φ, · · · ) ∈ R

where φ ∈ FieldsΣ is a field. Here L (the Lagrangian) is a D-form (or density)
on Σ, depending on the field φ in a local way: the value of L at a point x ∈ Σ
can depend only on the value of φ at x and its derivatives up to a finite order
at x.20

Given the data above, at the classical level one is interested in the solutions
φ ∈ FieldsΣ of the “equations of motion” – the critical point equation

(34) δS = 0

19 More explicitly, in CFT this line bundle is L⊗c ⊗ L̄⊗c̄ as a bundle over the moduli space

of complex structures on Σ. Thus, ZΣ ∈ Hom(Hin,Hout) ⊗ L⊗c ⊗ L̄⊗c̄. Here L = Det(∂̄) is the
Quillen line bundle – the determinant line bundle of the Dolbeault operator; L̄ is the complex
conjugate one; c and c̄ are numbers – holomorphic and anti-holomorphic central charges. Usually

one has c = c̄ (this is the case assumed in (32) below).
20It is convenient (see [1] for details) to consider the “variational bicomplex” Ωp,qloc (Σ×FieldsΣ)

of (p, q)-forms on Σ × FieldsΣ local in the same sense. In this terms, the Lagrangian L is in

ΩD,0loc (Σ× FieldsΣ).
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(with δ the de Rham operator on FieldsΣ). One considers the equation (34) (which
is the Euler-Lagrange PDE) with boundary conditions on the field at γin, γout. In
a range of cases (Lagangians of second order in derivatives), one can consider the
boundary conditions of the form

(35) φ|γin
= φin, φ|γout

= φout

where φin = Fieldsγin
and φout ∈ Fieldsγout

– fixed sections of the bundle E over
the boundaries γin and γout, respectively.

Remark 1.11. One can consider more general boundary conditions on γ of the form

(36) π(Jet(φ)|γ) = bγ

where Jet(φ)|γ is the normal ∞-jet of φ at γ;

π : {normal jets of fields at γ} → Bγ

is some fibration and bγ ∈ Bγ a point in the base. The desired scenario is when
the solution of (34) with boundary condition (36) exists and is locally-unique (non-
deformable).

Example 1.12 (Classical mechanics of a particle on a Riemannian manifold ). Let
D = 1. Fix a Riemannian manifold (M, g) (target), a positive number m (mass)
and a function V ∈ C∞(M) (the force potential). Consider as the cobordism the
interval Σ = [0, t] and set

(37) FieldsΣ = Map([0, t],M)

– the space of paths in M parametrized by the interval [0, t]. We set the action
S : Fields→ R to be defined by

(38) SΣ(φ) =

∫ t

0

dτ
(m

2
gφ(τ)(φ̇(τ), φ̇(τ))− V (φ(τ))

)

for φ : [0, t]→M a field (a path).21

Setting for simplicity (M, g) = RN with standard Euclidean metric, the critical
point equation δS = 0 is equivalent to the ODE

(39) mφ̈(τ) + gradV (φ(τ)) = 0

– the Newtonian equation of motion of a particle in RN in the force field with
potential V . One can consider this equation with Dirichlet boundary conditions
φ(0) = φin, φ(t) = φout where φin, φout – two given points in RN . Thus, we
are considering parametrized paths in RN satisfying the equation (39) with fixed
endpoints. E.g. if V = 0, there is a unique solution – the straight interval connecting
φin and φout with constant-velocity parametrization by [0, t].

If we take a general Riemannian manifold (M, g) and set V = 0, then δS = 0 is
equivalent to the geodesic equation. So, solutions of the boundary problem (34),
(35) are the geodesics in M connecting the two given points.

21Note that the Riemannian metric on the source cobordism Σ is implicitly used in (38): the
action (38) is not invariant under reparametrization of a path. One can also write a Diff(Σ)-

invariant version of the action (38):

SΣ,ξ(φ) =

∫
dτ
√
ξ(τ)

(
ξ(τ)−1m

2
gφ(τ)(φ̇(τ), φ̇(τ))− V (φ(τ))

)
Here ξ(τ)dτ2 is the metric on Σ. Then for ψ : Σ → Σ a diffeomorphism, one has SΣ,ξ(φ) =

SΣ,ψ∗ξ(ψ
∗φ).
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For a general Riemannian manifold (M, g) and general potential V , the Euler-
Lagrange equation for the action (38) (the critical point equation δS = 0) written
in local coordinates on M takes the form

(40) m

(
d2φi(τ)

dτ2
+ Γijk(φ(τ))

dφj(τ)

dτ

dφk(τ)

dτ

)
+ gij(φ(τ))∂iV (φ(τ)) = 0

where Γijk are the Christoffel symbols.

Example 1.13 (Scalar field). Let D ≥ 1 be any, fix m ≥ 0 (the mass) and fix
some polynomial function V on R (interaction potential). Consider a cobordism Σ
equipped with Riemannian metric and set

(41) FieldsΣ = Map(Σ,R)

and

(42) SΣ =

∫

Σ

1

2
dφ ∧ ∗dφ+

m2

2
φ2dvol + V (φ)dvol

with φ : Σ→ R the scalar field on Σ. The corresponding equation of motion δS = 0
is equivalent to the PDE

(43) ∆φ+m2φ+ V ′(φ) = 0

with ∆ the Laplacian on functions on Σ. Equation (43) is the Laplace equation if
m = 0, V = 0, Helmholtz equation if m 6= 0, V = 0; for general V , it is a nonlinear
PDE. Equation (43) can be considered with Dirichlet boundary conditions (35)
where φin,out are fixed functions on γin,out.

1.5.1. Path integral quantization. Given a classical field theory on Σ, we want to
define a corresponding QFT. Consider the following expression depending on φin,
φout – sections of E over γin,out:

(44) KΣ(φout, φin) : =

∫

φ ∈ FieldsΣ s.t.
φ|γin

= φin,
φ|γout = φout

Dφ e−SΣ(φ)

The right hand side is a formal expression – the integral over the (infinite-dimensional)
space of fields on Σ subject to boundary conditions; the “measure” Dφ on fields is
a formal symbol.

Remark 1.14. Depending on the context, there are different normalizations of the
exponential in (44):

• In unitary (or “relativistic”) quantum field theory on a Lorentzian space-

time manifold, one writes the integrand of (44) as e
i
~S(φ).

• In statistical mechanics one writes the integrand as e−βE(φ) (the Gibbs
measure on states of the statistical system), with φ a state of the system
on Σ, E(φ) the energy of the state and β = 1

T the inverse temperature.
Summarizing the comparison between QFT and statistical mechanics, we
have the following.
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QFT statistical mechanics

field φ on Σ state φ of the system on Σ
action functional S energy functional E

path integral
∫
Dφ e i~S(φ) sum over states

∫
Dφ e−βE(φ)

at ~→ 0: fast oscillating integrand at temperature→ 0: integrand is supported near
stationary phase point = classical solution the state with minimal energy

• In Euclidean field theory (which will be our setting for 2d CFT), on a
Riemannian (as opposed to pseudo-Riemannian) spacetime manifold Σ, one
considers the path integral with the integrand e−βS(φ) where β = 1

~ and –
unless we want to do perturbation theory yielding a power series in ~ – we
can choose to set β = ~ = 1.

One can transition a unitary QFT on a cobordisms of cylinder type γ × [0, t] to a
Euclidean field theory on γ× [0, TEucl] by “Wick rotation” – analytical continuation
in t to t = −iTEucl.

Remark 1.15. There are ways to make mathematical sense of the path integral
(a.k.a. functional integral or Feynman integral) (44), like e.g.

(a) perturbative approach – expansion in Feynman diagrams (replacing the path
integral by its stationary phase or Laplace approximation), or

(b) lattice approach – replacing Σ with a lattice with the field defined at the nodes
– then (44) is replaced by a finite-dimensional integral; after that one needs
to take the limit of the lattice spacing going to zero (one should think of this
procedure as an analog of a Riemannian sum for an ordinary integral).

We define the space of states of the QFT on γ as

(45) Hγ = FunC(Fieldsγ)

the space of complex-valued functions on Fieldsγ (the space parametrizing the pos-
sible boundary conditions in (35)).22

For instance, in Example 1.12, one would set Hpt = FunC(M). If we want to
have unitarity, then we should be more specific about regularity of allowed functions
and ask that it is of L2 class:

Hpt = L2(M)

– the standard Hilbert space in the quantum mechanical system consisting of a par-
ticle moving on M . By extension, it is tempting to write (45) as Hγ = L2(Fieldsγ).

We define the partition function of the cobordism Σ using the path integral (44)
as follows: for Ψin ∈ FunC(Fieldsγin), we set

(46) (ZΣΨin)(φout) : =

∫

Fieldsγin

Dφin KΣ(φout, φin)Ψin(φin)

In other words, ZΣ is an integral operator, determined by the integral kernel KΣ

defined by the path integral (44).

Remark 1.16 (Dirac’s bra- and ket-notations). One can consider a basis in Hγ con-
sisting of vectors {|φ0〉}φ0∈Fieldsγ . The vector |φ0〉 is understood as corresponding

22For more general boundary conditions of the type (36), instead of (45) we should write
FunC(Bγ). Occurrences on Fieldsγ as integration space throughout this subsection (such as e.g.

in (46)) should then also be swapped for Bγ .
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to the delta-function on the space Fieldsγ centered at φ = φ0. In particular, a
vector Ψ ∈ Hγ can be written tautologically as

Ψ =

∫

Fieldsγ

Dφ0 Ψ(φ0)|φ0〉

Likewise, one has a dual basis in H∗ consisting of covectors {〈φ0|}φ0∈Fieldsγ . In
terms of these notations, it is natural to denote the integral kernel (44) by

(47) 〈φout|ZΣ|φin〉 : = KΣ(φout, φin)

One also calls this expression the “matrix element” of ZΣ (corresponding to “row”
φout and “column” φin).

1.5.2. Sewing as Fubini theorem for path integrals. Let γ1
Σ′−→ γ2 and γ2

Σ′′−−→ γ3 be

two cobordisms and γ1
Σ−→ γ3 the corresponding sewn cobordism. Then we have

(48) 〈φ3|ZΣ|φ1〉 =

∫

φ ∈ FieldsΣ s.t.
φ|γ1 = φ1,
φ|γ3 = φ3

Dφ e−SΣ(φ)

=
Fubini

∫

φ2∈Fieldsγ2

Dφ2

∫

φ′ ∈ FieldsΣ′ s.t.
φ|γ1

= φ1,
φ|γ2

= φ2

Dφ′
∫

φ′′ ∈ FieldsΣ′′ s.t.
φ|γ2

= φ2,
φ|γ3

= φ3

Dφ′′ e−SΣ(φ)
︸ ︷︷ ︸

e−SΣ′ (φ
′)e−SΣ′′ (φ

′′)

=

∫

φ2∈Fieldsγ2

Dφ2

∫

φ′ ∈ FieldsΣ′ s.t.
φ|γ1

= φ1,
φ|γ2 = φ2

Dφ′ e−SΣ′ (φ
′)

∫

φ′′ ∈ FieldsΣ′′ s.t.
φ|γ2

= φ2,
φ|γ3 = φ3

Dφ′′ e−SΣ′′ (φ
′′)

=

∫

φ2∈Fieldsγ2

Dφ2 〈φ3|ZΣ′′ |φ2〉 〈φ2|ZΣ′′ |φ1〉

This is the convolution property of integral kernels equivalent to the relation

ZΣ = ZΣ′′ ◦ ZΣ′

between the corresponding integral operators, i.e. the sewing property.
The idea in (48) is to treat the integration over fields on Σ in the following way:

(i) Fix the value φ2 of the field on the sewing interface γ2.
(ii) Integrate over fields on the two sub-cobordisms Σ′,Σ′′ with φ2 becoming a

boundary condition – this gives the matrix elements of partition functions for
the sub-cobordisms.

(iii) Integrate out the field φ2 on the interface.
adjust the font size
in the picture
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φ3

γ1 γ3Σ′ γ2 Σ′′

φ′ φ′′

φ1 φ2

Figure 8. Sewing: integrating over the field φ everywhere is
equivalent to integrating over φ′, φ′′ and then over φ2.

In particular, we think of the space of fields on Σ (with boundary conditions on
γ1,3) as fibered over fields on γ2, and we write this integral using “Fubini theorem
for path integrals” as an intergral over the fiber followed by integral over the base.23

In the computation (48) we also used additivity of action (which is automatic
from the local ansatz (33)): SΣ(φ) = SΣ′(φ

′)+SΣ′′(φ
′′) if φ′, φ′′ are the restrictions

of the field φ on Σ to Σ′, Σ′′.

1.5.3. Observables in path integral formalism. Suppose we are given a classical field
theory on a cobordism Σ and also given i : � ↪→ Σ a CW complex embedded into Σ
(with the image disjoint from the boundary). We define a classical observable O�

supported on � as some function on Γ(�, i∗Jet∞E), i.e., a function of jets of fields
on �.

For instance, if � = {x} is a single point, then a classical observable at x is just
a function of the jet of the field at x, Ox = f(φ(x), ∂φ(x), . . .).

The expectation value of O� is formally defined in the path integral formalism
as

(49) 〈O�〉 =

∫

φ∈FieldsΣ

Dφ e−SΣ(φ)O�(Jet∞(φ)|�) ∈ C

Here we assumed for simplicity that Σ is closed.
If Σ has a boundary, then we should include boundary conditions in the r.h.s.,

as in (44), thus obtaining the “matrix element,” between states |φin〉 and 〈φout|, of
the theory on Σ enriched by the observable O�:

(50) 〈φout|ZΣ,O� |φin〉 =

∫

φ ∈ FieldsΣ s.t.
φ|γin

= φin,
φ|γout = φout

Dφ e−SΣ(φ)O�(Jet∞(φ)|�) ∈ C

In quantization, a classical observable O� is mapped to a quantum observable

Ô� such that the expectation value (21) of Ô� defined withing Segal (quantum)
language agrees with the path integral expression (49), (50). This can be arranged

by defining ÔΓ to be the state on the boundary of a thickening Uε(�) given by the

23This Fubini theorem is heuristically clear if the path integral measure is thought of as a con-
tinuum product of measures dφ(x) over points x of M . However, when one defines path integrals
mathematically, e.g., as perturbative integrals (via Feynman diagrams), this statement requires

an independent proof. For special cases studied in detail, see e.g. [19] (quantum mechanics), [22]
(2d scalar theory with polynomial potential), [7] (topological field theories of AKSZ type), [18]
(2d Yang-Mills).
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expression (50) where instead of the cobordism Σ we take the “tube” Uε(�) (seen
as a cobordism from ∅ to ∂Uε(�)).

Lecture 4
8/31/20221.6. Why care about CFT?. Here we list some of the points of motivation, why

one might be interested in 2d conformal field theory.

1.6.1. CFT description of 2d Ising model. This is the historical point of motiva-
tion, and it was the point of the seminal paper on CFT by Belavin-Polyakov-
Zamolodchikov [6].

One considers the Ising model – a lattice model of statistical physics. On a graph
Ξ, a state of the system is an assignment of spins ±1 (or “spin up/spin down”) to
vertices of Ξ. In particular, there are 2#V (Ξ) states in total where V (Ξ) is the set
of vertices of Ξ. The energy of a state is defined as

(51) E(s) = −
∑

edges (u,v)

susv − h
∑

vertices v

sv

where h ∈ R is a parameter (“external magnetic field”). Then one has the Gibbs
probability measure on the set of states

(52) Probability(s) =
1

Z(T, h)
e−

1
T E(s)

where T > 0 is the temperature and

(53) Z(T, h) =
∑

states s

e−
1
T E(s)

is the partition function (the normalization factor in the Gibbs measure (52), needed
to normalize it to total mass 1).

Then one considers the continuum (or “thermodynamical”) limit, taking Ξ to
be a very fine square lattice on a large square on R2 and sending the spacing of the
lattice to zero (while appropriately rescaling the energy function (51)).

In the continuum limit, the system has a phase transition: the partition func-
tion Z(T, h) and the n-point correlation functions of spins become real-analytic
functions of (T, h) on R>0 × R except on the interval (0, Tcrit] with some positive
critical temperature Tcrit. The partition function and correlation functions are dis-
continuous (have a finite jump) across the interval (0, Tcrit), when going from small
negative h to small positive h. Points (0 < T < Tcrit, h = 0) are points of first-order
phase transition of the system and (T = Tcrit, h = 0) is the point of second order
phase transition.

From now on, set h = 0. If T > Tcrit, the two-point correlation function behaves
as

(54) 〈s(x)s(y)〉 ∼ e−
||x−y||
rcorr

where rcorr is the “correlation radius,” depending on T . In the limit T → Tcrit,
the correlation radius goes to +∞ and the system loses the “characteristic scale”
– becomes scaling invariant. In particular, the two-point function (54) at T = Tcrit

becomes a power law

(55) 〈s(x)s(y)〉 ∼ 1

||x− y|| 14
The power 1

4 here is a result from the explicit solution of 2d Ising model (at any
T ) by Onsager [31].
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Thus, at the point (Tcrit, h = 0) of second-order phase transition, the system
becomes scaling invariant. Put another way, its symmetry gets enhanced from
Euclidean motions (translations+rotations) to include scaling. At this point it is
natural to conjecture the system on R2, at the point of second-order phase transi-
tion, can be described by some model of conformal field theory (which would also
mean that the symmetry is further enhanced from rotations+translations+scaling
to all conformal transformations). This was proven – and the corresponding CFT
was identified as the free Weyl fermion – in [6].

It turns out that a much wider class of statistical systems exhibiting phase tran-
sitions at the point of phase transition can be described by a CFT, which eventually
leads to explanation of the interesting rational exponents (“critical exponents”) one
encounters in these systems – such as the power 1

4 in (54).24

1.6.2. Bosonic string theory. Classically, bosonic string theory can be though of as
a classical field theory of maps from a surface Σ (“worldsheet”) to the target RN

(“spacetime” in string theory terminology), with action

(56) S(Φ; b, c, b̄, c̄) =

∫

Σ

N∑

i=1

1

2
dΦi ∧ ∗dΦi + b∂̄c+ b̄∂c̄.

Here Φ: Σ→ RN is the bosonic field describing the string in RN , Φi are components
corresponding to coordinates on RN , so that each Φi can be seen as a scalar field on
Σ. The last two terms in (56) (the “reparametrization ghost system”) are auxiliary
anticommuting fields (“Faddeev-Popov ghosts”) that appear in the action through
Faddeev-Popov mechanism, because one wants to consider the path integral over
Map(Σ,RN )/Diff(Σ) – they appear in essence from homological resolution of this
quotient. The fields c, c̄ are sections of T 1,0Σ, T 0,1Σ – holomorphic/antiholomorphic
tangent bundle; fields b, b̄ are quadratic differentials – sections of ((T (1,0))∗Σ)⊗2,
((T (0,1))∗Σ)⊗2, respectively.

Upon quantization, (56) becomes a particular CFT on Σ – the “sum” of several
mutually non-interacting theories – N free massless scalar fields and the ghost
system. The central charge of this CFT (measuring the “strength” of projectivity
effect/conformal anomaly, see Section 1.4.2) turns out to be

(57) c = N − 26

– each free scalar contributes 1 to the central charge and the ghost system con-
tributes −26. In particular, the central charge (and thus the conformal anomaly)
vanishes iff N = 26. Which is the reason why dimension 26 of the target is distin-
guished in bosonic string theory.

1.6.3. Invariants of 3-manifolds. There are interesting connections between 3d topo-
logical quantum field theories and 2d conformal field theories on the boundary of a
3-manifold.

Notably, there is a relation between 3d Chern-Simons theory (which is topolog-
ical) and 2d Wess-Zumino-Witten theory (which is a CFT). This relation was very
fruitfully exploited in [40] to construct invariants of knots and 3-manifolds.

One relation is that Chern-Simons correlator of a tangle in a 3-ball can be in-
terpreted as a correlator of point observables in WZW theory on the boundary

24Ultimately, 1
4

comes from the fact that Ising spin field can be identified with a primary field

of conformal weight ( 1
16
, 1

16
) in the free fermion field.
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2-sphere. This fact was explained and used in [40] to explain why the correlators of
Wilson loop observables in 3d theory have to satisfy certain skein relation (which
is ultimately a move performed on the portion of a knot contained in a small ball).

Put differently, the relation between Chern-Simons theory on a 3-manifold M
and 2d WZW on the boundary Σ = ∂M is that the space of states that Chern-
Simons assigns to Σ is the “space of conformal blocks” (holomorphic building blocks
of correlators) that WZW assigns to Σ, see e.g. [15].

1.6.4. A zoo of computable QFTs. Part of motivation to study CFTs is that they
give examples quantum field theories with explicit and nontrivial answers.

For instance in a typical CFT situation,

• two-point functions are often given by power laws with interesting rational
exponents,
• four-point functions can be expressed in terms of the hypergeometric func-

tion,
• genus 1 partition function can be expressed in terms of such objects as

Jacobi theta functions and Dedekind eta function.

The zoo of well-known examples of CFTs includes among others:

• Free theories:
– free massless scalar field (or “free boson”),
– free massless scalar with values in S1,
– free fermion,
– bc-system (and a very similar βγ-system).

• Minimal models M(p, q) of CFT.
• Wess-Zumino-Witten model.

1.6.5. Motivation from representation theory.
Representations of loop groups/Lie algebras. CFT is naturally linked to rep-

resentation theory of loop groups and loop Lie algebras (or rather their central
extensions). E.g., the space of states HS1 always carries a representation of the
Virasoro algebra. In the case of WZW models, HS1 also carries a representation
of a Kac-Moody algebra ĝ (which gives in a sense a “refinement”25 of the Virasoro
representation).

Representations of the mapping class group. Additionally, a part of the data
of CFT (the space of conformal blocks) naturally carries a representation of the
mapping class group of the surface.

1.6.6. Motivation from topology of Mg,n and enumerative geometry. In topological
conformal field theories (such as Witten’s A-model), special correlators define closed
differential forms on the moduli space of algebraic curves Mg,n (with Deligne-
Mumford compactification) yielding interesting elements in de Rham cohomology
of the moduli space. Periods of these forms over compactification cycles satisfy
certain quadratic relations (equivalently, the corresponding generating functions
satisfy the so-called Witten-Dijkgraaf-Verlinde-Verlinde equation).

In the A-model, such periods are the Gromov-Witten invariants – counts of
holomorphic curves in the target Kähler manifold X intersecting a given collection
of cycles.

25In the sense that Virasoro generators act as quadratic expressions in Kac-Moody generators,
via the so-called Sugawara construction.
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1.7. CFT as a system of correlators. CFT is often studied in a simplified
setting (as compared to Segal’s picture): instead of surfaces with boundary, one
considers surfaces with punctures (marked points).

Σ

z1

z2

zn

Φ1

Φ2

Φn

Figure 9. Surface with punctures decorated by fields.

One can think of punctures as “infinitesimally small circles.” Instead of partition
function on surfaces with boundary, one studies n-point correlation functions

(58) 〈Φ1(z1) · · ·Φn(zn)〉 ∈ C

depending on a configuration of n distinct ordered points on the Riemann surface
Σ and on a choice of vectors Φ1, . . . ,Φn in the vector space V (the space of states
HS1 in Segal’s language). There are different possible names for elements of V :

• Fields (or “composite fields”) at a point z.26

• Point observables.
• Operators.

In the path integral language, (58) corresponds to the expression

(59)

∫
Dφ e−S(φ)Φ1(z1) · · ·Φn(zn)

where expressions Φi under the path integral are point classical observables – func-
tions of the jet of the classical field φ at zi (in the notations we are blurring the
distinction between classical observables and corresponding quantum observables).

Subtlety: to make sense of a correlator (58) as a number, one needs to fix a

complex coordinate chart around each point z1, . . . , zk.27

For particularly nice elements of V – so-called “primary” fields (see below), one
doesn’t need the full data of coordinate charts – it is sufficient to have a trivialization
of tangent spaces TziΣ, thus the correlators of primary fields can be regarded as a
section

(60) 〈Φ1 · · ·Φn〉 ∈ Γ(Confn(Σ),L)

over the open configuration space Confn(Σ) = {(z1, . . . , zn) ∈ Cn|zi 6= zj if i 6= j}
of n ordered points on Σ, of a certain complex line bundle L depending of the fields
Φi. In (60) we allow points z1, . . . , zn to move around on a fixed Riemann surface
Σ (i.e. the complex structure is fixed).

We can also allow the complex structure to change (then movement of points
is absorbed into changes of complex structure). Then the correlator of primary

26Not to be confused with the fields of the Lagrangian formulation of the underlying classical

field theory.
27Or at least one needs to fix an ∞-jet of complex coordinate charts centered at each zi – a

“formal” complex coordinate chart at zi.
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fields becomes a section of certain complex line bundle L̃ over the moduli space of
complex structures on Σ with n punctures:

(61) 〈Φ1 · · ·Φn〉 ∈ Γ(MΣ,n, L̃)

Remark 1.17. For general (possibly non-primary) Φi, one needs to replace MΣ,n

in (61) with an enhanced version Mcoor
Σ,n of the moduli space where each puncture

carries a formal coordinate system. Put another way, when definingMcoor
Σ,n as com-

plex surfaces modulo diffeomorphisms, one should only quotient by diffeomorphisms
which have the∞-jet of identity at each zi. In this setup the line bundle overMcoor

Σ,n

is trivial and the general n-point correlator is a function on Mcoor
Σ,n with values in

Hom(V ⊗n,C), invariant under formal conformal vector fields at the punctures zi
(acting both on V at zi and on the formal coordinate system):

(62) 〈· · · 〉 ∈ C∞(Mcoor
Σ,n ,Hom(V ⊗n,C))formal c.v.f. at punctures.

1.7.1. The action of conformal vector fields on V . The space V comes equipped
with a projective representation of the Lie algebra Aloc of conformal vector fields
on C∗ (real parts of meromorphic vector fields with only pole at zero allowed),

(63) ρ : Aloc → End(V )

This representation can be thought of as the complexified (in a certain sense) in-
finitesimal version of the representation (24) in Segal’s picture, see Section 1.7.2
below.28

In the common nomenclature, the standard generators of Aloc
C – the complexified

Lie algebra of conformal vector fields on C∗ – are denoted

(64) ln : = −zn+1 ∂

∂z
, l̄n : = −z̄n+1 ∂

∂z̄
, n ∈ Z

The corresponding operators acting on V are denoted

(65) Ln : = ρ(ln), L̄n : = ρ(l̄n)
Did not mention in
the lecture. Should
mention later on.

1.7.2. The “double complexification”. The Lie algebra Aloc
C = Aloc⊗C conveniently

splits into holomorphic and antiholomorphic copies of complex Witt29 algebra and
its central extension splits similarly into two copies of complex Virasoro algebras.
The Lie algebra Aloc

C can be seen, in a sense, as “double complexification” of the
Lie algebra of diffeomorphisms of a circle:

(66)

X(S1)
complexification−−−−−−−−−−→ Aloc complexification−−−−−−−−−−→

⊗C
Aloc
C

'Witt⊕Wittx
x

Diff(S1) −−−−−−−−−−−−→
“complexification′′

Ann

28Remark: representation (63) contains strictly more information (morally, “twice more”) than
the action of diffeomorphisms (24). For instance, the difference of conformal weights h − h̄ of a

field (see Section 1.7.3 below) corresponds to the action of rotation around the origin and is a
part of the data of (24), while h+ h̄ corresponds to the action of dilation, which infinitesimally is
a vector field on S1 not tangential to S1, and it is not a part of the data (24) but is a part of the
data (63).

29Witt algebra is the Lie algebra of meromorphic vector fields on C with only pole at 0 allowed,
see Section 2.5.1. In terms of (64), it is SpanC({ln}n∈Z).
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Here X(S1) is the Lie algebra of real vector fields on a circle, Ann is the Segal’s semi-
group of annuli [35] – the full subcategory of Segal’s cobordism category consisting

of cobordisms S1 Σ−→ S1 (with conformal structure on Σ and parametrization of
boundary circles). The vertical arrows are the transitions from a Lie group or semi-
group to its Lie algebra. The first complexification in the top row of (66) allows
vector fields on S1 that are not necessarily tangential to S1 and then extends them
to real conformal vector fields (which are special sections of the non-complexified
tangent bundle TC∗ of C∗ seen as a smooth 2-manifold) on C∗. The second com-
plexification allows complex-valued conformal vector fields on C∗ – special sections
of the complexified tangent bundle TCC∗. Explicitly, one has
(67)
X(S1) = SpanR({cosnθ ∂θ}n≥0, {sinnθ ∂θ}n≥1)

= SpanR

({
− i

2
(ln + l−n − l̄n − l̄−n)

}

n≥0

,

{
−1

2
(ln − l−n + l̄n − l̄−n)

}

n≥1

)
,

Aloc = SpanR

({
ln + l̄n

2

}

n∈Z
,

{
ln − l̄n

2i

}

n∈Z

)
,

Aloc
C = SpanC

(
{ln, l̄n}n∈Z

)
.

The bottom horizontal arrow in (66) is explained in [35].

1.7.3. Grading on V by conformal weights. The complexified Lie algebra Aloc
C is

naturally graded by elements of Z⊕Z. In particular, the meromorphic vector field
zn+1 ∂

∂z on C∗ has degree (n, 0) and the antimeromorphic vector field z̄n+1 ∂
∂z̄ has

degree (0, n). Accordingly, V carries a grading by “conformal weight” (h, h̄) ∈ R⊕R.
A field Φ ∈ V is said to have conformal weight (h, h̄) if

(68) ρ

(
−z ∂

∂z

)
◦ Φ = hΦ, ρ

(
−z̄ ∂

∂z̄

)
◦ Φ = h̄Φ.

The grading on the Lie algebra is compatible with the grading on the module:
acting by an element of Aloc

C of degree (n, n̄) shifts the conformal weight of a vector
in V as (h, h̄)→ (h− n, h̄− n̄).30 One can split V into graded components:

V =
⊕

(h,h̄)∈Λ

V (h,h̄).

Here Λ ⊂ R⊕R is the set of admissible conformal weights (dependent on a particular
CFT model); Λ is necessarily a Z⊕ Z-module.

Remark 1.18. The condition that the representation ρ of Aloc
C comes from a rep-

resentation of the group Diff(S1) implies in particular that rotation by the angle
2π should act on a field as identity (or, in the notations (65), one should have

e2πi(L0−L̄0) = id). That implies

(69) h− h̄ ∈ Z

for any element of V .31

30We emphasize that in h̄, n̄, the bar does not mean complex conjugation.
31One can consider models where (69) is violated, but in this case correlators are multivalued.

In other words, correlators are functions (or sections of a line bundle) not on the configuration

space of n-points but rather on its covering space.
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1.7.4. Conformal Ward identity. Conformal Ward identity is the following symme-
try property of correlators. Fix a Riemann surface Σ with punctures z1, . . . , zn and
fix fields Φ1, . . . ,Φn ∈ V . Let v be a conformal vector field on Σ with singularities
allowed at {zi} – the real part of a meromorphic vector field with poles allowed at
z1, . . . , zn (we will denote the Lie algebra of such vector fields AΣ,{zi}). Then we
have the Ward identity

(70)

n∑

i=1

〈Φ1(z1) · · · ρ(Laurentzi(v)) ◦ Φi(zi) · · ·Φn(zn)〉
︸ ︷︷ ︸

Lv〈Φ1(z1)···Φn(zn)〉

= 0.

Here the left hand side can be thought of as the “Lie derivative of the correlator
along v;”

Laurentzi : AΣ,{zi} → Aloc

is the Laurent expansion of a (real part of the) meromorphic vector field at the
point zi.

One can think of (70) as a version of naturality (5) in Segal’s setting.32

Did not explain this
in the class.1.7.5. The “L−1 axiom”. Representation (63) is supposed to satisfy the following

natural property: signs?

〈Φ1(z1) · · · ρ
(
∂

∂w

)
◦ Φi(zi) · · ·Φn(zn)〉 =

∂

∂zi
〈Φ1(z1) · · ·Φi(zi) · · ·Φn(zn)〉(71)

〈Φ1(z1) · · · ρ
(
∂

∂w̄

)
◦ Φi(zi) · · ·Φn(zn)〉 =

∂

∂z̄i
〈Φ1(z1) · · ·Φi(zi) · · ·Φn(zn)〉(72)

for any surface with any collection of punctures and fields; w is a local complex
coordinate centered at zi.

Thus, (71) says that acting by L−1 on a field under the correlator is tantamount
to taking the holomorphic derivative in the position of the corresponding puncture
(up to a sign). Similarly, (72) says that acting by L̄−1 is tantamount to taking the
antiholomorphic derivative in the position.

1.7.6. Some special fields.
Identity field. The identity field 1 ∈ V (0,0) corresponds in Segal’s picture to the

vacuum vector |vac〉 ∈ HS1 – the partition function of a disk. The field 1 is charac-
terized by the property that for any fields Φ1, . . . ,Φn and any points z0, z1, . . . , zn
on Σ, one has

(73) 〈1(z0)Φ1(z1) · · ·Φn(zn)〉 = 〈Φ1(z1) · · ·Φn(zn)〉
Put another way, putting the field 1 at a puncture effectively forgets that puncture.

Stress-energy tensor. The stress-energy tensor T ∈ V (2,0) ⊕ V (0,2) is defined as

(74) T : = ρ

(
Re

(−2

z
∂z

))
◦ 1

Or in terms of standard notations (65) introduced above,

(75) T = (L−2 + L̄−2) ◦ 1
Lecture 5
9/2/2022

32In this version, one passes (a) from finite boundaries to infinitesimal ones (punctures), (b)
from Lie group action to the associated Lie algebra action, (c) one complexifies the Lie algebra,

which corresponds to allowing vector fields not tangential to the boundary.
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Primary fields. A field Φ ∈ V (h,h̄) is said to be primary if it is a highest weight

vector under the action of Aloc
C , i.e., if

(76) LnΦ = 0, L̄nΦ = 0 for any n > 0.

Equivalently, field Φ is primary if it is annihilated by conformal vector fields which
vanish to second order at the origin (the point of insertion of Φ).

It is natural to assign to a primary field of conformal weight (h, h̄) a complex
line bundle

(77) Lh,h̄ = K⊗h ⊗ K̄⊗h̄

over Σ where
K = (T 1,0)∗Σ, K̄ = (T 0,1)∗Σ

are the holomorphic and antiholomorphic cotangent bundles of Σ, respectively.
Then the correlator (60) of primary fields Φi ∈ V hi,h̄i is a section over Confn(Σ)

of the line bundle

(78) L = ι∗ �ni=1 Lhi,h̄i

where ι : Confn(Σ)→ Σ×n is the natural inclusion.
From the standpoint of the moduli space of complex structures, the correlator

of primary fields (61) is a section of the line bundle

(79) L̃ =

(
n⊗

i=1

Lhi,h̄ii

)
⊗ Lanomaly

over the moduli space MΣ,n. Here Lhi,h̄ii is the line bundle (77) assoicated to i-th
puncture on Σ;

(80) Lanomaly = (Det ∂̄)⊗c ⊗ (Det ∂)⊗c̄

is the effect of conformal anomaly, with (c, c̄) the central charge (see Section 1.4.2
and footnote 19).

1.7.7. Operator product expansions. When studying CFT as a system of correla-
tors, instead of sewing along boundaries, one studies OPEs (“operator product
expansions”) governing the singularities of correlators of fields (60) as the point of
insertion of one field approaches another, zi → zj .

z3w

zn

Σ

z

Figure 10. One puncture approaching another.

An OPE is an expression of the form

(81) Φ1(z)Φ2(w) ∼
z→w

∑

Φ̃

f Φ̃
Φ1Φ2

(z, w)Φ̃(w) + reg

Here on the right hand side:
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• The sum is over a basis {Φ̃} in V .

• Coefficient functions f Φ̃
Φ1Φ2

(z, w) are some real-analytic functions on a neigh-
borhood of Diag ⊂ Σ× Σ, singular on Σ.
• reg stands for terms that are continuous (in special cases, even holomorphic)

on the diagonal z = w.

In (81) we could have chosen instead to express the operator product in terms

of fields Φ̃ at z rather than w (or even, say, at some point between z and w); this
choice affects the coefficients in the OPE.

The expression (81) is understood as a substitution that one can perform under
the correlator of Φ1(z), Φ2(w), and any collection of other fields away from z and
w, in the asymptotics z → w:
(82)

〈Φ1(z)Φ2(w) Φ3(z3) · · ·Φn(zn)︸ ︷︷ ︸
away from z,w

〉 ∼
z→w

∑

Φ̃

f Φ̃
Φ1Φ2

(z, w)〈Φ̃(w)Φ3(z3) · · ·Φn(zn)〉+ reg

Thus, singularities of n-point correlators are governed by (n − 1)-point correla-
tors.

Note: the OPE (81) does not depend on the collection of “test fields” Φ3, . . . ,Φn
in the correlator (82).

Idea. One wants to recover n-point correlators functions from (n− 1)-point cor-
relators using the OPEs (82), ultimately reducing everything to 3-point correlators.
The idea is similar to recovering a meromorphic function from knowing the principal
part of its Laurent expansion at each pole.

The idea that all correlators can be derived from 3-point correlators is close to
the idea in Segal’s approach, that one can cut any surface into “pairs of pants”
(spheres with three holes). Edit/remove?

Another form of that thought: an n-point correlator on a plane can be seen as
a sewing of a collection of annuli with one hole.

Remark 1.19. The asymptotic of two punctures on Σ approaching one another from
the standpoint of the moduli space of curves MΣ,n corresponds to approaching a
nodal curve, where punctures z, w are in one component, connected by a “neck” to
the other component, where the remaining punctures z3, . . . , zn are (where we put
the “test fields”).

z3

z

w
zn

Figure 11. Nodal curve.

2. Bits of conformal geometry

2.1. Conformal maps. Reference: [34].
Let (M, g) be a Riemannian (or pseudo-Riemannian) manifold.
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Definition 2.1. A Weyl transformation is a change of metric on a (pseudo-)Riemannian
manifold (M, g) → (M, g′ = Ω · g) consisting in multiplying the metric by an ev-
erywhere positive function Ω ∈ C∞>0(M) (the “Weyl factor”).

Two metrics on M differing by a Weyl transformation are said to be conformally
equivalent. A metric on M modulo conformal equivalence is called a conformal
structure on M .

Definition 2.2. A smooth map of (pseudo-)Riemannian manifolds φ : (M, g) →
(M ′, g′) is a conformal map if

φ∗g′ = Ω · g
For some positive function Ω ∈ C∞>0(M) (the conformal factor associated to φ).

One says that two (pseudo-)Riemannian manifolds (M, g) and (M ′, g′) are con-
formally equivalent if there exists a conformal diffeomorphism

(83) φ : (M, g)→ (M ′, g′)

Some immediate properties of conformal maps:

(a) If φ1 : (M, g)→ (M ′, g′) and φ2 : (M ′, g′)→ (M ′′, g′′) are two conformal maps
with conformal factors Ω′,Ω′′, then φ2 ◦ φ1 : (M, g)→ (M ′′, g′′) is a conformal
map with Ω = φ∗1Ω2 · Ω1.

(b) If φ : (M, g)→ (M ′, g′) is a conformal diffeomorphism with conformal factor Ω,
then φ−1 : (M ′, g′)→ (M, g) is also a conformal diffeomorphism with conformal
factor (φ−1)∗Ω−1.

(c) If φ : (M, g) → (M ′, g′) is a conformal map with conformal factor Ω and Λ ∈
C∞>0(M), Λ′ ∈ C∞>0(M ′) are positive functions, then φ : (M,Λ ·g)→ (M ′,Λ′ ·g′)
is also a conformal map, with conformal factor φ∗Λ′

Λ · Ω.
In particular, the notion of a conformal map between manifolds equipped

with just conformal structure (rather than metric) is well-defined, but the con-
formal factor of such a map is not well-defined.

Definition 2.3. Conformal automorphisms φ : (M, g) → (M, g) form a group –
the conformal group Conf(M, g). By (c) above, this group depends only on the
conformal class of g.

2.2. Examples of conformal maps.

Example 2.4. Isometries of (M, g) form a subgroup of Conf(M, g) (characterized
by the property Ω = 1).

Example 2.5. Translations and O(n)-rotations of Euclidean space Rn (with the
standard metric g = (dx1)2 + · · ·+ (dxn)2) are conformal automorphisms:

ISO(n) = O(n) n Rn ⊂ Conf(Rn)

(This is a special case of Example 2.4.)
More generally, one can consider the space Rp,q with metric g = (dx1)2 + · · · +

(dxp)2− (dxp+1)2−· · ·− (dxp+q)2. Then one has translations and O(p, q)-rotations
as isometries (and in particular, conformal automorphisms) of Rp,q.

Example 2.6 (Dilations). Fix a nonzero real number λ. The dilation (or scaling)
map

(84)
Rn → Rn

~x 7→ λ~x

is a conformal map with Ω = λ2. (One can replace Rn with Rp,q in this example.)
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Lecture 6,
9/5/2022Example 2.7 (Stereographic projection). Let

Sn = {(x0, . . . , xn) ∈ Rn |
n∑

i=0

(xi)2 = 1}

be the unit sphere in Rn+1 with N = (1, 0, . . . , 0) the North pole. Consider the
stereographic projection

(85)
φ : Sn\{N} → Rn

(x0, x1, . . . , xn) 7→ 1
1−x0 (x1, . . . , xn)

The map φ is a conformal diffeomorphism (w.r.t. the round metric on Sn – induced
from the standard flat metric on the ambient Rn+1 – and w.r.t. the standard metric
on Rn). The conformal factor is Ω = 1

(1−x0)2 .

Example 2.8. Any diffeomorphism φ : R → R is a a conformal map (w.r.t. the

metric g = (dx)2 on the source and the target), with Ω =
(
dφ
dx

)2

.

Example 2.9 (Inversion). The map

(86)
φ : Rn\{0} → Rn\{0}

~x 7→ ~x
||~x||2

is an orientation-reversing diffeomorphism. It is a conformal map (w.r.t. the metric
induced from the standard one on Rn), with Ω = 1

||~x||4 .

The following lemma gives a full classification of local holomorphic maps on R2.

Lemma 2.10. Let D ⊂ R2 be an open set. For a smooth map φ : D → R2 the
following statements are equivalent:

(i) φ is conformal (w.r.t. the standard metric on source and target)
(ii) φ is either holomorphic or antiholomorphic (we are identifying R2 with C)

and has no critical points in D.

Proof. Let x, y be the real coordinates on D and let u, v be the coordinates on the
target R2. Let z = x + iy be the complex coordinate on D and let w = u + iv be
the complex coordinate on the target R2 = C. The pullback of the target metric
g = du2 + dv2 = dw dw̄ is then

(87) φ∗g = φ∗(dw dw̄) = ∂zφ∂zφ̄(dz)2 + ∂z̄φ∂z̄φ̄(dz̄)2 + (∂zφ∂z̄φ̄+ ∂z̄φ∂zφ̄)dzdz̄

We are using the standard notations for holmorphic/antiholomorphic derivatives:

∂z =
∂

∂z
=

1

2
(∂x − i∂y), ∂z̄ =

∂

∂z̄
=

1

2
(∂x + i∂y).

(i)⇒(ii): If we know that φ is conformal, then

(88) φ∗g = ΩgD = Ωdzdz̄

for some positive function Ω, thus coefficients of (dz)2 and (dz̄)2 must vanish. For
this there are two possibilites:

(a) ∂z̄φ̄ = 0 (and thus also ∂zφ̄ = 0), i.e., φ is holomorphic. In this case, comparing
the dzdz̄ term in (87) with (88), we have

(89) Ω = |∂zφ|2.
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(b) ∂zφ = 0 (and thus also ∂z̄φ̄ = 0), i.e., φ is antiholomorphic. In this case we
have

(90) Ω = |∂z̄φ|2.
Note that in both cases φ cannot have critical points, since there Ω would vanish
(by (89), (90)).

(ii)⇒ (i): Assume φ is holomorphic with no critical points. Then ∂z̄φ = ∂zφ̄ = 0,
thus by (87), φ∗g = |∂zφ|2dzdz̄. Hence, φ is conformal with Ω = |∂zφ|2 which is
positive, since φ has no critical points. The antiholomorphic case is similar. �

Example 2.11 (Möbius transformations). The Lie group

(91) PSL2(C) =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ C, ad− bc = 1

}
/Z2,

where quotient by Z2 identifies a matrix and its negative, acts on the Riemann
sphere C̄ = CP1 by fractional-linear transformations (or “Möbius transformations”)

(92)

(
a b
c d

)
: z 7→ z′ =

az + b

cz + d

For any element of PSL2(C), (92) is a conformal map with conformal factor (w.r.t.
the standard metric on R2)33

(93) Ω =

∣∣∣∣
dz′

dz

∣∣∣∣
2

=
1

|cz + d|4
For instance, one has the following interesting classes of Möbius transformations:

(a) Element

(
1 b
0 1

)
, with b ∈ C, acts by translation z 7→ z + b.

(b)

(
eiφ/2 0

0 e−iφ/2

)
acts by rotation by angle φ, z 7→ eiφz.

(c)

(
λ1/2 0

0 λ−1/2

)
with λ > 0 acts by dilation z 7→ λz.

(d)

(
1 0
c 1

)
with c ∈ C yields a special conformal transformation (SCT), z 7→ z

cz+1 = 1
c+z−1 .

In particular, it maps −c−1 7→ ∞ and ∞ 7→ c−1.

Note that translations, rotations and dilations are conformal automorphisms of
C ⊂ C̄, but SCTs are not – they have a pole on C.

Example 2.12. Consider the exponential map

C/2πiZ
exp−−→ C\{0}

from the cylinder to the punctured plane. By Lemma 2.10, it is a conformal diffeo-
morphism, with Ω = ez+z̄ (w.r.t. to the standard Euclidean metric on the source
and target).

33Note that if c 6= 0, then (93) vanishes at the point {∞} ∈ C̄ (and also explodes at z = − d
c

)

which seems to contradict that Ω should be a positive (and everywhere defined) function. This is

to do with the fact that we chose a metric on C which does not extend to the point {∞}. One can

choose another metric in the same conformal class which extends to {∞} (e.g. the round metric
on C̄ seen as S2), then Ω relative to that metric will be truly everywhere positive and everywhere

defined.
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2.3. Conformal vector fields. One can think of conformal vector fields as “in-
finitesimal conformal maps.”

Definition 2.13. A conformal vector field on a (pseudo-)Riemannian manifold
(M, g) is a vector field v ∈ X(M) satisfying

(94) Lvg = ω g

for some function ω ∈ C∞(M) (the inifitesimal conformal factor); Lv stands for the
Lie derivative along v.34 We denote the set of all conformal vector fields on (M, g)
by conf(M, g).

Conformal vector fields form a Lie subalgebra in the Lie algebra of all vector
fields w.r.t. the standard Lie bracket of vector fields:

(95) conf(M, g) ⊂ X(M).

One has a natural inclusion

(96) ι : Lie (Conf(M, g)) ↪→ conf(M, g)

of the Lie algebra of the group of conformal automorphisms into the Lie algebra
of conformal vector fields (by taking derivative the at t = 0 of a 1-parametric sub-
group). If M is compact, ι is an isomorphism (one can construct the flow of a con-
formal vector field v 7→ Flowt(v) yielding a 1-parametric subgroup of Conf(M, g)).
However, for M noncompact, conformal vector fields can fail to be complete, so
only a part of elements of conf(M, g) can be exponentiated.

2.4. Conformal symmetry of Rp,q with p+ q > 2.

2.4.1. Conformal vector fields on Rp,q. Consider the space Rp,q with its standard
metric g = ηijdx

idxj with the matrix ηij being

ηij = diag(+1, . . . ,+1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

).

We denote n = p+ q.
We are looking for conformal vector fields v = vk(x)∂k on Rp,q. (Summation

over repeated indices is implied everywhere in this section.) The defining equation
(94) for them takes the form

(97) ∂ivj + ∂jvi = ωηij

with vi : = ηijv
j . (97) is a system of n2 (dependent) differential equations on

n+ 1 unknown functions – components vi of the conformal vector field and ω – the
infinitesimal conformal factor. Solving (97) is a well-known exercise [34, 8, 17]; for locate the right ref-

erencereader’s convenience, we reproduce the argument.35

(i) Contracting (97) with ηij , we get

(98) 2 ∂iv
i

︸︷︷︸
div v

= nω.

34Note that there is no positivity constraint on ω.
35Part of the value of the explicit argument here is that it gives an explanation (albeit a

technical one) of why the cases n = 1, 2 and n > 2 are so vastly different.
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(ii) Applying ∂j to (97), we get

(99) ∂i(div v) + ∆vi = ∂iω,

where ∆ = ∂j∂
j . By (98), this implies

(100) ∆vi =
(

1− n

2

)
∂iω.

(iii) Applying ∂j to (100), symmetrizing in i↔ j and using (97), we get

(101)
1

2
ηij∆ω =

(
1− n

2

)
∂i∂jω.

(iv) Applying ∂i to (100), we get

(102) ∆( div v︸︷︷︸
=

(98)

n
2 ω

) =
(

1− n

2

)
∆ω,

which implies

(103) (n− 1)∆ω = 0

(v) Equations (101) and (103) imply that for n 6= 1, 2 one has

(104) ∂i∂jω = 0.

I.e., ω is at most linear in coordinates.
(vi) Taking a derivative of (97), we have

(105) ∂i∂jvk + ∂i∂kvj = ∂iω ηjk

The equation (105) + (105)(ijk)→(jik) − (105)(ijk)→(kij) then reads

(106) 2∂i∂jvk = ∂iω ηjk + ∂jω ηik − ∂kω ηij
(vii) Equation (104) and (106) together imply, for n 6= 1, 2, that

(107) ∂i∂j∂kvl = 0.

I.e., v is at most quadratic in coordinates.

Now, specializing to the case n > 2, we have an ansatz

(108) vi(x) = ai + bijx
j + cijkx

jxk, ω(x) = 2µ+ 4νix
i

with ai, bij , cijk, µ, νi some coefficients. Substituting this ansatz into (97), we find
that (108) is a conformal vector field and its conformal factor if the coefficients
satisfy the following:

(a) No restriction on ai.
(b) bij + bji = 2µηij which implies

bij = µηij + βij

with some anti-symmetric tensor βij = −βji.
(c) cijk + cjik = 2νkηij which implies, similarly to the derivation of (106) above,

cijk = νjηik + νkηij − νiηjk.
This proves the following.
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Theorem 2.14 (Liouville). For n = p+ q > 2, the Lie algebra of conformal vector
fields on Rp,q splits into the following subspaces:

(109) conf(Rp,q) = {translations}
'Rn

⊕ {rotations}
'so(p,q)

⊕ {dilations}
'R

⊕ {SCTs}
'Rn

where SCTs stands for “special linear transformations.” Explicitly, these conformal
vector fields are as follows.

conf. vector field ω
translation vi(x) = ai 0

rotation vi(x) = βijx
j with βij = −βji 0

dilation vi(x) = µxi 2µ
SCT vi(x) = 2(~x, ~ν)xi − νi||~x||2 4(~ν, ~x)

2.4.2. Finite conformal automorphisms of Rp,q with p+ q > 2. Here are the finite36

conformal maps exponentiating (via constructing the flow in time 1) the conformal
vector fields of Theorem 2.14.37

conf. map Ω
translation xi 7→ xi + ai, ~a ∈ Rn 1

rotation xi 7→ Oijx
j , Oij ∈ SO(p, q) 1

dilation xi 7→ λxi, λ > 0 λ2

SCT xi 7→ xi−||~x||2bi

1−2(~b,~x)+||~b||2||~x||2
, ~b ∈ Rn (1− 2(~b, ~x) + ||~b||2||~x||2)−2

Definition 2.15. Given a manifold M equipped with a conformal structure γN (a
choice of metric modulo Weyl transformations), we say that a compact manifold
N equipped with conformal structure, is a conformal compactification of M , if the
following holds:

• One has an embedding M ↪→ N with open dense image.
• All conformal vector fields on M extend to N . (And N they can automat-

ically be integrated to conformal automorphisms.)

Remark 2.16 (On finite SCTs). (a) A finite SCT can be written as

(inversion) ◦ (translation by −~b) ◦ (inversion).

I.e., it maps ~x 7→ ~x′ with image and preimage related by

~x′

||~x′||2 =
~x

||~x||2 −
~b.

(b) A finite SCT is not everywhere defined as a map Rp,q → Rp,q (the denominator
in the formula for SCT may vanish). This corresponds to the quadratic vector
field describing the infinitesimal SCT not being complete on Rp,q.

(c) In Section 2.4.3 we will construct a conformal compactification Np,q of Rp,q,
such that SCTs are everywhere well-defined on Np,q.

We also remark that in the exceptional dimensions n = 1, 2, the r.h.s. of (109)
is a (small) subspace of the l.h.s., while the l.h.s is an ∞-dimensional Lie algebra. Lecture 7,

9/7/2022
Theorem 2.17. Assume p+ q > 2.

36“Finite” conformal maps are just conformal maps. We use the adjective “finite” to emphasize
the difference from “infinitesimal conformal maps,” i.e., conformal vector fields.

37Under the flow-in-time-one map, the parameters of the finite conformal maps are related to

the parameters of the conformal vector fields by ~a = ~a, O = exp(β), λ = eµ, ~b = ~ν.
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(i) One has an isomorphism of Lie algebras

(110) conf(Rp,q) ∼= so(p+ 1, q + 1).

(ii) For the group Confsing of almost everywhere defined conformal automorphisms
of Rp,q, one has:
• If −1 and 1 are in different connected components of SO(p + 1, q + 1),

then

(111) Confsing
0 (Rp,q) ∼= SO0(p+ 1, q + 1)

Subscript 0 on both sides stands for “connected component of 1.”
• Otherwise,

(112) Confsing
0 (Rp,q) ∼= SO0(p+ 1, q + 1)/Z2

(iii) The conformal manifold Rp,q possesses a conformal compactification Np,q in
the sense of Definition 2.15.

For the proof, see [34].
As a sanity check of (110), let us check that the dimensions of both sides match:

(113)

dim conf(Rp,q) =
(109)

dim{translations}+dim{rotations}+dim{dilations}+dim{SCTs}

= n+
n(n− 1)

2
+ 1 + n =

(n+ 1)(n+ 2)

2
= dim so(p+ 1, q + 1)

2.4.3. Sketch of proof of Theorem 2.17: action of SO(p+ 1, q + 1) on Rp,q and the
conformal compactification of Rp,q. For the following construction, we also follow
[34].

Case of Rn. Consider first the case (p, q) = (n, 0).

• The group SO(n + 1, 1) acts on Rn+1,1 by linear isometries and preserves
the light cone

(114) LC = {(x0, . . . , xn, y) ∈ Rn+1,1 | (x0)2 + · · ·+ (xn)2 − y2 = 0} ⊂ Rn+1,1

• We have two commuting actions

(115) SO(n+ 1, 1) x LC

y

dilations

R∗

• In particular, SO(n+ 1, 1) acts on LC − {0}/R∗.
• LC −{0} inherits a degenerate metric from Rn+1,1. Its kernel is the funda-

mental vector field of the R∗-action and thus is killed by quotienting over
R∗.
• By the previous, LC − {0}/R∗ inherits a conformal structure and SO(n+

1, 1) acts on LC − {0}/R∗ by conformal maps.
• Note: LC − {0}/R∗ can be identified with the unit sphere Sn ⊂ Rn+1:

intersecting LC with the hyperplane y = 1 in Rn+1,1, we a re selecting a
single point from each R∗-orbit.
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1

y

LC

Sn Rn+1

0

Figure 12. Light cone and its section by y = 1 hyperplane.

• One has a stereographic projection

Sn − {(1, 0, . . . , 0)︸ ︷︷ ︸
North pole

} → Rn

(which is a conformal diffeomorphism). Thus we identify Sn as a conformal
compactification of Rn: conformal vector fields on Rn extend to Sn and
finite conformal maps are everywhere defined on Sn.

Case of general Rp,q.

• We have the light cone

(116) LC =



(x0, . . . , xp, y0, . . . , yq)

∣∣∣
p∑

i=0

(xi)2 −
q∑

j=0

(yj)2 = 0



 ⊂ Rp+1,q+1.

• We have two commuting actions

(117) SO(p+ 1, q + 1) x

lin. isometries

LC − {0} y

dilations

R∗.

• We have a projection

(118) π : LC − {0} → RPn+1.

Denote its image

(119) Np,q : = im(π) ' (LC − {0})/R∗

Being a submanifold of a compact manifold RPn+1, Np,q is compact.
• Consider the map ι : Rp,q → Np,q defined by

(120) ι(x1, . . . , xp, y1, . . . , yq) =

=

(
1

2

(
1−

p∑
i=1

(xi)2 +

q∑
j=1

(yj)2
)

: x1 : · · · : xp :
1

2

(
1 +

p∑
i=1

(xi)2 −
q∑
j=1

(yj)2
)

: y1 : · · · : yq
)

where (− : − · · · : −) stands for the homogeneous coordinates on the
projective space. The map ι is injective and has open dense image.

Sketch of proof of Theorem 2.17.
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1. We have constructed a compact manifoldNp,q equipped with an inclusion Rp,q ↪→
Np,q (compatible with conformal structures) as an open dense subset.

2. We have constructed an action of SO(p+ 1, q + 1) on Np,q by conformal diffeo-
morphisms. The only elements acting trivially are multiples of identity, i.e., 1
and −1 (in the case when −1 belongs to SO(p+ 1, q + 1)).

3. The differential of the action of SO(p + 1, q + 1) gives an injective Lie algebra
map so(p + 1, q + 1) ↪→ conf(Np,q) (and by restriction to Rp,q, an inclusion
so(p + 1, q + 1) ↪→ conf(Rp,q)). By the dimension count (113), these inclusions
are in fact isomorphisms. This proves (i) and (iii) of Theorem 2.17, identifying
(119) as the desired conformal compactification.

4. The previous two points imply that the Lie group Conf(Np,q) contains SO(p, q)/Z2

and both groups have the same Lie algebra. That implies that the connected
components of 1 in both groups coincide. That proves (ii) of Theorem 2.17.

�

Remark 2.18. The product of unit spheres

(121) Sp × Sq = {(x0, . . . , xp, y0, . . . , yq) |
p∑

i=0

(xi)2 = 1,

q∑

j=0

(yj)2 = 1}

is a submanifold of LC−{0} and intersect each R∗-orbit twice ((x, y) and (−x,−y)
are in the same R∗-orbit). Thus, one has a twofold covering map

(122) Sp × Sq → Np,q

given by the projection (118) restricted to Sp × Sq. In particular, we can identify
Np,q with the quotient

(123) Np,q ' Sp × Sq/Z2

where Z2 acts by the diagonal antipodal map, (x, y) 7→ (−x,−y).

2.5. Conformal symmetry of R2. A vector field v = vi(x, y)∂i (with x = x1,
y = x2) on R2 equipped with the standard Euclidean metric is conformal if the
equation (94) holds:

(124) ∂ivj + ∂jvi = ωδij ⇔
{
∂xvx = ∂yvy = 1

2ω
∂xvy = −∂yvx

for some function (conformal factor) ω. On the right side we can recognize the
Cauchy-Riemann equations. Thus, the vector field v = vi∂i is conformal if and
only if the function

(125) u : = vx + ivy

is holomorphic. Note that the vector field v can be written in terms of the holo-
morphic function u and its complex conjugate ū as

(126) v = u(z)∂z + ū(z̄)∂z̄ = 2 Re(u(z)∂z)

The corresponding conformal factor is ω = ∂zu+ ∂z̄ū.
In (126) we use the complex coordinate z = x+ iy, its conjugate z̄ = x− iy and

the corresponding derivatives ∂z = 1
2 (∂x − i∂y), ∂z̄ = 1

2 (∂x + i∂y).
To summarize, we have the following.
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Lemma 2.19. One has an isomorphism of Lie algebras

(127) ψ : conf(R2)
∼−→ {holomorphic vector fields on C}.

It maps a conformal vector field vx∂x + vy∂y to the holomorphic vector field u(z)∂z
where u(z) = vx + ivy. The inverse map ψ−1 assigns to a holomorphic vector field
u(z)∂z a conformal vector field 2 Re(u(z)∂z) = u(z)∂z + ū(z̄)∂z̄.

The fact that ψ intertwines the Lie brackets on the two sides of (127) is a
straightforward check.

Remark 2.20. In the isomorphism (127), we are thinking of both sides as Lie alge-
bras over R. However, the right hand side is also a Lie algebra over C. Multiplication
by i on the right side translates in the left side to acting on a conformal vector field
by pointwise rotation by π/2 (in the tangent space at each point of R2).

Lecture 8,
9/9/2022Lemma 2.19 classifes infinitesimal confromal maps; its counterpart for finite

conformal maps is Lemma 2.10 above, or its rephrasing:

Lemma 2.21. Let D,D′ be two open sets in C. A map φ : D → D′ is a conformal
diffeomorphism if and only if φ is either biholomorphic or biantiholomorphic (i.e.,
the complex conjugate map φ̄ : D → D̄′ is bihomolomorphic).

2.5.1. Conformal vector fields on C∗, Witt algebra.

Definition 2.22. We define the Witt algebraW as the Lie algebra of meromorphic
vector fields on C with a pole (of finite order) allowed only at 0. The Lie algebra
W has a standard basis of meromorphic vector fields

(128) ln = −zn+1 ∂

∂z
, n ∈ Z.

Thus, the Witt algebra is

(129) W = {
∞∑

n=−n0

cnln | cn ∈ C, the sum converges on C∗}.

The generators ln of W satisfy the commutation relations

(130) [ln, lm] = (n−m)ln+m.

Indeed:

[−zn+1∂z,−zm+1∂z] = zn+1[∂z, z
m+1∂z]− zm+1[∂z, z

n+1∂z] =

= ((m+ 1)zn+m+1 − (n+ 1)zn+m+1)∂z = (m− n)zn+m+1∂z = (n−m)ln+m.

There are several relevant variants of the Lie algebraW, all with the same collec-
tion of generators {ln} but with different asymptotic conditions on the coefficients
cn as n→ ±∞:

(i) Holomorphic vector fields on the punctured formal disk:

(131) C[[z, z−1]∂z = {
∞∑

n=−n0

cnln | cn ∈ C}.

– This is a good model for the local conformal algebra Aloc of Section 1.7.1.
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(ii) Meromorphic vector fields on CP1 with finite-order poles allowed only at 0
and ∞:

(132) {
n1∑

n=−n0

cnln | cn ∈ C}.

– This model has the benefit that it is symmetric under the involution z → 1/z
on CP1.

We remark that the space of vector fields with coefficients in all formal Laurent

power series {
∞∑

n=−∞
cnln} does not form a Lie algebra, since coefficients of the Lie

bracket of two elements involves infinite sums that do not have to converge.
By abuse of notations and terminology, we will call all complex Lie algebras

spanned by {ln}n∈Z with different decay conditions on coefficients, the Witt algebra
and denote them W.

By Lemma 2.19, conformal vector fields on C∗ = C\{0} are the real parts of
meromorphic vector fields on C∗:

(133) conf(C∗) ' W = spanC{ln}n∈Z
(When we write “span,” we are being noncommittal about the decay conditions on
coefficients.) Thus, one may also write

(134) conf(C∗) = spanR{ln + l̄n, i(ln − l̄n)}n∈Z.
Thus, conf(C∗) embeds as a real slice into its complexification

conf(C∗)⊗R C = W︸︷︷︸
spanC{ln}

⊕ W︸︷︷︸
spanC{l̄n}

.

Here

(135) l̄n = −z̄n+1∂z̄

are the antimeromorphic vector fields on C∗ complex-conjugate to ln. They satisfy
the commutation relation similar to (130),

(136) [l̄n, l̄m] = (n−m)l̄n+m.

Also, one has

[ln, l̄m] = 0.

Some interesting Lie subalgebras of conf(C∗):

(a) Conformal vector fields on C:

(137) spanR{ln + l̄n, i(ln − l̄n)}n≥−1

Indeed, vector fields ln, l̄n are holomorphic at 0 iff n ≥ −1.
(b) Conformal vector fields on C vanishing at 0:

(138) spanR{ln + l̄n, i(ln − l̄n)}n≥0

Indeed, ln, l̄n vanish at 0 iff n ≥ 0.
(c) Conformal vector fields on CP1\{0}:
(139) spanR{ln + l̄n, i(ln − l̄n)}n≤1
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Indeed in the local coordinate w = z−1 on CP1\{0} one has ln = w−n+1 ∂
∂w .

Thus, ln is regular at the point z =∞ (or w = 0) iff −n+1 ≥ 0. (And similarly
for l̄n.)

Remark 2.23. Naively, the punctured plane C∗, the punctured unit disk {z ∈ C|0 <
|z| < 1} and annulus AnnRr = {z ∈ C|r < |z| < R} all have the same Lie algebra
conf(−) ' W = spanC{ln}n∈Z. But in fact, for all these domains, the decay
conditions on the coefficients cn in (129) are different. In the case of the annulus,
the decay conditions depend on the inner and outer radii,38 so that e.g. if one has

r′ < r < R < R′, then one has a proper inclusion conf(AnnR
′

r′ ) ↪→ conf(AnnRr ) (so
that the thinner annulus has a bigger Lie algebra of conformal vector fields).

2.5.2. Conformal symmetry of CP1. Conformal vector fields on CP1 are:

(140) conf(CP1) = spanR{ln + l̄n, i(ln − l̄n)}n∈{−1,0,1}

This is the subalgebra of conf(C∗) comprised of vector fields which are regular at 0
and at ∞, i.e, it is the intersection of (137) and (139). The Lie algebra conf(CP 1)
is also isomorphic to sl2(C) and to so(3, 1).39 We can identify the generators of
conf(CP 1) explicitly as infinitesimal translations, rotation, dilation, and special
canonical transformations:
−(l−1 + l̄−1) = ∂x translation
−i(l−1 − l̄−1) = ∂y translation
−(l0 + l̄0) = x∂x + y∂y dilation
−i(l0 − l̄0) = −y∂x + x∂y rotation
−(l1 + l̄1) = (x2 − y2)∂x + 2xy∂y SCT
−i(l1 − l̄1) = −2xy∂x + (x2 − y2)∂y SCT

The orientation-preserving part of the group of conformal automorphisms of CP1

is given by Möbius transformations (92):

(141) Conf+(CP1) = PSL2(C) ' SO+(3, 1)

Where SO+(3, 1) is the othrochronous component of SO(3, 1), consisting of the
elements preserving the positive (y > 0) half of the light-cone.

Remark 2.24. Note that while conf(C) is an infinite-dimensional Lie algebra, pass-
ing to the one-point compactification C→ CP1 = C∪{∞} reduces this algebra to a
finite-dimensional one (140). In fact, C does not have a conformal compactification
(see Definition 2.15), unlike Rp,q with p+ q > 2.

2.5.3. The group of conformal automorphisms of a simply-connected domain in C.

Lemma 2.25. 1. The group of conformal automorphisms of the upper half-planeH =
{z ∈ C | Im(z) > 0} is

(142) Conf(H) = PSL2(R)

where the elements of PSL2(R) are acting by Möbius transformations (92) with
a, b, c, d ∈ R.

38Explicitly, the decay conditions for the annulus AnnRr are: cnρn =
n→+∞

O(n−∞) for any

0 < ρ < R and cnρn =
n→−∞

O(|n|−∞) for any ρ > r.

39One has an action of so(3, 1) on CP1 by conformal vector fields by the construction of Section
2.4.3. Also, in the last isomorphism in (141) we are referring to the finite version of that action.
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2. The group of conformal automorphisms of the unit disk D = {z ∈ C | |z| < 1} is

(143) Conf(D) = PSU(1, 1)

– the group of Möbius transformations of the form

(144) z 7→ eiφ
z − a
āz − 1

where φ ∈ R/2πZ, a ∈ C with |a| are parameters.

This is proven straightforwardly, by finding the part of the PSL2(C) which
preserves the boundary of the domain (the real line or the unit circle) and does not
swap the domain with its complement in CP1.

Remark 2.26. The groups PSL2(R) and PSU(1, 1) are conjugate subgroups PSL2(C),
with conjugating element corresponding to the map z 7→ z−i

z+i – a conformal diffeo-
morphism H→ D.

Recall the key result of complex analysis:

Theorem 2.27 (Riemann mapping theorem). For any simply-connected open set
U ⊂ C, there exists a biholomorphic map φ : U → D with D the open unit disk.

Corollary 2.28. For any simply-connected open set U , the group of conformal
automorphisms is

(145) Conf(U) = φ∗PSL2(R)

where φ : U → D is the map from the Riemann mapping theorem.

2.5.4. Vector fields on S1 vs. Witt algebra. A real vector field tangent to the unit
circle S1 ⊂ C can be written as

(146) v = f(θ)∂θ =
∑

n∈Z
ane

inθ∂θ

with the Fourier coefficients an satisfying the reality condition

(147) a−n = ān.

Here θ ∈ R/2πZ is the angle coordinate on S1. We denote the Lie algebra of such
vector fields X(S1).

One can express the basis tangent vector fields on S1 in terms of Witt generators
restricted to S1:40

(148) einθ∂θ = −i(ln − l̄−n)
∣∣∣
S1

Likewise, basis normal vector field to S1 are:

(149) einθ∂r = −(ln + l̄−n)
∣∣∣
S1

We have a mapRe vs 2Re?

(150)

W → Γ(S1, TC|S1)
∞∑

n=−∞
cnln 7→ 2Re

∑

n

cnln

∣∣∣
S1

40A related point: consider the inversion map I : C∗ → C∗, mapping z 7→ 1
z̄

. The pushforward

of ln by the inversion is I∗ln = −l̄−n. Vector fields tangent to S1 appearing in the r.h.s. of (148)
are invariant under I∗.
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In fact, it is an isomorphism, under appropriate decay assumptions on cn. The
r.h.s. of (150) consist of vector fields on S1 that are allowed to have both tangent
and normal component. The part of W that maps to vector fields tangent to S1 is
the real Lie subalgebra

(151) {
∑

n

cnln | c−n = −c̄n}
︸ ︷︷ ︸

'X(S1)

⊂ W

Thus, one has the following.

Lemma 2.29. The Witt algebra W (with decay conditions on coefficients as above)
is a complexification of X(S1).

One might ask: which vector fields on S1 extend into the unit diskD (cobounding
S1) as conformal vector fields? The answer depends drastically on whether the
vector fields are required to be tangent to S1 or are allowed to have a normal
component on S1.

Lemma 2.30. (i) The subalgebra of X(S1) given by vector fields extending as
conformal vector fields into the unit disk D is

(152) {Re

1∑

n=−1

cnln | cn = −c̄n} ' sl2(R)

(ii) The subalgebra of Γ(S1, TC|S1) given by vector fields on S1 (with normal com-
ponent allowed) extending as conformal vector fields into the unit disk D is

(153) {Re
∑

n≥−1

cnln | cn = −c̄n}

In particular, we have a finite-dimensional Lie algebra in one case and an infinite-
dimensional one in the other case.

Proof. Immediate consequence of (150), (151) and the fact that ln is regular at 0
iff n ≥ −1. �

2.6. Conformal symmetry of R1 (trivial case). Recall from Example 2.8 that
on R1 any diffeomorphism is conformal, Conf(R1) = Diff(R1). Likewise, any vector
field on R1 is conformal, conf(R1) = X(R1).

Also, one can replace R1 with S1 (thought of as a one-point compactification of
R1). Here one has as a distinguished subgroup the Möbius transformations of S1:

(154) Conf(S1) = Diff(S1) ⊃ PSL2(R) ' SO+(2, 1)︸ ︷︷ ︸
“restricted conformal group′′

The action of SO(2, 1) on S1 by conformal automorphisms is by the construction
of Section 2.4.3.

2.7. Conformal symmetry of R1,1. Consider Minkowski plane R1,1 with coordi-
nates x, y and metric g = (dx)2 − (dy)2. Introduce the “light-cone coordinates”

(155) x+ = x+ y, x− = x− y
(they are Minkowski analogs of the complex coordinates z, z̄ in the Euclidean case
R2).
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x+ = const

x− = const

Figure 13. Light cone coordinates on R1,1.

In terms of the light-cone coordinates, the metric is: g = dx+dx−. Let us write
a vector field on R1,1 as

v = v+(x+, x−)∂+ + v−(x+, x−)∂−

with v± some functions on R1,1; we denoted ∂± = 1
2 (∂x ± ∂y). The condition that

v is conformal (94) becomes

(156) ∂−v
+ = 0, ∂+v

− = 0, ∂+v
+ + ∂−v

− = ω

Thus, a general conformal vector field on R1,1 is of the form

(157) v = v+(x+)∂+ + v−(x−)∂−

Note that coefficient functions now depend on a single light-cone variable; this is
an analog of holomorphic/antiholomorphic coefficient functions in the R2 case. The
conformal factor of v is:

(158) ω = ∂+v+ + ∂−v−

Thus we have the following.

Lemma 2.31. The Lie algebra of conformal vector fields on R1,1 splits into two
copies of the Lie algebra of vector fields on the line:

conf(R1,1) = X(R1)︸ ︷︷ ︸
v+∂+

⊕X(R1)︸ ︷︷ ︸
v−∂−

One can similarly classify (finite) conformal automorphisms of R1,1 – one has the
following analog of Lemma 2.21:

Lemma 2.32. A map φ : R1,1 → R1,1 with components φ+(x+, x−), φ−(x+, x−) is
a conformal automorphism of R1,1 if and only if one of the two following options
holds:

1. φ+ = φ+(x+), φ− = φ−(x−).
I.e., φ ∈ Diff(R)×Diff(R) – a reparametrization of x+ and of x−. The conformal
factor in this case is Ω = (∂+φ

+)(∂−φ
−).

2. φ+ = φ+(x−), φ− = φ−(x+).
I.e., φ is a composition of a reparametrization of x+ and x− with a reflection
(x, y) 7→ (x,−y). The conformal factor in this case is Ω = (∂−φ

+)(∂+φ
−).

In particular, we have

(159) Conf0(R1,1) = Diff+(R)×Diff+(R)

Subscript in Diff+ stands for orientation-preserving diffeomorphisms. Note that the
whole group Conf(R1,1) has 8 = 2×2×2 connected components: one can choose to
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preserve or reverse the orientation along x+ and x− and whether or not to compose
with the reflection x+ ↔ x−.

Remark 2.33. One can consider R1,1 : = S1 × S1 as a (partial) conformal com-
pactification of R1,1, with respect to a (large) subalgebra of conf(R1,1) consisting of
pairs of vector fields on R which extend to S1 = R ∪ {∞}. Then, in analogy with
(154), one has
(160)

Conf0(R1,1) = Diff+(S1)×Diff+(S1) ⊃ PSL2(R)︸ ︷︷ ︸
Möbius+

×PSL2(R)︸ ︷︷ ︸
Möbius−

' SO(2, 2)︸ ︷︷ ︸
restricted conformal group

Lecture 9,
9/12/2022

2.8. Moduli space of conformal structures.

Definition 2.34. A (pseudo-)Riemannian manifold (M, g) with metric of signature
(p, q) is said to be conformally flat if one can find an atlas of coordinate neighbor-
hoods Uα ⊂M with local coordinates {xiα}, such that in each chart the metric has
the form

(161) g|Uα = Ωα(x) · ((dx1
α)2 + · · ·+ (dxpα)2 − (dxp+1

α )2 − · · · − (dxp+qα )2)

with some positive functions Ωα. Coordinate charts in which the metric satisfies
the ansatz (161) are called “isothermal coordinates” on (M, g).

Note that being conformally flat is a local property.
The situation with conformal flatness of manifolds depends on the dimension.

• If dimM = 1 any Riemannian manifold admits local coordinates in which
g = (dx)2. I.e. any 1-dimensional Riemannian manifold is flat and, a
fortiori, is conformally flat.
• If dimM = 2 (case of main interest for us), any (pseudo-)Riemannian

manifold is conformally flat.41

• If dimM = 3 a (pseudo-)Riemannian manifold is conformally flat if and
only if its Cotton tensor vanishes at every point – this is a certain tensor
C ∈ Ω2(M,TM) constructed in terms of derivatives of the Ricci tensor of
the metric.
• If dimM ≥ 4, a (pseudo-)Riemannian manifold is conformally flat if and

only if the Weyl curvature tensor vanishes at every point – this is a certain
tensor W ∈ Ω2(M,∧2T ∗M) expressed in terms of the Riemann curvature
tensor of g.

In particular, (pseudo-)Rimeannian manifolds of dimension ≥ 2 are conformally
flat, while in dimension ≥ 3 there are local obstructions for conformal flatness.

Given a smooth manifold M , one has an action of the Lie group of diffeomor-
phisms of M on the space of conformal structures:

(162) Diff(M) x {conformal structures on M}
Definition 2.35. We call the orbit spaceMM of the action (162) the moduli space
of conformal structures.

41This is not a trivial fact. It can be proven from existence of a solution of the Beltrami
equation for the change of coordinates from generic starting coordinates to isothermal coordinates.

Originally this statement was proven by Gauss.
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Note that the action (162) is not free: for ξ a conformal structure on M there
can be a nontrivial stabilizer subgroup

(163) Stabξ = {φ : M →M | φ∗ξ = ξ} = Conf(M, ξ) ⊂ Diff(M)

– the group of conformal automorphisms of (M, ξ). Also, if ψ : M → M is a
diffeomorphism, then Stabξ and Stabψ∗ξ are conjugate subgroups of Diff(M).

Remark 2.36. In which sense MM is a “space”? There are several ways to under-
stand this object:

(i) As a topological space, with quotient topology.
(ii) As an orbifold – a manifold with “nice” singularities (of the local form RN/Γ,

with Γ a finite group acting on RN properly).
(iii) As a “stack.” This is the correct way to talk about MM , but we will be a

bit simple-minded about it and just remember a part of the “stacky data” –
that points [ξ] ∈ MM come equipped with stabilizers – subgroups Stabξ ⊂
Diff(M).

Remark 2.37. The discussion below Definition 2.34 suggests that the moduli space
of conformal structures on a manifold of dimension ≥ 3 is infinite-dimensional, due
to the presence of local moduli (Cotton and Weyl tensors). In dimension 2, there
are no local moduli: all metric are locally conformally equivalent to the standard
flat metric, and only global moduli remain. So, one would expect the MM to be
“small” (finite-dimensional) in this case. This indeed turns out to be the case, as
we discuss below.

2.8.1. Reminder: almost complex structures and complex structures.

Definition 2.38. An almost complex structure on a smooth manifold M is smooth
family over M of endomorphisms of (real) tangent spaces that square to −id:

(164) J ∈ Γ(M,End(TM)), s.t. J2
x = −id for all x ∈M.

Consider the matrix of Jx with respect to some basis in TxM . Note that the
eigenvalues of a real matrix with square −id must be +i and −i, moreover +i and
−i must have the same multiplicity. In particular, if M has an almost complex
structure, dimM = 2m must be even.

Also note that an almost complex structure induces an orientation on M : for
(v1, . . . , vm) an m-tuple of generic vectors in TxM , we say that the (2m)-tuple
(v1, Jv1, v2, Jv2, . . . , vm, Jvm) is positively oriented in TxM (it is a straightforward
check that this orientation is independent of the choice of the initial m-tuple).

Given an almost complex structure, we have a splitting of the complexified tan-
gent bundle into “holomorphic” and “antiholomorphic” parts:

(165) TCM︸ ︷︷ ︸
C⊗TM

= T 1,0M ⊕ T 0,1M.

On the right, for each x ∈M , the complex vector spaces T 1,0
x M , T 0,1

x M are defined
as +i- and −i-eigenspaces of Jx, respectively. The splitting (165) induces a dual
splitting of the complexified cotangent bundle

(166) T ∗CM = (T 1,0)∗M︸ ︷︷ ︸
K

⊕ (T 0,1)∗M︸ ︷︷ ︸
K̄



LECTURE NOTES ON CONFORMAL FIELD THEORY 49

we will denote the holomorphic/antiholomorphic cotangent bundles on the right by
K, K̄. Furthermore, the splitting (166) of k-forms on M (with complex coefficients)
as

(167) ΩkC(M) =
⊕

p≥0,q≥0,p+q=k

Ωp,q(M)︸ ︷︷ ︸
Γ(M,∧pK⊗∧qK̄)

We refer to elements of Ωp,q as (p, q)-forms on M .
Note that if the (real) dimension of the manifold M is 2m, then T 1,0

x M , T 0,1
x M

have complex dimension m – then we say that M has complex dimension

dimCM = m =
1

2
dimM.

In particular, one has Ωp,q(M) = 0 if either p > m or n > m.
The de Rham differential d : Ω•(M)→ Ω•+1(M) splits into two parts: Is this correct for an

a.c.s. J? no other
components?

(168) d = ∂ + ∂̄

where for α ∈ Ωp,q,

(169) ∂α : = πp+1,q(dα), ∂̄α : = πp,q+1(dα)

where πp,q is the projection of Ω(M) onto its component Ωp,q(M). One calls ∂, ∂̄
the holomorphic/antiholomorphic Dolbeault operators. By default, just “Dolbeault
operator” is ∂̄.

Definition 2.39. An almost complex structure J on a manifold M is integrable if
one can find an atlas of complex coordinates (zjα, z̄

j̄
α) on coordinate neighborhoods

Uα such that

• J∂zj = i∂zj , J∂z̄j̄ = −i∂z̄j̄ ,
• The transition functions between charts are holomorphic:

∂zjβ

∂z̄j̄α
= 0,

∂z̄j̄β

∂zjα
= 0

for any j, j̄ and any two overlapping neighborhoods Uα, Uβ from the atlas.

An integrable almost complex structure J is called a complex structure (not “al-
most”). A manifold M with a complex structure J is called a complex manifold.

Equivalent characterizations of integrability of J are:

(i) An almost complex structure J is integrable if and only if its Nijenhuis tensor
NJ ∈ Ω2(M,TM) vanishes:

(170) NJ(X,Y ) : = −J2[X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ] = 0

for X,Y ∈ X(M). An equivalent restatement of (170) is: for X1,0, Y 1,0 ∈
Γ(M,T 1,0M) two sections of the holomorphic tangent bundle, their Lie bracket
is also a section of the holomorphic tangent bundle (the antiholomorphic com-
ponent vanishes):

(171) [X1,0, Y 1,0]0,1 = 0.

(ii) An almost complex structure J is integrable if and only if one has

(172) ∂̄2 = 0

Equivalently ∂2 = 0 and equivalently [∂, ∂̄] = 0.
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Equivalence of Definition 2.39 and (170) is known as the Newlander-Nirenberg
theorem.42

On a complex manifold (M,J), the Dolbeault operators written locally in terms
of complex coordinates are

(173) ∂ =
∑

j

dzj
∂

∂zj
, ∂̄ =

∑

j̄

dz̄j̄
∂

∂z̄j̄

Lemma 2.40. Any almost complex structure J on a manifold M of dimension
dimM = 2 is integrable.

Proof. This follows e.g. from (172): ∂̄2 maps (p, q)-forms to (p, q + 2)-forms. But
there are no forms of degree (∗,≥ 2) on a 2-manifold. �

2.8.2. 2d conformal structures (of Riemannian signature) = complex structures.
We will reserve the letter Σ for 2-dimensional surfaces, while manifolds of general
dimension we denote by M .

Lemma 2.41. Fix an oriented 2-dimensional surface Σ. One has a natural bijec-
tion between the following two sets:

(i) the set of conformal structures on Σ of signature (2, 0) (i.e. Riemannian
metrics modulo Weyl transformations),

(ii) the set of complex structures J on Σ, compatible with orientation.

Proof. Given a conformal structure ξ = g/ ∼ on Σ, we assign to it the complex
structure J : TxΣ → TxΣ which maps a tangent vector u ∈ TxΣ to the vector
v ∈ TxΣ uniquesly characterized by the following properties:

• v is orthogonal u (according to any metric g representing ξ),
• v and u have the same length (according to any metric g representing ξ),
• (u, v) is a positively oriented pair in TxΣ.

J

u

v

x
TxΣ

Σ

Figure 14. Complex structure on a surface.

Here is the inverse construction. Given a complex structure J on Σ, we assign
to it a conformal structure ξ on Σ, defined as follows: Choose some volume form
σ ∈ Ω2(Σ) compatible with the orientation. Set gx(u, v) : = σ(u, Jv). It is a
straightforward check that gx is positive symmetric bilinear form on TxΣ, i.e.,
a metric. The conformal class of g does not depend on a choice of the volume
form σ (changing σ → Ωσ with Ω a positive function, induces a change of g by
a Weyl transformation). This construction J → ξ inverts the construction ξ → J
above. �

42One can think of it as a complex analog of Frobenius theorem saying that a tangential

distribution is involutive if and only if it integrates locally to a foliation. In the case of Newlander-
Nirenberg theorem, the distribution in question is complex, T 1,0M ⊂ TCM . In this analogy, a

foliation corresponds to local complex coordinates and involutivity is the property (171).
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Remark 2.42. Under the correspondence between conformal and complex structure
of Lemma 2.41, equivalences of conformal and complex surfaces also go into one an-
other: φ : (Σ, ξ)→ (Σ′, ξ′) is a conformal diffeomorphism of surfaces equipped with
conformal structures if and only if φ is a biholomorphic map of the corresponding
complex surfaces φ : (Σ, J)→ (Σ′, J ′).

In particular, the correspondence of Lemma 2.41 gives an equivalence of cate-
gories, between

(a) the category of surfaces equipped with conformal structure, with morphisms
being conformal diffeomorphisms on one side and

(b) the category of complex surfaces and biholomorphic maps on the other side.

Remark 2.43. As a consequence of Lemma 2.41, in the case of 2d surfaces, the
moduli space of conformal structures (Definition 2.35) and the moduli space of
complex structures (183) are the same.

Definition 2.44. A smooth manifold Σ of dimension 2 equipped with a complex
structure is called a Riemann surface. Equivalently, a Riemann surface is a smooth
2-manifold equipped with orientation and conformal structure.43

Can move this defi-
nition to some later
point, when stabil-
ity becomes an issue
(Teichmüller theory,
uniformization,...)

Definition 2.45. We will call a Riemann surface stable if it does not admit nonzero
conformal vector fields. In the case of a Riemann surface with marked points
p1, . . . , pn, we call it stable if there are no nonzero conformal vector fields which
vanish at the point pi.

2.8.3. Deformations of a complex structure. Parametrization of deformations by
Beltrami differentials. Let (M,J) be a complex manifold. A deformation of a com-
plex structure in the class of almost complex structures can be described as a change
of the Dolbeault operator ∂̄:

(174) ∂̄ → ∂̄ − µ︸ ︷︷ ︸
∂̄µ

where the parameter of the deformation

(175) µ ∈ Ω0,1(M,T 1,0M)

is called the Beltrami differential ; µ̄ ∈ Ω1,0(M,T 0,1M) is the complex conjugate
object. In local complex coordinates, µ has the form using z,z̄ notation

here for a smooth
function of z –
uniformize with Sec.
4.3?

(176) µ = µj
ī
(z, z̄)dz̄ ī

∂

∂zj

where the coefficient functions µj
ī
(z, z̄) are arbitrary smooth complex-valued func-

tions on M . In (174), we understand µ as a first-order differential operator Ωp,q →
Ωp,q+1. The deformed Dolbeault operator written locally thus has the form

(177) ∂̄µ = dz̄ ī
(
∂

∂z̄ ī
+ µj

ī
(z, z̄)

∂

∂zj

)

The deformation (174) is accompanied by the deformation of the holomorphic
Dolbeault operator

(178) ∂ → ∂ − µ̄

43Note that a Riemann surface is not a Riemannian manifold: it does not come with a preferred
metric.
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where µ̄ is the complex conjugate of the Beltrami differential µ.
Expressed as a deformation of J , (174) corresponds to the change

(179) Jx → Jx + 2i(µx − µ̄x)

for any x ∈M (in the first order in µ, µ̄).
In order for the deformation (174) to be a complex structure (rather than almost

complex), it must satisfy the integrability condition

(180) (∂̄µ)2 = 0 ⇔ ∂̄µ− 1

2
[µ, µ] = 0

The equation on the right is called the Kodaira-Spencer equation.

Remark 2.46. In other words, deformations of a complex structure on a given com-
plex manifold are governed by Maurer-Cartan elements of the differential graded
Lie algebra

(181) Ω0,∗(M,T 1,0M), ∂̄, [, ]

of (0, q)-forms with coefficients in the holomorphic tangent bundle, with differential
∂̄ and Lie bracket [, ] coming as the wedge product of forms tensored with the Lie
bracket of (1, 0)-vector fields.44

We emphasize that the formula (174), with µ satisfying the Kodaira-Spencer
equation (180), describes finite deformations of a complex structure, not just infin-
itesimal (first-order) deformations.

We also remark that if dimM = 2, then the Kodaira-Spencer equation (180)
holds trivially (as there are no (0, 2)-forms on M), cf. Lemma 2.40.Lecture 10,

9/14/2022 Tangent space to the space of complex structures. The discussion above implies
that the tangent space to the space of complex on a manifold M at a complex
structure J is the space of ∂̄-closed Beltrami differentials (with ∂̄-closed condition
being the first-order approximation of the Kodaira-Spencer equation (180)):

(182) TJ

(
space of complex structures on M

)
' Ω0,1

∂̄−closed
(M,T 1,0M)

For the moduli space of of complex structures,45

(183) MM = {complex structures on M}/Diff(M),

the tangent space at the class of J is given by the quotient of (182) modulo the
action of (infinitesimal) diffeomorphisms on Beltrami differentials,

(184) µ ∼ µ+ ∂̄v1,0

with v1,0 the projection to T 1,0 of any vector field on M . I.e., one has

(185) TJMM = H0,1(M,T 1,0M)

– the cohomology of the complex (181) in degree one.

44We should mention that there is a natural and very deep generalization of deformations of
complex structures due to Barannikov-Kontsevich [5]. Here one replaces the dg Lie algebra (181)

by a bigger one: Ω0,p(M,∧qT 1,0M), with total grading by p+q−1, and considers Maurer-Cartan
elements there.

45In this subsection we use MM for the moduli space of complex (not conformal) structures
on M . Later, when we specialize to surfaces, there will be no difference between moduli complex

and conformal structures, due to Lemma 2.41.
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Cotangent space to the space of complex structures (case of surfaces). In the case

of a 2-dimensional surface, the ∂̄-closed condition in (182) is automatic. In this case,
one can describe the cotangent space to the space of complex structures as

(186) T ∗J

(
space of complex structures on Σ

)
= Ω1,0(Σ,K) ' Γ(Σ,K⊗2)

where K = (T 1,0)∗Σ is the holomorphic cotangent bundle. Elements of (186)
are quadratic differentials τ on Σ – tensors written in a local complex coordinate
chart as τ = f(z, z̄)(dz)2. The pairing between an element µ of (182) (a Beltrami
differential) and an element τ of (186) is

(187)

∫

Σ

〈µ, τ〉

where 〈, 〉 is a pairing between vectors T 1,0
x Σ and covectors (T 1,0

x Σ)∗; thus, 〈µ, τ〉 is
a (1, 1)-form on Σ, i.e., a 2-form, which can be integrated.

For the cotangent space of the moduli space of complex structures MΣ, (186)
implies

(188) T ∗JMΣ ' Ω1,0

∂̄−closed
(Σ,K) = {holomorphic quadratic differentials on Σ}

– the space of holomorphic quadratic differentials, locally of the form τ = f(z)(dz)2

with a holomorphic coefficient function.
The holomorphicity condition in (188) arises because we are looking for the

elements of (186) annihilating all vectors of the form

∂̄v1,0 ∈ TJ(space of complex structures),

cf. (184).

Remark 2.47. In 2d conformal field theory, the stress-energy tensor T is a holomor-
phic quadratic differential, so it can be seen via (188) as a cotangent vector to the
moduli space of complex structures.

2.8.4. Uniformization theorem. The following statement is a key result on Riemann
surfaces, known as the Uniformization Theorem.

Theorem 2.48 (Klein-Koebe-Poincaré). Any simply-connected Riemann surface
(Σ, ξ) is conformally equivalent to exactly one the following three model surfaces:

(i) CP1,
(ii) C,

(iii) Open disk D = {z ∈ C | |z| < 1} (“Poincaré disk”) or, equivalently (a
conformally equivalent model), upper half-plane Π+ = {z ∈ C | Im(z) > 0}.

Remark 2.49. For each of the model surfaces from Theorem 2.48, there is a metric
of constant scalar curvature R = +1, 0,−1 representing its conformal class:

(i) CP1 has a unique metric in its conformal class of scalar curvature R = +1 –
the Fubini-Study metric g = 4dzdz̄

(1+zz̄)2 .

(ii) C has a unique up to scaling flat (i.e. R = 0) metric in its conformal class,
g = Cdzdz̄, for any C > 0.

(iii) D has a unique metric of scalar curvature R = −1 in its conformal class,
g = 4dzdz̄

(1−zz̄)2 . Equivalently, Π+ has a unique R = −1 metric g = dzdz̄
(Im(z))2 .
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We also remark that for these distinguished metrics, in cases (i) and (iii) the groups
of isometries and all conformal automorphisms coincide (put another way, each
conformal automorphism is an isometry).

For a general Riemann surface Σ (not necessarily simply-connected), its universal

cover Σ̃ inherits a conformal structure from Σ, is simply-connected and corresponds
to one of the model surfaces from Theorem 2.48. The group of covering transfor-

mations acts on Σ̃ by conformal automorphisms. Thus, any Riemann surface Σ is
conformally equivalent to a surface of the form

(189) Σmodel/Γ

where Γ is the image of a group homomorphism

(190) ρ : π1(Σ)→ Conf(Σmodel)

In particular, we need Γ to be a discrete subgroup of Conf(Σmodel), acting freely
on Σmodel (so that the quotient (189) is a smooth manifold).

Remark 2.50. If we change in (189) the subgroup Γ to a conjugate subgroup χΓχ−1

with χ ∈ Conf(Σmodel) a fixed element (or, put another way, we change the homo-
morphism (190) to a conjugate one, ρ 7→ χρχ−1), then the quotient (189) changes
to a conformally equivalent surface.

This leads to the following classification of connected Riemann surfaces:

(i) CP1

(ii) (a) C
(b) C\{0} or, equivalently, infinite cylinder C/Z.
(c) 2-torus C/Λ where Λ = uZ ⊕ vZ ∈ C is a lattice spanned by vectors

u, v ∈ C with u/v 6∈ R. Using rotation and scaling,46 one can convert the
pair (u, v) to (1, τ) with τ ∈ Π+.

(iii) Π+/Γ for some Γ ⊂ PSL2(R) a “Fuchsian group” – a discrete subgroup of
PSL2(R) isomorphic to π1(Σ). This case includes all surfaces of genus g ≥
0 with n ≥ 0 boundary circles (the surfaces are considered as open – the
boundary circles are not a part of Σ), with χ(Σ) = 2 − 2g − n < 0, and
also includes annulus (or finite cylinder) and punctured disk (or semi-infinite
cylinder).

Surfaces of types (i), (ii), (iii) above are called, respectively, elliptic, parabolic
and hyperbolic. Elliptic surfaces admit (in their conformal class) a unique met-
ric of scalar curvature +1, parabolic surfaces – a unique-up-to-scaling flat metric,
hyperbolic surfaces – a unique metric of scalar curvature −1.

Example 2.51. A closed Riemann surface of genus g ≥ 2 falls into the type (iii)
(hyperbolic). Using the standard presentation of the fundamental group of a surface
as

π1(Σ) = 〈α1, . . . , αg, β1, . . . , βg |
g∏

i=1

αiβiα
−1
i β−1

i = 1〉

we see that its image in PSL2(R) under ρ is a 2g-tuple of elements

a1, . . . , ag, b1, . . . , bg ∈ PSL2(R)

46In this example, ρ maps π1(S1 × S1) to a lattice Λ seen as a subgroup of {translations} ⊂
Conf(C). The change of the generators of Λ by translation and scaling corresponds to the conju-

gation of ρ, as in Remark 2.50, by rotation and scaling.
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subject to a relation
g∏

i=1

aibia
−1
i b−1

i = 1.

Moreover, by Remark 2.50, two 2g-tuples should be considered equivalent if they
are related by conjugation by an element h ∈ PSL2(R):

(191) (a1, . . . , ag, b1, . . . , bg) ∼ (ha1h
−1, . . . , hagh

−1, hb1h
−1, . . . , hbgh

−1).

2.8.5. Moduli space Mg,n of complex structures on a surface with n marked points.

Definition 2.52. Fix a smooth closed oriented surface Σ of genus g. Let p1, . . . , pn ∈
Σ be a collection of pairwise distinct points on Σ. The moduli space of complex
structures on Σ with n marked points is the quotient space47

(192) Mg,n : = {complex structures on Σ}/Diff+(Σ, {pi}),
where Diff+(Σ, {pi}) stands for the orientation-preserving diffeomorphisms of Σ
that do not move each of the marked points pi.

48

There is another version of the moduli space where we quotient by orientation-
preserving diffeomorphisms which are allowed to move a marked point to another
marked point:

Diffunordered
+ (Σ, {pi}) : = {φ ∈ Diff+(Σ) | φ(pi) = pσ(i) for some σ ∈ Sn}.

We denote the quotient of the space of complex structures on Σ by such diffeomor-
phisms Munordered

g,n (unordered marked points), whereas (192) is the moduli space

of complex structures with n ordered marked points, Mg,n =:Mordered
g,n .

is this
def/terminology
ok?

Definition 2.53. We call the universal family (or Riemann surfaces) the fiber
bundle Eg,n over Mg,n where the fiber over the point corresponding to a Riemann
surface Σ with marked points {pi} is that same surface with same marked points.

The idea of Teichmüller theory is to do the quotient (192) in two steps:

1. Take the quotient

(193) {complex structures on Σ}/Diff0(Σ, {p0}) =: Tg,n
with respect to the connected component of identity in the group of diffeomor-
phisms preserving the marked points, Diff0 ⊂ Diff+. The quotient (193) is called
the Teichmüller space Tg,n.49 In the case χ = 2− 2g−n < 0 (the “stable” case),
the Teichmüller space is diffeomorphic to R6g−6+2n. It carries a natural complex
structure and several natural metrics.

47Again, there are different ways to understand the quotient here: as a topological space with

quotient topology (“coarse” moduli space), as an orbifold, as a stack.
48Other names used for Mg,n include: “moduli space of conformal structures” (since in 2d,

conformal and complex structures correspond to one another), “moduli space of Riemann surfaces”
and (in the context of algebraic geometry) “moduli space of (algebraic) curves.”

49The points of Tg,n correspond to equivalence classes of complex structures on Σ (mod-
ulo diffeomorphisms fixing the marked points), equipped with a “marking” – a diffeomorphism
φ : Σstand

g,n → Σ from a “standard” surface to Σ (taking marked points to marked points), where

φ is considered up to isotopy.
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2. Take the quotient of (193) by the discrete group of connected components of the
diffeomorphism group appearing in (192),

(194) π0Diff(Σ, {pi}) =: pMCGg,n.

This group is known as the “pure mapping class group” of a surface of genus g
with n marked points. One has a natural action of pMCGg,n on the Teichmüller
space inherited from the action of diffeomorphisms on complex structures. Thus,
we consider the quotient

(195) Mg,n = Tg,n/pMCGg,n.

Remark 2.54. If one wants to construct the moduli space with unordered punctures,
one extra step is needed: a quotient by the symmetric group Sn (which acts by
permuting the marked points):

(196) Munordered
g,n =Mg,n/Sn.

Another way to write it is directly as a quotient of the Teichmüller space

(197) Munordered
g,n = Tg,n/MCGg,n

by the full (not “pure”) mapping class group

(198) MCGg,n : = π0Diffunordered
+ (Σ, {pi}).

factcheck
Remark 2.55. The action of the mapping class group on the Teichmüller space Tg,n
is free almost everywhere, except for a discrete set of points where it has a discrete
(in fact, finite, for g, n sufficiently large) stabilizer. These points correspond to
orbifold singularities of the quotient Mg,n.

Remark 2.56. The following remark is from [32]. Given a closed surface Σ of genus
g ≥ 2, by the Uniformization Theorem (see (189) and Remark 2.50) one has a map
(199)
{conformal structures on Σ} → {subgroups Γ ⊂ PSL2(R) s.t. Γ ' π1(Σ)}/PSL2(R)

More specifically, one has a map

(200) Tg,0 p−→ Hom(π1(Σ), PSL2(R))/PSL2(R)

In fact, p is injective and its image is

(201) im(p) = Homdf (π1(Σ), PSL2(R))/PSL2(R)

where superscript d stands for “discrete” (so that 1 is not an accumulation point of
the image of π1), f is for “faithful” (injective). One can also allow marked points
– then one gets bijection

(202) Tg,n ∼−→ Homdfp(π1(Σg,n), PSL2(R))/PSL2(R)

where superscripts d, f are as above and p means “periferal cycles map to parabolic
elements of PSL2(R)” (i.e. elements with trace ±2). On the right hand side,
Σg,n is understood as a surface of genus g with n points removed. Thus, one has
an identification of the Teichmüller space with a (part of) the moduli space of
PSL2(R)-local systems on Σ. For instance, the formula for the dimension of the
Teichmüller space

(203) dim Tg,n = 6g − 6 + 2n

follows from (202) immediately.
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2.8.6. Aside: cross-ratio.

Definition 2.57. Given four pairwise distinct points z1, z2, z3, z4 in CP1, their
cross-ratio is the number

(204) [z1, z2 : z3, z4] : =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
=
z1 − z3

z1 − z4
:
z2 − z3

z2 − z4
∈ C\{0, 1}.

Lemma 2.58. The cross-ratio is invariant under Möbius transformations:

(205) [Az1, Az2 : Az3, Az4] = [z1, z2 : z3 : z4]

for any A ∈ PSL2(C). Put another way, the cross-ratio is a function on the open
configuration space C4(CP1) of 4 points on CP1 invariant under the diagonal action
of PSL2(C).

Proof. The Möbius group is generated by translations z → z + a with a ∈ C,
rotations plus dilations z → λz with λ ∈ C∗, and the transformation z → 1/z.
The expression (204) depends only on differences of z’s, so it is invariant under
translations. It is a rational function of total homogeneity degree 0, so it is invariant
under z → λz. The only thing left to check is that the cross-ratio is invariant under
z → 1/z. We have

[z−1
1 , z−1

2 : z−1
3 , z−1

4 ] =
(z−1

1 − z−1
3 )(z−1

2 − z−1
4 )

(z−1
1 − z−1

4 )(z−1
2 − z−1

3 )
=

(z3 − z1)(z4 − z2)

(z4 − z1)(z3 − z2)
= [z1, z2 : z3, z4].

�

Definition 2.59. A an action of a group on a manifold ρ : G → Diff(M) is said
to be k-transitive, for some k ≥ 1, if any k-tuple of distinct points in M can be
mapped to any other k-tuple of distinct points by acting with some element g ∈ G.
Put another way, the action ρ is k-transitive if the corresponding diagonal action
on the open configuration space of k points, ρ : G→ Diff(Ck(M)) is transitive.

Lemma 2.60. (a) The action of PSL2(C) on CP1 by Möbius transformations is
3-transitive.

(b) The Möbius transformation sending any one given triple of distinct points in
CP1 to any other triple is unique.

Proof. For (a), it suffices to check that for any triple of distinct points (z1, z2, z3)
in CP1 there exists a Möbius transformation that moves it to the triple (∞, 0, 1).
We can find it as the following composition of simple Möbius transformation:

(206) (z1, z2, z3)
z→z−1

−−−−→ (z−1
1 , z−1

2 , z−1
3 )

z→z−z−1
1−−−−−−→ (0, z−1

2 − z−1
1 , z−1

3 − z−1
1 ) −→

z→z−1

−−−−→ (∞, z1z2

z12
,
z1z3

z13
)
z→z− z1z2z12−−−−−−−→ (∞, 0, z

2
1z32

z12z13
)
z→z· z12z13

z21z32−−−−−−−→ (∞, 0, 1).

Here we used a shorthand notation zij : = zi − zj .
For, (b) it suffices to show that the only Möbius transformation mapping (0,∞, 1)

to (0,∞, 1) is the identity map z → z. Indeed, for a general Möbius transformation
(92), we have

(0,∞, 1) 7→ (
b

d
,
a

c
,
a+ b

c+ d
).

For the right hand side to be (0,∞, 1), one needs b = c = 0 and a = d, thus the
transformation (92) is the identity. �
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Lemma 2.61. The cross-ratio (204) has the following meaning: start with a
quadruple of distinct points (z1, z2, z3, z4) in CP1. Find the (unique) Möbius trans-
formation that transforms the quadruple to one of the form (κ, 1, 0,∞) with some
κ ∈ CP1\{0, 1,∞}. Then one has

(207) [z1, z2 : z3, z4] = κ.

Proof. By 3-transitivity of the Möbius transformations, it suffices to check that the
cross-ratio [κ, 1 : 0,∞] is κ, and this is obvious from the definition (204). �

Remark 2.62. The group S4 of permutations of z1, z2, z3, z4 acts on the cross-ratio.
Its orbits consists of sextuples of the form

(208) κ ∼ 1

κ
∼ 1− κ ∼ κ

κ − 1
∼ 1

1− κ
∼ κ − 1

κ
.

More precisely, one has a short exact sequence of groups

Z2 × Z2 → S4 → S3,

where Z2 × Z2 (the “Klein four-group”) is the symmetries of the cross-ratio –
permutations of the four points that don’t change it. Explicitly, these symmetries
are:

[z1, z2 : z3, z4] = [z2, z1 : z4, z3] = [z3, z4 : z1, z2] = [z4, z3 : z2, z1].
Lecture 11,
9/16/2022

2.8.7. Moduli space M0,n. A sphere Σ = S2 equipped with some conformal struc-

ture and n (distinct) marked points is conformally equivalent to the standard CP1,
by the Uniformization Theorem. Under this conformal equivalence, the points are
mapped to the n-tuple of distinct points z1, . . . , zn ∈ CP1. Note that the surfaces
(CP1, {zi}) and (CP1, {z′i}) are conformally equivalent if and only if one can find
a conformal automorphism α ∈ Conf(CP1) = PSL2(C) such that z′i = α(zi), for
i = 1, . . . , n.

Thus, we have the following:

• For n = 3, any three points can be mapped to 0, 1,∞ ∈ CP1 by a Möbius
transformation (in a unique way). Thus, all surfaces (CP1, {z1, z2, z3}) are
conformally equivalent to the standard one (CP1, {0, 1,∞}). Hence the
moduli space M0,3 is a single point.

• For n = 4, a quadruple of points can be mapped by unique Möbius transfor-
mation to the quadruple of the form (κ, 1, 0,∞) where κ = [z1, z2 : z3, z4]
– the cross-ratio. Thus, the surface (CP1, {z1, z2, z3, z4}) is conformally
equivalent the surface of the form (CP1, {κ, 1, 0,∞}). So, genus 0 Riemann
surfaces with 4 marked points up to conformal equivalence are parametrized
by a single complex parameter κ ∈ CP1\{0, 1,∞}. Hence, we have

(209) M0,4 ' CP1\{0, 1,∞}
and the coordinate on the moduli space is provided by the cross-ratio of
the four marked points on Σ = CP1.

• For n = 5, one can map the last 3 out of 5 marked points to 1, 0,∞ by
a unique Möbius transformation; this transformation moves the first two
points to some κ1 6= κ2 ∈ CP1\{0, 1,∞}, with

κ1,2 = [z1,2, z3 : z4, z5]
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the cross-ratios. Thus, one has

(210) M0,5 ' C2(CP1\{0, 1,∞})
– the open configuration space of two distinct points κ1,κ2 in CP1\{0, 1,∞}.
• Similarly, for any n ≥ 3, one has

(211) M0,n ' Cn−3(CP1\{0, 1,∞})
where the surface (CP1, {z1, . . . , zn}) corresponds to the point (κi = [z,zn−2 : zn−1, zn])n−3

i=1

in the configuration space in the r.h.s. of (211).
• (“Unstable case.”) For n < 3, one can fix n marked points to standard po-

sitions, but by a non-unique Möbius transformation. So, the corresponding
moduli can be thought of as a the quotient of a point (the standard CP1 with
n marked points in standard positions) by the subgroup Gn ⊂ PSL2(C)
fixing the marked points:

(212) M0,n ' pt/Gn

– thought of as category with a single object and Gn worth of morphisms,
or as a stack. Explicitly, the groups Gn are:

n Gn
0 PSL2(C)
1 Stab∞(PSL2(C) x CP

1) = {dilations} ⊕ {rotations} ⊕ {translations} ' C∗ n C
2 Stab∞ ∩ Stab0(PSL2(C) x CP

1) = {dilations} ⊕ {rotations} ' C∗

Deligne-Mumford compactification. The moduli space M0,n with n ≥ 3 is a
smooth noncompact manifold. It admits the so-called Deligne-Mumford compacti-
fication M0,n – a stratified complex manifold. The main stratum (of codimension
0) isM0,n. A stratum DS1,S2

of complex codimension 1 corresponds to a partition-
ing of the set of marked points z1, . . . , zn into two subsets S1, S2, each containing
≥ 2 points; the stratum DS1,S2 corresponds to “nodal curves/surfaces”50

(CP1, {S1, p}) ∪p (CP1, {S2, p})
with “neck” at a point p. The moduli space of such nodal surfaces is

(213) DS1,S2 'M0,|S1|+1 ×M0,|S2|+1

One adds higher-codimension strata by induction, compactifying the r.h.s. of (213).
We refer to all the strata of M0,n except for the main one (M0,n) as compacti-

fication strata. straighten up termi-
nology: nodal curves
vs nodal surfaces

Example 2.63 (M0,4). The Deligne-Mumford compactification of the moduli
spaceM0,4 (209) glues back in the points κ = 0, 1,∞ (as compactificatation strata
of complex codimension 1), thus

(214) M0,4 = CP1\{0, 1,∞}︸ ︷︷ ︸
M0,4

∪{0, 1,∞} = CP1.

50There are competing terminologies for complex manifolds of complex dimension 1 – “curves”

(mainly, in algebraic geometry literature) and “surfaces” (differential geometry literature). We
will try to be consistent, sticking with “surfaces.” In particular, instead of “nodal curve” (a

standard term in algebraic geometry), we say “nodal surface.”
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E.g., the point κ = 0 corresponds to the asymptotic situation for a surface CP1, {z1, z2, z3, z4}
where z1 approaches z3. Note that such configuration can be mapped by a Möbius
transformation to one where z1, z3 stay at finite distance from each other but z2

and z4 approach one another. The limiting configuration is described by a nodal
surface – two CP1’s, one containing z1, z3 and p (the “neck”) and the other con-
taining z2, z4 and p. This singular surface is acted on by PSL2(C) × PSL2(C) –
independent Möbius transformations of both CP1’s. Thus, on both components
of the singular surface, there are no moduli (3 marked points can be brought into
standard position), so the stratum is M0,3 ×M0,3 = pt.

M0,4

z1

z3

z2

z4

0

1

∞

z1

z4

z2

z3

z1

z2

z3

z4

p

p

p

Figure 15. Deligne-Mumford compactification of M0,4. We are
drawing the nodal surfaces corresponding to the compactification
strata κ = 0, κ = 1,κ =∞. Put another way, the universal family
(Definition 2.53) degenerates at these three points and we draw
the degenerate fibers over them.

Example 2.64 (Higher-codimension strata). In the Deligne-Mumford compactifi-
cation of M0,5, one can consider the codimC = 1 compactification stratum of the
form

(215) M0,3 ×M0,4,

corresponding to partitioning the marked points as {z1, z2}∪{z3, z4, z5}, i.e., nodal
surfaces of the form

(216) (CP1, {z1, z2, p}) ∪p (CP1, {p, z3, z4, z5})

(corresponding to either z1 approaching z2 or, as alternative viewpoint, correspond-
ing to z3, z4, z5 colliding together). The right factor in (215) also should be further
compactified, by adjoining to the product, e.g., the stratum M0,3 ×M0,3 ×M0,3

corresponding to surfaces with two necks, of the form

(217) (CP1, {z1, z2, p}) ∪p (CP1, {p, z3, q}) ∪q (CP1, {q, z4, z5})

of complex codimension 2 (as a stratum in M0,5; it corresponds to a stratum of
complex codimension 1 in the right factor of (215)).
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z5

z1

z2

p
z3

q z4

Figure 16. Nodal surface with two “necks,” corresponding to a
stratum in M0,5 of complex codimension two.

Remark 2.65. The construction of Deligne-Mumford compactification extends to
Mg,n with nonvanishing genus g. Then one has compactification strata (of complex
codimension 1) of two types:

1. Strata isomorphic toMg1,n1+1 ×Mg2,n2+1 with g1 + g2 = g, n1 + n2 = n – this
is essentially the same construction as above, where not only marked points but
also genus is distributed between the two components of the nodal surface.

2. Strata isomorphic to Mg−1,n+2 – this corresponds to introducing a neck on
handle, thus trading one handle for two extra marked points.

2.8.8. Moduli space M1,0. A 2-torus with conformal structure, is, by Uniformiza-
tion Theorem, conformally equivalent to

(218) ΣΛ : = C/Λ

with

(219) Λ = spanZ(u, v)

a lattice in C spanned by two non-collinear51 vectors u, v ∈ C. Since the order
of (u, v) does not matter, we may assume that Im(v/u) > 0. Surfaces (218) are
conformally equivalent for lattices Λ, Λ′ if and only if the lattices are related by
rotation and scaling. There is a unique rotation+scaling that transforms v to 1.
Thus, the surface (218) is equivalent to a surface of the form

(220) Tτ : = C/Λτ

where Λτ : = spanZ(τ, 1) with τ = u
v ∈ Π+.

Choosing a different basis in Λ,

(u, v) 7→ (u′ = au+ bv, v′ = cu+ dv) with

(
a b
c d

)
∈ SL2(Z),

one obtains that tori Tτ and Tτ ′ are equivalent if and only if

(221) τ ′ =
aτ + b

cτ + d
with

(
a b
c d

)
∈ PSL2(Z).

Thus, we have the following.

Theorem 2.66. The moduli space of complex structures on a 2-torus with no
marked points is

(222) M1,0 = Π+/PSL2(Z).

I.e. any complex torus is conformally equivalent to a torus of the form Tτ = C/(Z⊕
τZ) where the modular parameter τ ∈ Π+/PSL2(C) provides a complex coordinate
on M1,0.

51Otherwise, the quotient is not diffeomorphic to the 2-torus.
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Remark 2.67. The standard way to choose a fundamental domain52 D ⊂ Π+ for
the action of PSL2(Z) on Π+ is the following:

(223) D = {z ∈ C | Re(z) ∈ [−1

2
,

1

2
], |z| ≥ 1}

The action of PSL2(Z) identifies points on the boundary of D as follows:

(224) M1,0 '
D

− 1
2 + iy ∼ 1

2 + iy for y ≥
√

3
2 , eiθ ∼ ei(π−θ) for θ ∈ [π3 ,

2π
3 ]

Points τ = i and τ = eπi/3 ∼ e2πi/3 in D have nontrivial stabilizers (Z2 and Z3,
respectively) under the action of PSL2(Z) and correspond to orbifold singularities
in M1,0.

11
2

gluing

−1
2

orbifold points

D

Figure 17. M1,0

Remark 2.68. Each complex torus Tτ has a nontrivial group of conformal automor-
phisms – translations by vectors in Tτ ,

(225) Conf(Tτ ) = Tτ .

Remark 2.69. The moduli space M1,1 of complex tori with a single marked point
can be identified with M1,0: one can convert the underlying complex torus to a
standard one Tτ and then move the marked point to the standard position (say,
z = 0) by a translation from (225).

2.8.9. The mapping class group of a surface. We refer to [11] as an excellent detailed
introduction to the subject of mapping class groups of surfaces. Here we just want
to give some simple examples.

52I.e. a subset of Π+ such that each PSL2(Z)-orbit intersects D and if two points in D are in
the same orbit, then they are boundary points of D.
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Example 2.70. The mapping class group of a 2-torus (seen as a smooth manifold
R2/Z2 with no marked points) is

(226) MCG1,0 = SL2(Z)

– elements of the mapping class group can be represented by linear sutomorphisms
R2 → R2 preserving the lattice Z2.

Example 2.71. The mapping class group of the sphere S2 with n marked points
is the “spherical braid group on n strands,” i.e.,

(227) MCG0,n = π1C
non−ordered
n (S2)

– the fundamental group of the open configuration space of n non-ordered points
on S2.

The version for the pure mapping class group (respectively, pure spherical braid
group on n strands) is:

(228) pMCG0,n = π1C
ordered
n (S2).

Example 2.72. The mapping class group of the annulus relative to the boundary
(i.e. π0 of diffeomorphisms of the annulus not moving the boundary points) is

(229) MCG(Ann, ∂Ann) ' Z

This group is generated by the Dehn twist. Thinking of Ann as the domain
{z ∈ C | r ≤ |z| ≤ R}, the Dehn twist can be represented a diffeomorphism53

(230)
Ann → Ann

z 7→ e2πi
|z|−r
R−r · z

Figure 18. Dehn twist (illustrated by the image of the dashed curve).

For general genus g and number n of marked points, one can write a presentation
of the mapping class group MCGg,n with two types of generators:

• Dehn twists along a finite collection of nonseparating closed simple curves
on the surface.54

53Equivalently, thinking of Ann as a cylinder [0, 1]× S1, one can represent the Dehn twist by

the diffeomorphism (t, θ) 7→ (t, θ + 2πt).
54The Dehn twist along a closed simple curve γ on a surface Σ is the diffeomorphism that

is identity everywhere except in in a small tubular neighborhood Uγ ⊂ Σ of γ; in Uγ (which is
diffeomorphic to an annulus or, equivalently, a cylinder), one performs the standard Dehn twist

(Figure 18).
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• “Dehn half-twists” which permute pairs of marked points.

p q
q p

Figure 19. Dehn half-twist permuting the marked points p and q.

These generators are subject to a set of relations. We refer to [11] for the details.
For the pure mapping class group pMCGg,n, one can make do with just Dehn

twists (without half-twists). E.g., pMCG0,n can be generated by Dehn twists along
curves encircling pairs of marked points.

Let us also mention the following result, helpful in computing mapping class
groups. Let MCG±(Σ) = π0Diff(Σ) – the group of isotopy classes of diffeomor-
phisms that either preserve or reverse the orientation of Σ. Note that there is a
natural action of MCG± on the fundamental group π1(Σ) (by pushing loops along
the diffeomorphism).

Theorem 2.73 (Dehn-Nielsen-Baer).

(231) MCG±(Σ) ' Out(π1(Σ))

where for G a group, Out(G) : = Aut(G)/Inn(G) is the group of “outer automor-
phism” – the quotient of all automorphisms by inner ones.

Then, the usual mapping class group (classes of orientation preserving diffeo-
morphisms) is an index two subgroup of (231).Lecture 12,

9/19/2022
3. Symmetries in classical field theory, stress-energy tensor

3.1. Classical field theory, Euler-Lagrange equations. Recall (cf. Section
1.5) that a classical field theory on a (pseudo-)Riemannian n-manifold M is deter-
mined by the following data:

(a) The space of fields
FieldsM = Γ(M,E) niφ

with E →M the field bundle.
(b) The action functional

(232) SM,g(φ) =

∫

M

L(φ, ∂φ, . . . ; g)

The Lagrangian density L in (232) is an n-form on M depending on fields and on
the metric on M . Recall that one can introduce the “variational bicomplex” (see
[1] for details)

(233) Ωp,qloc(M × FieldsM )

of “local” q-forms on FieldsM valued in p-forms on M ; locality means that for
ω ∈ Ωp,qloc , its value at x ∈ M depends on x and the jet of fields at x (but not on
the values of the fields away from x). The bicomplex Ω•,•loc(M,FieldsM ) comes with
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• the “vertical” differential δ : Ωp,qloc → Ωp,q+1
loc – the de Rham operator on the

space of fields.55

• the “horizontal” differential d : Ωp,qloc → Ωp+1,q
loc – the de Rham operator on

M ,56

The two differentials d, δ both square to zero and anticommute with each other.57

In this language, the Lagrangian density in (232) is an element

(234) L ∈ Ωn,0loc (M × FieldsM ).

Covariance. We are assuming “covariance” of the given classical field theory
(as assignment of action functionals to (pseudo-)Riemannian n-manifolds): for a

diffeomorphism m : M
∼−→M ′ of smooth manifolds, one has

(235) SM,g(φ) = SM ′,(m−1)∗g((m
−1)∗φ)

3.1.1. Euler-Lagrange equations. The Euler-Lagrange equation (or “equation of
motion”) is the condition on a field φ ∈ FieldsM that for any curve φt in FieldsM
such that φ0 = φ and such that φt coincides with φ in a neighborhood of the
boundary ∂M ⊂M , one has

(236)
d

dt

∣∣∣∣
t=0

S(φt) = 0.

(Put another way, Fréchet derivatives of S at φ in the directions given by fluctu-
ations of φ supported away from ∂M vanish.) This condition is a equivalent to a
PDE on φ. We will sometimes shorten “Euler-Lagrange equation” to just “EL.”

More explicitly, applying the de Rham derivative in fields to S (or in other words,
considering the variation of S with respect to the variation of the field), one can
write the result in the form

(237) δS =

∫

M

EL(φ)aδφ
a +

∫

∂M

α

where EL(φ)aδφ
a ∈ Ωn,1loc (M × FieldsM ) is an expression containing variations of

the field not hit by derivatives along M (labels a refer to the local trivialization
of the field bundle E). To obtain an answer in this form, one has to integrate by
parts (to move the geometric derivatives from δφ), which results in the appearance
of the boundary term in (237). The integrand α in the boundary term of (237) is

an element of Ωn−1,1
loc (M × FieldsM ); the whole boundary term

∫
∂M

α is a 1-form

55Locally, in a local trivialization of E, one has δ =
∑
r≥0

δφai1···ir
∂

∂φai1···ir
where a labels the

field components (coordinates in the fiber of the field bundle E); φai1···ir = ∂i1 · · · ∂irφa are

components of the r-th jet of the field.
56It is understood that d also acts on fields. Locally, one has

d = dxi

 ∂

∂xi
+
∑
r≥0

φaii1···ir
∂

∂φai1···ir
+
∑
r≥0

(δφaii1···ir )
∂

∂(δφai1···ir )

.

57Another viewpoint on the bicomplex Ω•,•loc is as follows. Consider the composition of maps

M × Γ(M,E)︸ ︷︷ ︸
FieldsM

id×j∞−−−−−→M × Γ(M, Jet∞E)
ev−→ Jet∞E where j∞ takes the jet of a section of E at

each point of M ; ev is the evaluation of a section at a point of M . Consider the complex of forms
Ω(Jet∞E) on the total space of the jet bundle. Then Ωloc(M × FM ) is the image of Ω(Jet∞E)
under the pullback (ev ◦ (id× j∞))∗.
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on FieldsM , known as the Noether 1-form (thus, α is the density of the Noether
1-form).

Expressed in terms of densities, the equation (237) is:

(238) δL = (−1)n
(
ELa(φ)δφa + dα

)

The Euler-Lagrange equation then is:

ELa(φ) = 0

with ELa(φ) an expression in the jet of the field appearing in (237).
Aside on source forms. In the variational bicomplex one can consider the sub-

space of “source forms”

(239) Ωn,1 source
loc ⊂ Ωn,1loc

– the set of elements of the form ω = ωa(x, φ, ∂φ, . . .)δφa, i.e., not depending on
variations of derivatives of fields δφai1···ir for r ≥ 1. Then one has a straightforward
lemma.

Lemma 3.1.

(240) Ωn,1loc = Ωn,1 source
loc ⊕ d

(
Ωn−1,1

loc

)

I.e., any (n, 1)-form β can be written in a unique way as β = ω + dη with ω a
source form.

Proof. It is proven straightforwardly, by moving the derivatives from δφ to its
prefactor in β, at the cost of adding a d-exact term:

(241) βi1···ira (x, φ, ∂φ, · · · )δφai1···ir =

= −(∂irβ
i1···ir
a )δφai1···ir−1

+ ∂ir (β
i1···ir
a δφai1···ir−1

)
︸ ︷︷ ︸
dι∂ir

(β
i1···ir
a δφai1···ir−1

)

= · · · = (−1)r(∂i1 · · · ∂irβi1···ira )δφa+d

(
r−1∑

k=0

(−1)kι∂ir−k ((∂ir · · · ∂ir−k+1
βi1···ira )δφai1···ir−k−1

)

)

One extends this computation by R-linearity to general β’s. This gives a splitting
β = ω + dη, with ω a source form. The fact that the splitting is unique follows
from the observation that d of a field-dependent (∗, 1)-form will necessarily contain

a term depending on δφai1···ir with r ≥ 1. Thus, Ωn,1 source
loc ∩ d(Ωn−1,1

loc ) = 0. �

Equation (238) is an application of this lemma to β = δL ∈ Ωn,1; Euler-Lagrange
equation says that [δL]source = 0 where [· · · ]source is the projection onto the source
forms.Add example: classi-

cal mechanics
Example 3.2 (Free massive scalar field). Let (M, g) be a (pseudo-)Riemannian
n-manifold. The fields are smooth functions on M , φ ∈ C∞(M) (i.e., the field
bundle is E = M × R→M – the trivial rank one bundle over M). The action is

(242) S(φ) =

∫

M

1

2
dφ ∧ ∗dφ+

m2

2
φ2dvolg

︸ ︷︷ ︸
L

with ∗ the Hodge star associated with the metric g and dvolg = ∗1 the metric volume
element; m ≥ 0 is a fixed number (“mass”). It is obvious that the assignment (242)
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satisfies the covariance property (235) – essentially because the action is written in
terms of natural geometric operations on forms.

We have

(243) δS =

∫

M

(−1)n+1 dδφ ∧ ∗dφ︸ ︷︷ ︸
d(δφ∧∗dφ)+δφ∧d∗dφ

+(−1)nm2δφφ dvolg =

=

∫

M

dvolg(∆ +m2)φ ∧ δφ︸ ︷︷ ︸
EL(φ)δφ

+d(∗dφ ∧ δφ︸ ︷︷ ︸
α

) =

∫

M

dvolg(∆+m2)φ∧δφ+

∫

∂M

∗dφ ∧ δφ
︸ ︷︷ ︸
Noether 1−form

.

Thus, the Euler-Lagrange equation is the linear PDE

(244) (∆ +m2)φ = 0

with ∆ = − ∗ d ∗ d the Laplace-Beltrami operator.
Note that if we start instead with the action

S(φ) =

∫

M

1

2
dφ ∧ ∗dφ+ V (φ)dvolg

with V some smooth function on R (the “potential”), then by repeating the compu-
tation we see that the Noether 1-form α (and its density α) does not change from
(243) but the Euler-Lagrange equation becomes a nonlinear PDE

(245) ∆φ+ V ′(φ) = 0.

Example 3.3 (Yang-Mills theory). Fix a Lie group G with a nondegenerate ad-
invariant quadratic form 〈, 〉 on its Lie algebra g. Let (M, g) be a (pseudo-)Riemannian
n-manifold. The fields of the theory are pairs (P, A) consisting of a principal G-
bundle P over M and a connection A in P. The action of Yang-Mills theory is

(246) S(A) =

∫

M

1

2
〈FA ∧, ∗FA〉

where FA ∈ Ω2(M, ad(P)) is the curvature 2-form of the connection A; ∗ is again
the Hodge star. In a local trivialization of P, A is represented by a g-valued 1-form
on M (or rather on the trivializing neighborhood U ⊂ M) and FA is represented
by the g-valued 2-form dA+ 1

2 [A,A].
The corresponding Euler-Lagrange equation is:

(247) dA ∗ FA = 0

with dA : Ω•(M, ad(P))→ Ω•+1(M, ad(P)) the covariant derivative operator asso-
ciated with A. The equation (247) is a nonlinear PDE (for nonabelian G) – the
“Yang-Mills equation.”

In the special case G = R, the Yang-Mills theory drastically simplifies (in this
case, it is called electrodynamics or Maxwell theory): fields are global 1-forms
A ∈ Ω1(M), the action is S(A) = 1

2

∫
M
dA∧ ∗dA and the Euler-Lagrange equation

becomes the Maxwell equation
d ∗ dA = 0

– a linear PDE.

Example 3.4 (Chern-Simons theory). Fix a simply connected Lie group G with
a nondegenerate ad-invariant bilinear form 〈, 〉 on its Lie algebra g. Let M be
an oriented 3-manifold. The fields of the theory are connections A in the trivial
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principal bundle P = M × G over M .58 Since P is trivial, connections can be
identified with g-valued 1-forms, A ∈ Ω1(M, g). The action is defined as

(248) S(A) =

∫

M

1

2
〈A ∧, dA〉+

1

6
〈A ∧, [A,A]〉

We have

(249) δS =

∫

M

−1

2
〈δA, dA〉 − 1

2
〈A, dδA〉︸ ︷︷ ︸

−d〈A,δA〉+〈dA,δA〉

−1

2
〈δA, [A,A]〉 =

=

∫

M

−〈δA, dA+
1

2
[A,A]〉+

∫

∂M

1

2
〈A, δA〉 =

∫

M

−〈δA, FA〉+

∫

∂M

1

2
〈A, δA〉
︸ ︷︷ ︸

α

where FA = dA + 1
2 [A,A] ∈ Ω2(M, g) is the curvature 2-form. Thus, the Euler-

Lagrange equation is

(250) FA = 0

– zero-curvature (or “flatness”) condition for the connection field A.
Note that the action (248) does not depend on a metric on M (it only depends

on the orientation, no other geometric structure is used). – It is an example of a
topological field theory (in the sense of Schwarz).

Example 3.5 (Nonlinear sigma model). Fix a (pseudo-)Riemannian manifold
(X,h) (the target) and let (M, g) be a (pseudo-)Riemannian n-manifold (the source).
The fields are smooth maps Φ: M → X (one can think of them as section of the
field bundle E = M × X → X – the trivial fiber bundle with fiber X) and the
action is

(251) S(Φ) =

∫

M

1

2
〈dΦ ∧, ∗dΦ〉Φ∗h

where ∗ = ∗g : Ω•(M)→ Ωn−• is the Hodge star associated with the source metric
g; dΦ ∈ Ω1(M,Φ∗TX) is the differential of the map Φ, 〈, 〉Φ∗h is the fiberwise metric
on the vector bundle Φ∗TX → M coming from the pullback of the target metric.
Using local coordinates ua on the target and local coordinates xi on the source, the
action (251) can be written as
(252)

S(Φ) =

∫

M

1

2
hab(Φ) dΦa ∧ ∗dΦb =

∫

M

1

2
gij(x)hab(Φ(x)) ∂iΦ

a(x) ∂jΦ
b(x) dvolg.

The variation of the action is:

(253)

δS =

∫

M

(−1)n
(1

2
∂chab(Φ)dΦa∧∗dΦb− hab(Φ)dδΦa ∧ ∗dΦb︸ ︷︷ ︸

d(hab(Φ)δΦa∧∗dΦb)+(−1)nd(hab(Φ)∗dΦb)∧δΦa

)

=

∫

M

(1

2
∂ahbc(Φ)dΦb∧∗dΦc−d

(
hab(Φ)∗dΦb

))
∧δΦa+

∫

∂M

(
hab(Φ)∗dΦb

)
∧δΦa

58In fact, one should allow connections in all principal G-bundles over M . However, for G

simply connected and M 3-dimensional there are no nontrivial G-bundles over M (since BG is 3-

connected and hence there is a unique homotopy class of classifying maps M → BG). This is why
we asked G to be simply connected – to have this simplification. Case of non-simply connected G

can be treated but requires more care.
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=

∫

M

(1

2
∂ahbc(Φ)dΦb∧∗dΦc−∂bhac(Φ)dΦb∧∗dΦc−hab(Φ)d∗dΦb

)
∧δΦa+

∫

∂M

(
hab(Φ)∗dΦb

)
∧δΦa

=

∫

M

(
hab(Φ) ∗∆Φb − Γabc(Φ)dΦb ∧ ∗dΦc

)
∧ δΦa +

∫

∂M

(
hab(Φ) ∗ dΦb

)
∧ δΦa

=

∫

M

dvolghab(Φ)(∆Φb−Γbcd(Φ)〈dΦc, dΦd〉g−1)∧δΦa+

∫

∂M

(
hab(Φ) ∗ dΦb

)
∧ δΦa

︸ ︷︷ ︸
α

.

Here Γ••• are the Christoffel symbols of the target metric; ∆ = − ∗ d ∗ d is the
Laplacian on (M, g). Thus, the Euler-Lagrange equation is

(254) ∆Φa − Γabc(Φ)〈dΦb, dΦc〉g−1 = 0.

Note that in the special case dimM = 1, (254) becomes the equation of geodesic
motion on X.

In the other extreme case, X = R the model becomes the massless free scalar
field.

One can also consider a modification of the sigma model action functional (251)
by a potential:

(255) S(Φ) =

∫

M

1

2
〈dΦ ∧, ∗dΦ〉Φ∗h − V (Φ) dvolg

with V ∈ C∞(X) a fixed function on the target manifold (the “potential”). This
modification does not change the density

(256) α = 〈∗dΦ ∧, δΦ〉h∗Φ
of the Noether 1-form, as one can see by repeating the computation (253)). However
it changes the Euler-Lagrange equation (254) to

(257) ∆Φa − Γabc(Φ)〈dΦb, dΦc〉g−1 − hab(Φ)∂bV (Φ) = 0.

3.2. Symmetries and Noether currents. Consider an infinitesimal transforma-
tion of fields of the field theory given as

(258) φ(x) 7→ φ(x) + εv(φ(x), ∂φ(x), . . .)

given by a local vector field

(259) v ∈ Xloc(FieldsM )

where loc means that the infinitesimal change of the field given by v at the point
x ∈M depends only on the jet of the field at x.

Definition 3.6. We say that v is an infinitesimal symmetry of the given classical
field theory if one has

(260) LvL = dΛ

for some element Λ ∈ Ωn−1,0
loc (M,FieldsM ); here Lv stands for the Lie derivative in

the direction of v.59

59The vector field (259) naturally induces an “evolutionary” (i.e. commuting with derivatives

along M) vertical vector field vevo on the jet bundle Jet∞E →M (see [1]). It is that latter vector
field that we act with in (260); by an abuse of notation, we still denote it v. Cf. Example 3.13

and footnote 60 below.
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An equivalent formulation of (260) is: one has

(261) LvSN =

∫

∂N

Λ.

for any n-dimensional submanifold with boundary N ⊂M .
Strengthen to if and
only if? Also: talk
about families of fi-
nite symmetries?

Lemma 3.7. If v is a symmetry in the sense of (260), then the corresponding in-
finitesimal transformation of fields (260) takes solutions of Euler-Lagrange equation
to solutions of Euler-Lagrange equations.

Make it more clear?
Write a second
proof, within var
bicomplex?

Proof. Consider a path φt in FieldsM with d
dtφt supported away from ∂M , as in

the beginning of Section 3.1.1 and assume that φ0 = φ is a solution of the Euler-
Lagrange equation (236). Then

d

dt

∣∣∣
t=0

S(φt + εv(φt)) = ε
d

dt

∣∣∣
t=0
LvS(φt) = ε

d

dt

∣∣∣
t=0

∫

∂M

Λ(φt) = 0 mod ε2.

In the last step we used that φ̇t (and its jet) vanishes on the boundary. Thus,
any fluctuation away from the boundary of the transformed φ (the r.h.s. of (258))
preserves the value of the action in the first order in fluctuation (i.e., first order in
t). �

Definition 3.8. Given an infinitesimal symmetry v ∈ Xloc(FieldsM ) of a given

classical field theory, defines an element J ∈ Ωn−1,0
loc (M,FieldsM ) by the formula

(262) J : = (−1)nιvα+ Λ.

J is called the “Noether current” associated with the symmetry v.

Theorem 3.9 (Noether theorem). The field-dependent (n − 1)-form J defined by
(262) is closed on M when restricted to the solutions of the Euler-Lagrange equation.

Notation. For two expressions A,B depending on the field we will write

A = B mod EL or A ∼
EL

B

to indicate that an equality holds “modulo the Euler-Lagrange equation,” i.e., when
both sides are evaluated on a field configuration φ satisfying the Euler-Lagrange
equation.

Thus, Noether theorem reads

(263) dJ = 0 mod EL.

Proof of Theorem 3.9. Applying d to the definition (262), we have

(264) dJ = (−1)n+1ιv dα︸︷︷︸
=

(238)
(−1)nδL−ELaδφa

+ dΛ︸︷︷︸
=

(260)
LvL

=

= −LvL+ (−1)nELava︸ ︷︷ ︸
=0 mod EL

+LvL = 0 mod EL.

�

Corollary 3.10. Assume we have a symmetry v and J is the associated Noether
current. Then for γ1, γ2 two cobordant submanifolds of M of codimension 1, one
has

(265)

∫

γ1

J =

∫

γ2

J mod EL.
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Proof. Let N ⊂M be the cobordism between γ1 and γ2, i.e., ∂N = γ2 − γ1. Then
we have

(266)

∫

γ2

J −
∫

γ1

J =
Stokes′

∫

N

dJ =
Noether thm

0 mod EL.

�

The expression
∫
γ
J , with J a Noether current associated with a symmetry and

with γ ⊂M a codimension 1 submanifold, is called a “Noether charge.”
Equation (265) expresses the conservation property of the Noether charge (for a

fixed field configuration satisfying EL), as one slides γ along M .

M

γ1

γ2

Figure 20. Noether charge is conserved (modulo EL) when
changing the hypersurface in its cobordism class γ1 → γ2.

Definition 3.11. One calls an element of J ∈ Ωn−1,0
loc (M × FieldsM ) a “conserved

current” if it satisfies

(267) dJ ∼
EL

0

A conserved current gives rise to a charge
∫
γ
J , with γ ⊂ M a hypersurface,

which is “conserved” – independent under deformations of γ, cf. (265).
Noether theorem gives a mechanism producing conserved currents out of infini-

tesimal symmetries.

Definition 3.12. We call two conserved currents J, J ′ “equivalent” if one has

(268) J ′ ∼
EL

J + dK

for some element K ∈ Ωn−2,0
loc (M × FieldsM ).

In particular, if J is conserved (dJ ∼
EL

0), then the equivalent current J ′ is

automatically conserved. Also, if J and J ′ are equivalent, they yield the same
(modulo EL) charges, ∫

γ

J ∼
EL

∫

γ

J ′,

for γ closed.
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Example 3.13. Consider the classical mechanics of a particle moving on a target
manifold R. The spacetime (source cobordism) is M = [t0, t1], fields are maps
x : [t0, t1]→ R and the action is

(269) S[x(τ)] =

∫ t1

t0

dτ

(
m
ẋ(τ)2

2
− U(x(τ))

)

︸ ︷︷ ︸
L

The derivative in fields yields

(270) δS =

∫ t1

t0

dτ(mẋδẋ− U ′(x)δx) =

∫ t1

t0

dτ(−mẍ− U ′(x))δx︸ ︷︷ ︸
ELδx

+
∣∣∣mẋδx︸ ︷︷ ︸

α

∣∣∣
t1

t0

The Euler-Lagrange equation is:

(271) mẍ+ U ′(x) = 0.

Consider the infinitesimal transformation of fields

x(τ) 7→ x(τ)− εẋ(τ)

The corresponding vector field is v = −
∫ t1
t0
ẋ δ
δx .60 Acting with it on L yields

(272) LvL = dτ(−mẋẍ+ U ′(x)ẋ) = d
(
−mẋ2

2
+ U(x)

︸ ︷︷ ︸
Λ

)

where d = dτ d
dτ the “horizontal” differential. Thus, the Noether current is

(273)

J = −ιvα+Λ = mẋ2−mẋ2

2
+U(x) = m

ẋ(τ)2

2
+U(x(τ)) ∈ Ω0,0([t0, t1]×Fields[t0,t1])

– this is the “energy” of the particle.
The conservation law (265) says that if γ1 = {τ1}, γ2 = {τ2} are two points on

the time interval M = [t0, t1], then, assuming the trajectory x(τ) satisfies the Euler-
Lagrange equation, the expression (273) yields the same number at time τ1 and at
time τ2. In other words, we get that the energy (273) is constant in τ ∈ [t0, t1], if
[x(τ)] is a solution of EL. Of course, we can verify this statement directly: applying
d
dτ to the r.h.s. of (273), we obtain minus the l.h.s. of (271).

Lecture 13,
9/21/22 Remark 3.14 (Noether current as a vector field). In Definition 3.8 we introduced

the Noether current as a field-dependent (n− 1)-form on M , J ∈ Ωn−1(M), closed
moduloM . One can consider the associated field-dependent vector field J# ∈ X(M)
uniquely determined by ιJ#dvolg = J . Then:

• The conservation property dJ ∼
EL

0 corresponds in terms of the vector-field

Noether current to the property

(274) divdvolgJ
# ∼
EL

0

60 When acting on jets of fields at τ , v acts as vevo = −(ẋ ∂
∂x

+ ẍ ∂
∂ẋ

+
...
x ∂
∂ẍ

+ · · · ) where the

superscript “evo” stands for “evolutionary” (i.e. commuting with dτ ) prolongation of v.
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– the divergence of the vector field J# w.r.t. the metric volume form on
M vanishes.61 Equivalently, in the index notation,

(275) ∇i(J#)i =∼
EL

0.

• The Noether charge
∫
γ
J is the flux of the vector field J# through the

hypersurface γ.

Example 3.15. Consider the free massless scalar on a Riemannian n-manifold
(M, g), defined by the action

(276) S(φ) =

∫

M

1

2
dφ ∧ ∗dφ
︸ ︷︷ ︸

L

Consider the infinitesimal transformation of fields

(277) φ→ φ+ ε

– a shift of the value of the field φ by a constant function. The corresponding vector
field on the space of fields is

(278) v =

∫

M

δ

δφ(x)
∈ X(FieldsM )

The transformation (277) clearly does not change the action S and the Lagrangian
L and clearly takes a solution of the Euler-Lagrange equation

(279) ∆φ = 0

to another solution. In particular, (277) is a symmetry with Λ = 0 (cf. Definition
3.6). Thus, the Noether current (262) corresponding to (277) is
(280)

J = (−1)nιvα = (−1)nιv
(
(−1)n+1δφ ∧ ∗dφ

)
= − ∗ dφ ∈ Ωn−1,0

loc (M × FieldsM )

where we used α we obtained before, in the computation (243). Noether theorem
the tells that J = − ∗ dφ is conserved (closed) modulo EL. One can check it
independently:

(281) dJ = −d ∗ dφ = ∗(∆φ) ∼
EL

0,

cf. the Euler-Lagrange equation (279).

3.2.1. Canonical stress-energy tensor.

Example 3.16 (Canonical stress-energy tensor for the free massive scalar field).
Consider the free massive scalar field on M = Rn (equipped with standard Eu-
clidean metric), with the action

(282) S(φ) =

∫

Rn

1

2
dφ ∧ ∗dφ+

m2

2
φ2dvol

︸ ︷︷ ︸
L

61Recall that to define the divergence of a vector field u on a manifold M , one needs to specify
a volume form µ on M . Then the divergence is defined via

∫
M µu(f) = −

∫
M µfdivµ(u) for any

compactly supported test function f . Equivalent definition: divµ(u) = Luµ
µ

.
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Consider the symmetry given by a translation on Rn:

(283)
Rε : Rn → Rn

~x 7→ ~x′ = ~x+ ε~a

with ~a ∈ Rn a fixed vector. This symmetry acts on fields as

(284) φ→ (R−1
ε )∗φ = φ− εai∂iφ+O(ε2)

This transformation is described by the vector field

(285) v = −
∫

Rn
ai∂iφ

∂

∂φ
.

We have

(286) LvL = −ai ∂
∂xi

L = −L~aL = d(−ι~aL︸ ︷︷ ︸
Λ

).

Here the derivatives ∂
∂xi act on fields, ~a is understood as a constant vector field on

Rn. Computation (286) in particular shows that (284) is indeed a symmetry, in the
sense of Definition 3.6. The corresponding Noether current is

(287) J~a = (−1)nιvα+ Λ = ∗dφ〈~a, dφ〉 − ι~a
(

1

2
dφ ∧ ∗dφ+

m2

2
φ2dvol

)

︸ ︷︷ ︸
L

So, one gets a family of conserved charges parametrized by ~a ∈ Rn. This family is
linear in ~a, so it can be written as

(288) J~a = 〈~a, Tcan〉
where the generating object of the family

(289) Tcan ∈ Ωn−1(M)⊗C∞(M) Ω1(M) = Γ(M,∧n−1T ∗M ⊗ T ∗M)

(depending on a field) is called the “canonical stress-energy tensor.” In (288), the
second factor in (289) (covectors) is contracted with the constant vector field ~a.

By Noether theorem, one has

(290) (d⊗ id)Tcan ∼
EL

0.

If we switch in (289) from (n−1)-forms on M to vector fields on M by contacting
with metric volume form, we obtain the tensor
(291)

(Tcan)•• =

(
∂iφ∂jφ− δij

(
1

2
∂kφ∂

kφ+
m2

2
φ2

))
∂i ⊗ dxj ∈ Γ(M,TM ⊗ T ∗M).

Here the bullets (· · · )•• indicate the location of indices – the type of tensor – once
covariant and once contravariant.

Remark 3.17. More generally, one can repeat the computation of Example 3.16 for
any classical field theory on M = Rp,q (or any full-dimensional submanifold M of
Rp,q), defined by some Lagrangian density

(292) L = dnx L(φ, ∂φ)
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Then one obtains as the generating object for Noether currents associated with
translations (283) on Rp,q, the “canonical stress-energy tensor”

(293)

(Tcan)•• = T ij∂i ⊗ dxj ∈ Γ(M,TM ⊗ T ∗M)

with T ij =
∂L(φ, ∂φ)

∂(∂iφA)
∂jφ

A − δijL(φ, ∂φ)

By Noether theorem, it satisfies the conservation property

(294) (div ⊗ id)(Tcan)•• ∼
EL

0 or ∂iT
i
j ∼
EL

0.

Remark 3.18. One can trade tangent and cotangent coefficient bundles in (293)
(i.e. raise/lower indices), using the standard metric on M = Rp,q. In particular,
one has the versions

(Tcan)•• = (Tcan)ij ∂i ⊗ ∂j ∈ Γ(M,TM ⊗ TM),(295)

(Tcan)•• = (Tcan)ij dx
i ⊗ dxj ∈ Γ(M,T ∗M ⊗ T ∗M)(296)

In the example of the free massive scalar field (Example 3.16), these two versions of
the canonical stress-energy tensor happen to be symmetric. However, in a general
(not necessarily scalar) field theory on Rp,q this fails: the canonical stress energy
tensor is generally not symmetric.

3.3. Hilbert stress-energy tensor. The notion of canonical stress-energy tensor
above has deficiencies. Most importantly, it is only defined on a flat manifold. There
is different version of the stress-energy tensor, which is defined on any manifold, is
always symmetric and conserved.

Definition 3.19. Given a covariant (see (235)) classical field theory, one defines
the Hilbert stress-energy tensor as a field-dependent tensor

(297) T = T ij∂i · ∂j ∈ Γ(M,Sym2TM)

characterized by

(298) δgSM,g(φ) = −1

2

∫

M

dvolgT
ijδgij

where δgS means “variation of S w.r.t. the variation of the metric g → g+ δg.” In
other words, (298) means

(299)
d

dε

∣∣∣
ε=0

SM,g+εh = −1

2

∫

M

dvolgT
ijhij

for any fluctuation of the metric h ∈ Γ(M,Sym2TM).
Equivalently, one defines T as the variational derivative of SM,g w.r.t. the metric

at a given point:

(300) T ij(x) : = − 2√
det(g)

δSM,g

δgij(x)
.

From now on when we say “stress-energy tensor” we will mean “Hilbert stress-
energy tensor,” unless stated otherwise.

Hilbert stress-energy tensor satisfies the following properties.

Lemma 3.20. (i) T is a symmetric tensor: T ij = T ji.
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(ii) T is conserved, in the sense that

(301) ∇iT ij ∼
EL

0

(or, in coordinate-free language, (divdvol ⊗ id)T ∼
EL

0.)

Proof. (i) is obvious by construction.
Proof of (ii): Let r ∈ X(M) be aby vector field vanishing in a neighborhood of

the boundary; let Rε ∈ Diff(M) be the flow along r in time ε. Covariance (235)
implies

(302) SM,g(φ) = SM,(R−1
ε )∗g((R

−1
ε )∗φ)

Taking the derivative of both sides in ε at ε = 0, we get

(303) 0 =
d

dε

∣∣∣
ε=0

SM,(R−1
ε )∗g(φ) +

d

dε

∣∣∣
ε=0

SM,g((R
−1
ε )∗φ) =

= −1

2

∫

M

dvolgT
ij(∇irj +∇jri) + (· · · )︸ ︷︷ ︸

∼
EL

0

∼
EL

2

∫

M

dvolg(∇iT ij)rj .

In the last step we integrated by parts and used that r vanished near ∂M . Since the
computation (302) holds for any r supported away from ∂M , we get ∇iT ij ∼

EL
0.

�

Definition 3.21. Given a covariant classical field theory on a Riemannian manifold
(M, g), we say that a vector field r ∈ X(M) is a “source symmetry” (or “spacetime
symmetry,” or “horizontal symmetry”) if for any n-dimensional submanifold N ⊂
M , possibly with boundary, one has

(304)
d

dε

∣∣∣
ε=0

SRε(N),g((R
−1
ε )∗φ) = 0,

where Rε is the flow of r in time ε, in a neighborhood of N .62

Equivalently, r is a source symmetry if v = Lr ∈ Xloc(Fields) is a symmetry in
the sense of Definition 3.6, with Λ = ιrL.

For instance, in Example 3.16, constant vector fields on Rn are source symmetries
for the massive scalar field theory.

Definition 3.22. We call an infinitesimal symmetry (258) a “target symmetry”
(or “vertical symmetry”) if it has the form

(305) φ(x) 7→ φ(x) + εv(φ(x)),

with v not depending on derivatives of the field, and if it is a symmetry in the sense
of (260).

For instance, constant shift of the field in Example 3.15 is a target symmetry.
More generally, in the sigma model (251), a Killing vector field on the target (in-
finitesimal isometry) gives rise to a target symmetry (305).

62Note that in (304) the metric is not pushed forward by the flow in the r.h.s. If it were, the
property would hold automatically for any vector field r by covariance (235).
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Lemma 3.23. Let r be a vector field on M . Then r source symmetry of the theory
if and only if the expression

(306) J ir : = T ijrj

is a conserved current, i.e.,

(307) ∇iJ ir ∼
EL

0

(or, in coordinate-free language, divdvolJr ∼
EL

0).

Proof. Assume that r is a source symmetry. Applying covariance relation (235)
with m = R−1

ε : Rε(N)→ N to (304), we have

(308)
d

dε

∣∣∣
ε=0

SN,R∗εg(φ) = 0.

By (298), this means

(309) −
∫

N

dvolg T ij∇irj︸ ︷︷ ︸
∇i(T ijrj)−(∇iT ij)rj

= 0

Since ∇iT ij ∼
EL

0 and since (309) holds in particular for any small disk N in M , we

infer that

(310) ∇i(T ijrj) ∼
EL

0

everywhere on M .
The converse is proven by reversing the argument: conservation of J ir implies

(308), which implies (by covariance) the source symmetry property of r. �

In particular, (307) can be interpreted as follows: T converts source symmetries
of the theory into conserved currents:

(311) r → Jr = 〈T, r〉.
We remark that the conserved current 〈T, r〉 does not generally coincide with the

conserved current associated with the source symmetry r by the Noether theorem,
see Example 3.28 below. I think they are

always equivalent
though?

Lecture 14,
9/23/2022

Example 3.24 (T for the free massive scalar field). Consider the free massive
scalar field (Example 3.2). The variation of the action w.r.t. metric is

(312) δgSM,g(φ) = SM,g+δg(φ)− SM,g(φ) mod (δg)2 =

= δg

∫

M

(1

2
(g−1)ij∂iφ∂jφ+

m2

2
φ2
)

︸ ︷︷ ︸
L

√
det(g)dnx︸ ︷︷ ︸
dvolg

=

∫

M

1

2

(
− (g−1)ikδgkl(g

−1)lj
)
∂iφ∂jφ

√
det(g)dnx+

+ L
1

2
(g−1)klδgkl

√
det(g)dnx

= −1

2

∫

M

√
det(g)dnx δgij

(
∂iφ∂jφ− (g−1)ijL

)

︸ ︷︷ ︸
T ij

.
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Thus, the Hilbert stress-energy tensor is:

(313) T = T ij ∂i · ∂j =

(
∂iφ∂jφ− (g−1)ij

(1

2
∂kφ∂

kφ+
m2

2
φ2
))

∂i · ∂j ,

where the indices are raised using the metric, e.g., ∂iφ : = (g−1)il∂l. In a coordinate-
free language, one has

(314) T = (dφ)# · (dφ)# − g−1

(
1

2
〈dφ, dφ〉)g−1 +

m2

2
φ2

)
,

where (· · · )# is the bundle map T ∗M → TM provided by the metric g (“index-
raising”).

We remark that the Hilbert stress-energy tensor we computed coincides (for
M = Rn) with the canonical stress-energy tensor we found in Example 3.16: (313)
coincides with (293) (upon raising an index). However, in more general classical
field theories it does not happen.

Example 3.25. For the sigma model with target potential (Example 3.5, (255)),
the Hilbert stress-energy tensor is
(315)

T = T ij∂i·∂j =

(
hab(Φ)∂iΦa∂jΦb − (g−1)ij

(
1

2
hab(Φ)〈dΦa, dΦb〉g−1 − V (Φ)

))
∂i·∂j ,

by a computation similar to (312).

Example 3.26 (T in the Yang-Mills theory). Consider the Yang-Mills theory (Ex-
ample 3.3). The variation of the action
(316)

SM,g(A) =
1

2

∫

M

〈FA ∧, ∗FA〉 =
1

4

∫

M

√
det(g)dnx (g−1)ik(g−1)jl〈(FA)ij , (FA)kl〉

with respect to the metric. The computation is similar to (312) and yields

(317) T = T ij∂i · ∂j =

(
〈F ik, F jk〉 −

1

4
(g−1)ij〈Fkl, F kl〉

)
∂i · ∂j

where F : = FA the curvature of the connection.

Example 3.27 (T in Chern-Simons theory). Consider Chern-Simons theory (Ex-
ample 3.4). Since the action (248) does not depend on the metric, Hilbert stress-
energy tensor (300) automatically vanishes:

(318) T = 0.
improve the result

We remark that the canonical (rather than Hilbert) stress-energy tensor (293) for
Chern-Simons theory on R3, is nonzero. Seen as an element of Ω2(M)⊗C∞(M) Ω1(M)
and then projected to 3-forms (i.e. skew-symmetrized), it is

(319) [Tcan]Ω3 = −〈A,FA〉.
This expression is not zero on the nose, but vanishes modulo EL.

Example 3.28 (Noether current for source symmetries in Chern-Simons theory).
In Chern-Simons theory (and generally, in any metric-independent, i.e. topological
field theory) any vector field r ∈ X(M) is a source symmetry. The corresponding
Noether current is
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(320) JNoether
r = −ιLrα+ Λ︸︷︷︸

ιrL

=

= −ιLr (
1

2
〈δA,A〉) + ιr

(
1

2
〈A, dA〉+

1

6
〈A, [A,A]〉

)

= −1

2
〈LrA,A〉+ ιr

(
1

2
〈A, dA〉+

1

6
〈A, [A,A]〉

)

= −1

2
〈dιrA+�

��ιrdA,A〉+
1

2
〈ιrA, dA〉
︸ ︷︷ ︸

− 1
2 〈ιrA,dA〉+〈ιrA,dA〉

−
��

�
��1

2
〈A, ιrdA〉+

1

2
〈ιrA, [A,A]〉

= d(−1

2
〈ιrA,A〉) + 〈ιrA, dA+

1

2
[A,A]

︸ ︷︷ ︸
∼
EL

0

〉

So, it is a d-exact term plus a term vanishing modulo EL. On the other hand,
the conserved current associated to r by Lemma 3.23 is identically zero, since the
stress-energy tensor vanishes:

Jr = 0.

Note that although the currents JNoether
r and Jr are different on the nose, they are

equivalent in the sense of Definition 3.12.

3.4. Conformally invariant classical field theories.

Definition 3.29. We say that a classical field theory is “conformally invariant”
(or just “conformal”) if its action is invariant under Weyl transformations of the
metric:

(321) SM,g(φ) = SM,Ω·g(φ)

for any positive function Ω ∈ C∞>0(M).

Theorem 3.30. A classical field theory is conformally invariant if and only if its
Hilbert stress-energy tensor is traceless

(322) trT = 0.

Here the trace of the stress-energy tensor is understood as

(323) trT = trT •• = T ii = gijT
ij ∈ Ω0,0

loc(M × FieldsM )

Proof. Given a Weyl-invariant classical field theory, we have

(324) 0 =
d

dε

∣∣∣
ε=0

SM,(1+εω)g(φ) = −1

2

∫

M

dvolg T
ij(x)gij(x)︸ ︷︷ ︸

trT (x)

ω(x)

for any function ω ∈ C∞(M). Hence, trT = 0.
For the “only if” part: given that trT = 0 we have by the same computation

(read right-to-left) that S is invariant under infinitesimal Weyl transformations.
Since Weyl orbits are path connected, this implies the full Weyl-invariance property
(321). �

Weyl-invariance (321) implies (via covariance) that every conformal vector field
r ∈ conf(M) is a source symmetry. In particular, by Lemma 3.23,

(325) Jr : = 〈T, r〉
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is a conserved current for any conformal vector field M .
Given a conformally invariant classical field theory, the stress-energy tensor de-

pends on the metric (in addition to its dependence on fields) and is generally not
Weyl-invariant. However, it is Weyl-equivariant. More precisely, we have

(TΩg)
•• = Ω−1−n2 (Tg)

••,(326)

(TΩg)•• = Ω1−n2 (Tg)••(327)

where we are indicating the background metric as a subscript; n is the dimension
of the spacetime manifold M .

Indeed, to see (326), we compute

(328)

SΩ(g+δg) −1

2

∫ √
det(Ω g)︸ ︷︷ ︸

Ω
n
2
√

det(g)

dnxT ijΩgΩδgij

∥∥∥

Sg+δg −1

2

∫ √
det(g) dnxT ijg δgij

which immediately implies (326). We get (327) by contracting (326) with two copies
of Ωg.

In particular, (327) implies that for a 2-dimensional conformally invariant clas-
sical field theory the stress-energy tensor T•• is Weyl-invariant – depends only on
the conformal class of the metric g.

Example 3.31. Consider again the massive scalar field (Examples 3.2, 3.24), S =∫
1
2dφ ∧ ∗dφ+ m2

2 φ
2dvolg. Using (313), the trace of the stress-energy tensor is

(329) trT =
2− n

2
∂iφ∂iφ− n

m2

2
φ2.

The only way this expression can be identically zero is if n = 2 and m = 0. I.e.,
only the 2d massless scalar field theory is conformally invariant (among all scalar
field theories in different dimensions and with different masses).

Another way to see this is to look directly at the action where one performs a
Weyl transformation with the metric:

(330) SM,Ωg(φ) =

∫

M

Ω
n
2−1 1

2
dφ ∧ ∗gdφ+ Ω

n
2
m2

2
dvolg

It is independent of Ω (and coincides with SM,g(φ)) if and only if n = 2 (which
makes the first term Ω-independent) and m = 0 (which makes the second term
Ω-independent). Here we made use of the fact that the Hodge star behaves under
Weyl transformations as

(331) ∗Ωg α = Ω
n
2−p ∗g α,

where α ∈ Ωp(M) is any p-form.

Example 3.32. Similarly to the previous example, the sigma model (Example 3.5,
3.25) is conformally invariant if and only if n = 2 and the potential V (Φ) is zero.
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Example 3.33. Consider again the Yang-Mills theory (Examples 3.3, 3.26). The
trace of the stress-energy tensor (317) is

(332) trT =
n− 4

4
〈Fij , F ij〉

Thus, n-dimensional Yang-Mills theory is conformally invariant if and only if n = 4.
Another way to see this is via a computation similar to (330):

(333) SM,Ωg(A) =
1

2

∫

M

Ω
n
2−2〈FA ∧, ∗gFA〉.

This expression is independent of Ω (and coincides with SM,g(A)) if and only if the
power of Ω in the integrand vanishes, i.e., if n = 4.

Example 3.34. 3d Chern-Simons theory (Example 3.4) is conformally invariant
a fortiori: stress-energy tensor vanishes identically, in particular its trace vanishes.
Put another way, the model does not depend on metric, hence it is invariant under
Weyl transformations of metric.

3.5. 2d classical conformal field theory. Consider a conformal classical field
theory on a Riemann surface Σ.

3.5.1. Stress-energy tensor in local complex coordinates. Let us use local coordi-
nates x1 = x, x2 = y in which the conformal structure is represented by the metric
(dx)2 + (dy)2. Symmetry and tracelessness of the stress-energy tensor implies the
ansatz

(334) Tij =

(
T11 T12

T12 −T11

)

Thus, there are two independent components T11, T12 The conservation property
∂iTij ∼

EL
0 is tantamount to

∂1T11 + ∂2T12 ∼
EL

0,(335)

∂1T12 − ∂2T11 ∼
EL

0.(336)

Switching to local complex coordinates z, z̄, we have

(337) T•• = Tijdx
idxj = T11 (dx2 − dy2)︸ ︷︷ ︸

1
2 (dz2+dz̄2)

+T12 2dx dy︸ ︷︷ ︸
1
2i (dz

2−dz̄2)

=

=
T11 − iT12

2︸ ︷︷ ︸
Tzz

(dz)2 +
T11 + iT12

2︸ ︷︷ ︸
Tz̄z̄

(dz̄)2 = Tzz(dz)
2 + Tz̄z̄(dz̄)

2.

Thus, T is a sum of a quadratic differential and its complex conjugate. Note that
the the mixed term Tzz̄dzdz̄ does not appear. In fact, this property is equivalent
to conformal invariance, since63

(338) Tzz̄ =
1

4
trT =

conformal invariance
0.

63Since the metric is g = dz ·dz̄, the inverse metric is g−1 = 4∂z ·∂z̄ ; the matrix of the latter in

z, z̄-coordinates is (g−1)ij =

(
0 2
2 0

)
. Hence, trT = (g−1)ijTij = (g−1)zz̄Tzz̄ + (g−1)z̄zTz̄z =

2Tzz̄ + 2Tz̄z = 4Tzz̄ .
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Conservation property (335), (336) in the complex coordinates reads

(339) ∂z̄Tzz ∼
EL

0, ∂zTz̄z̄ ∼
EL

0.

So, modulo EL, Tzz is a holomorphic function and Tz̄z̄ is antiholomorphic. Thus,
modulo EL, the stress-energy tensor (337) is a sum of a holomorphic quadratic
differential

Tzz(z)(dz)
2

and its complex conjugate.

Remark 3.35. Note that holomorphic quadratic differentials arise

• as a parametrization of the cotangent space to the moduli space of complex
structures on a surface (cf. (188)),
• as a component of the stress-energy in a 2d conformal classical field theory.

These two occurrences are related: the variation δgSΣ,g(φ) is (for a fixed field φ) a
cotangent vector to the space of metrics, but due to Weyl-invariance it descends to
a cotangent vector to the space of conformal (or complex) structures on the surface.

Next, if the field φ satisfies the Euler-Lagrange equation, then for ψt ∈ Diff(Σ)
the flow of some (not necessarily conformal) vector field u on Σ, one has

d

dt

∣∣∣
t=0

SΣ,ψ∗t g
(φ) =

covariance

d

dt

∣∣∣
t=0

SΣ,g((ψ
−1
t )∗φ) =

EL
0

Thus, for φ satisfying EL, δgSΣ,g(φ) actually gives a cotangent vector to the
Teichmüller space

TΣ = {conformal structures}/{action by vector fields}
and hence to the moduli space of complex structures MΣ.Lecture 15,

9/26/2022
3.5.2. Conserved currents and charges associated to conformal symmetry. Given a
conformal vector field on Σ

r = u(z)∂z + ū(z̄)∂z̄ ∈ conf(Σ)

(which is automatically a source symmetry for a conformal field theory), the asso-
ciated conserved current (325) is

(340) Jr = 〈T, r〉 = uTzzdz + ūTz̄z̄dz̄

– a field-dependent 1-form on Σ, which is closed modulo EL. Indeed, we see from
(339) that

(341) d(uTzzdz) = ∂̄(uTzzdz) = ∂z̄(u(z)Tzz)dz̄ ∧ dz = u(z)(∂z̄Tzz)dz̄ ∧ dz ∼
EL

0

and similarly for the second term in (340).
Given a closed loop γ ⊂ Σ, one has the corresponding conserved charge is

(342) Cr,γ : =

∮

γ

Jr

and it is invariant under deformations of γ modulo EL – by Stokes’ theorem (as an
integral of a closed 1-form), or equivalently by Cauchy theorem (as an integral of a
holomorphic 1-form, plus complex conjugate).
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3.5.3. Example: massless scalar field on a Riemann surface. Fields are smooth
real-valued functions φ ∈ C∞(M). The action written in real local coordinates on
Σ reads

(343) S(φ) =

∫

Σ

√
det(g)dx ∧ dy 1

2
(g−1)ij∂iφ∂jφ.

Here g can be any metric withing the given conformal class (the combination√
det(g)(g−1)ij is Weyl-invariant).
Written in local complex coordinates z, z̄ on Σ, the action reads

(344) S(φ) =

∫

Σ

i

2
dz ∧ dz̄ 2∂zφ∂z̄φ.

To see this, it is sufficient to consider the Lagrangian density in (343) in the standard
real/complex coordinates on the standard R2 ' C, since this locally describes the
general surface. In the standard metric one has dz ∧ dz̄ = (dx+ idy)∧ (dx− idy) =
−2idx∧ dy, thus dx∧ dy = i

2dz ∧ dz̄. Also, one has 1
2 ((∂xφ)2 + (∂yφ)2) = 2∂zφ∂z̄φ.

This proves (344).
The Euler-Lagrange equation reads

(345) ∆φ = 0

or equivalently, in complex coordinates,

(346) ∂z∂z̄φ = 0.

I.e., φ satisfies EL if and only if it is a harmonic function on Σ. We remark that
although the Laplacian

∆ =
1√

det(g)
∂i
√

det(g)(g−1)ij∂j

itself is not a Weyl-invariant operator on a surface (it changes under Weyl transfor-
mations as ∆Ωg = Ω−1∆g on a 2d manifold), the equation (345) is Weyl-invariant.

The components of the stress-energy tensor in complex coordinates read

(347) Tzz = (∂zφ)2, Tz̄z̄ = (∂z̄φ)2.

4. 2d quantum free massless scalar field
To edit

In this section our goal is to study the 2d massless scalar field as a quantum
conformal field theory (in Euclidean signature): the space of states for the circle H,
correlation functions on the plane, partition function of a torus, Virasoro algebra
action on H and the operator product expansions.

The logic of the approach is as follows:

(i) We start by constructing the quantum theory on a Minkowski cylinder (via
canonical quantization of the classical theory) – along the way we identify the
space of states for the circle. To start ourselves on this way, we start with the
quantization of a simple 1d system – the harmonic oscillator; as we will see,
the free scalar field on a cylinder can be represented (via Fourier transform
on S1) as a tensor product of a family of harmonic oscillators.

(ii) We switch from Minkowski to Euclidean metric on the cylinder by Wick’s
rotation. Then we identify – via the exponential map – the Euclidean cylinder
with the punctured complex plane C∗. At this point we are ready to calculate
correlation functions of several point observables on C.
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4.1. A warm-up: harmonic oscillator.

4.1.1. Harmonic oscillator as a classical mechanical system. In classical mechanics,
in Hamiltonian formalism, the harmonic oscillator is a system with the phase space

(348) Φ = T ∗R

seen as a symplectic vector space, with symplectic form

(349) ωsymp = dp ∧ dx
where x is the coordinate on R and p – the coordinate on the cotangent fiber. The
symplectic form equips the algebra of smooth functions C∞(Φ) with the Poisson
bracket

(350) {−,−} : Φ× Φ→ Φ

– a skew-symmetric bilinear (over R) operation which is a derivation in either slot
and satisfies the generating relation

(351) {p, x} = 1.

A more geometric definition of the Poisson bracket (valid for any symplectic
manifold (Φ, ωsymp)) is:

• For each function f ∈ C∞(Φ), there is the corresponding Hamiltonian
vector field Xf ∈ X(Φ) uniquely characterized by the property

(352) ιXfωsymp = −df.
• The Poisson bracket is defined by

(353) {f, g} : = Xf (g)

for any f, g ∈ C∞(Φ).

Back to the harmonic oscillator: the phase space Φ is equipped with the function

(354) H =
p2

2
+ ω2x

2

2
∈ C∞(Φ)

– the classical Hamiltonian; here ω > 0 is a parameter of the system (“frequency”).
The function H generates the Hamiltonian vector field

(355) XH = {H,−} = p
∂

∂x
− ω2x

∂

∂p
.

Hamilton’s equations of motion of the system is the equation of an integral curve
of the vector field XH on Φ. In the case of the oscillator, they are:

ẋ = {H,x} = p,(356)

ṗ = {H, p} = −ω2x.(357)

Solving this system is straightforward: one combines this system to the single
equation on x

(358) ẍ+ ω2x = 0

which has general solution x(t) = A cos(ωt) + B sin(ωt) – oscillatory motion with
frequency ω and A,B arbitrary parameters. Then one uses (356) to find p(t).

In Lagrangian mechanics, the same system is described by space of fields

(359) Fields[t0,t1] = Map([t0, t1],R)
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– maps from the source (or “worldline”) interval [t0, t1] to the target R (the base of
the cotangent bundle (348)). The action for a function x(τ) is

(360) S[x(τ)] =

∫ t1

t0

dτ

(
ẋ2

2
− ω2

2
x2

)

The corresponding Euler-Lagrange equation is exactly the equation (358). Thus,
indeed, the Euler-Lagrange equations for the action (360) are equivalent to the
Hamilton’s equations corresponding to the Hamiltonian (354).

4.1.2. Correspondence between Lagrangian and Hamiltonian descriptions of classi-
cal mechanics. Stepping aside from the harmonic oscillator for the moment, con-
sider the general classical mechanical system in Lagrangian formalism, with fields

(361) Fields[t0,t1] = Map([t0, t1], X),

with X some target manifold, and with action functional

(362) S[x(τ)] =

∫ t1

t0

dτ L(x(τ), ẋ(τ)),

where

(363) L(x, v) ∈ C∞(TX)

is some function on the tangent bundle of the target X; here v ∈ TxX is a tangent
vector. Then the Euler-Lagrange equation is

(364)
∂L(x, ẋ)

∂xi
− d

dt

(
∂L(x, v)

∂vi

∣∣∣
v=ẋ

)
= 0

– an ODE on the map x : [t0, t1]→ X; here we use local coordinates xi on X.
The same system can be described as a Hamiltonian system with the phase space

(365) Φ = T ∗X

– the cotangent bundle of the target X equipped with the canonical symplectic form
of the cotangent bundle, ωsymp = dpi∧dxi. The Hamiltonian function H ∈ C∞(Φ)
is obtained as the Legendre transform of the Lagrangian L, trading velocity v for
momentum p:

(366) H(x, p) : = vipi − L(x, v),

where v = v(x, p) determined implicitly by the equation

(367) pi =
∂L(x, v)

∂vi
.

For the Legendre transform to exist and be invertible, one needs L(x, v) to be a
convex function in v (for any x).

The key observation is that the Hamiltonian equations generated by H and
Euler-Lagrange equations determined by the action (362) are equivalent, provided
that the Lagrnagian L and the Hamiltonian H are linked by the Legendre transform
(366), (367). Indeed, the Hamiltonian equations read

(368) ẋi =
∂H

∂pi
=

(366)
vi +
�
�
�

pj
∂vj

∂pi
−

�
�
�
��∂vj

∂pi

∂L

∂vj︸︷︷︸
pj

= vi,



86 PAVEL MNEV

ṗi = −∂H
∂xi

= −pj
∂vj

∂xi
+
∂L

∂xi

∣∣∣
p=const

=
�
�
�
�

−pj
∂vj

∂xi
+
( ∂L
∂xi

∣∣∣
v=const

+

�
�
�
��∂L

∂vj︸︷︷︸
pj

∂vj

∂xi

)
=

∂L

∂xi
.

Substituting (367) in the second equation above, we get the Euler-Lagrange equa-
tion (364).

Remark 4.1. Legendre transform admits the following geometric description. If l(v)
is convex64 smooth function on a vector space V 3 v then its Legendre transform
h(p) is a smooth convex function on V ∗ 3 p with the property that the Lagrangian
submanifold V ⊕ V ∗ that is the graph of dl (here we think of V ⊕ V ∗ as the
cotangent bundle T ∗V with the standard symplectic form dpi∧dvi) is also described
as the graph of dh (where we think of V ⊕V ∗ as T ∗(V ∗) with symplectic structure
dvi ∧ dpi):
(369)

graph(dl) =

{
(v, p) | pi =

∂l

∂vi

}
= graph(dh) =

{
(v, p) | vi =

∂h

∂pi

}
⊂ V⊕V ∗

Put another way, the Lagrangian submanifold (369) has l as its generating function
on V and h as its generating function on V ∗. If l is given, the property (369)
determines h uniquely up to a possible shift by a constant function.FINISH

In (366), (367), the Legendre transform is done pointwise on X, with V = TxX,
V ∗ = T ∗xX, l(v) = L(x, v) and h(p) = H(x, p) for any point x ∈ X.

4.1.3. Preparing for canonical quantization: Weyl algebra and Heisenberg Lie alge-
bra.

Definition 4.2. Let (V, ωsymp) be a (real) symplectic vector space and let VC =
C ⊗ V be its complexification. One defines the Heisenberg Lie algebra associated
to (V, ωsymp) as the Lie ∗-algebra

(370) Heis(V, ωsymp) = VC ⊕ C · K
where K is a central element and one has the commutators

(371) [û, v̂] = −iωsymp(u, v) · K
for u, v ∈ V . We put a hat on an element of V when we think of it as an element
of Heis. Elements v̂ and K are understood as self-adjoint.

Thus, Heisenberg Lie algebra is a central extension of VC seen as an abelian Lie
algebra,

(372) C→ Heis(V, ωsymp)→ VC,

with the Lie 2-cocycle of V defining the central extension being ωsymp.

Theorem 4.3 (Stone-von Neumann). Assume that V is finite-dimensional. Then
there exists a unique (up to isomorphism) irreducible unitary representation of
Heis(V, ωsymp).

“Unitary” here means that the representation is on a Hilbert space H and for
each v ∈ V , v̂ is represented by a hermitian operator.

64Convexity implies that the Lagrangian submanifold (369) is projectable onto both V and
V ∗.
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Definition 4.4. Weyl algebra of the symplectic vector space (V, ω) is defined as
the following associative ∗-algebra over the ring of formal power series C[[~]]:

(373) Weyl(V, ωsymp) : = C[[~]]⊗ UHeis(V, ωsymp)/(K = ~)

– the universal enveloping of the Heiseberg Lie algebra (with scalars extended to
formal power series), with the central element K identified with the scalar ~. The
involution (hermitian conjugation) maps the Heisenberg generators v̂ to themselves.

Here we think of the Planck constant ~ as an infinitesimal formal parameter.

Example 4.5 (Main example). Consider V = T ∗Rn with coordinates x1, . . . , xn
on the base Rn and dual fiber coordinates p1, . . . , pn, with standard symplectic form

(374) ωsymp =
∑

i

dpi ∧ dxi.

The corresponding Weyl algebra is generated by elements x̂i, p̂i, i = 1, . . . , n, sub-
ject to relations

(375) [x̂i, x̂j ] = 0, [p̂i, p̂j ] = 0, [p̂i, x̂
j ] = −i~ δji , ∀ 0 ≤ i, j ≤ n

– the “canonical commutation relations.”
The standard representation of this algebra – the Schrödinger representation –

is on the Hilbert space H = L2
C(Rn) of complex-valued square-integrable function

on Rn, with hermitian structure

〈ψ1, ψ2〉 : =

∫

Rn
dnx ψ1(x)ψ2(x)

for ψ1, ψ2 two square-integrable functions on Rn. The generators x̂i, p̂i of the Weyl
algebra act on H as the following hermitian operators:

(376) x̂i : ψ(x) 7→ xiψ(x), p̂j : ψ(x) 7→ −i~ ∂

∂xi
ψ(x)

I.e. x̂i acts as a multiplication operator (by a coordinate function) and p̂i acts as a
derivation.65

In particular, using this representation, one can identify the Weyl algebra of
T ∗Rn with the algebra of polynomial differential operators in n variables.

4.1.4. Canonical quantization of the harmonic oscillator. The idea of canonical
quantization is to start with a classical system in Hamiltonian formalism with
phase space Φ = T ∗Rn and lift (or “quantize”) the Hamiltonian function H(x, p)

to an element Ĥ = H(x̂, p̂) of the corresponding Weyl algebra – the quantum
Hamiltonian.

By quantizing/lifting a polynomial function f on Φ we mean choosing a preimage
of f under the “dequantization map”

(377) π : Weyl(Φ)
mod ~−−−−→ C∞poly(Φ).

where C∞poly(Φ) = Sym•Φ∗ is the algebra of polynomial functions on Φ. Put another

way, we take a polynomial function f(x, p) ∈ C∞poly(Φ) and replace xi, pj with

corresponding generators of the Weyl algebra x̂i, p̂j , where we are allowed to add
any terms proportional to ~k for k > 0. The possibility to add such terms reflects the
ordering ambiguity. E.g., xp = px as functions on Φ = T ∗R, but x̂p̂ = p̂x̂+i~ in the

65These operators are unbounded on L2
C(Rn).
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Weyl algebra; so both x̂p̂ and p̂x̂ should be considered as legitimate quantizations
of the monomial xp, and these quantizations are different.

A systematic approach to lifting is to choose a “quantization map” (or “operator
ordering”).

Definition 4.6. We call a “quantization map” a C-linear map

(378) q : C∞poly(Φ)→Weyl(Φ)

which satisfies π ◦ q = id, where π is the map (377).

Note that q is not required to be an algebra morphism; in fact, it cannot be one.

Example 4.7 (Weyl quantization map). Consider the map q : C∞poly(Φ)→Weyl(Φ)

which sends a monomial in xi, pj to the corresponding monomial in x̂i, p̂j , where
one averages over all possible orderings of the factors (i.e. for a monomial of degree
d, one averages over the symmetric group Sd). Then one extends q to general poly-
nomials by linearity. One calls this map q the Weyl (or “symmetric”) quantization
map.

In the case of harmonic oscillator, we lift the coordinate function x, p on the
phase space Φ = T ∗R to the generators of the Weyl algebra x̂, p̂ satisfying the
relation

(379) [p̂, x̂] = −i~.
We lift the Hamiltonian function to the element

(380) Ĥ =
p̂2

2
+ ω2 x̂

2

2

of the Weyl algebra.
Disclaimer. In the discussion below, we will be thinking of ~ as a small positive

real number (rather than a formal parameter), and formulae involving ~ should be
thought of as a family over ~ ∈ R>0.

In the Schrödinger representation, the Weyl algebra is acting on the Hilbert
space

(381) H = L2
C(R),

with

(382) x̂ = x·, p̂ = −i~ ∂

∂x
.

The quantum Hamiltonian (380) is then represented as the differential operator

(383) Ĥ = −~2

2

∂2

∂x2
+
ω2

2
x2.

To construct the evolution operator of the quantum system

(384) U(t) = e−
itĤ
~ ∈ U(H),

where U(H) is the unitary group, one needs to find the eigenvalues and eigenvectors

(as square-integrable functions) of Ĥ. I.e., one is looking for all pairs ψ 6= 0 ∈
L2
C(R), E ∈ R such that

(385)

(
−~2

2

∂2

∂x2
+
ω2

2
x2

)
ψ(x) = Eψ(x).
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This is a well-known instance of a singular Sturm-Liouville problem. The answer
is:

Theorem 4.8. The operator (383) admits a complete orthonormal system of eigen-
vectors {ψn}n≥0 in L2(H) of the form

(386) ψn = Cne
−ωx2

2~ Hn

(√
ω

~
x

)

where

(387) Hn(x) : = (−1)nex
2 dn

dxn
e−x

2

are Hermite polynomials; Cn =
(
ω
π~
) 1

4 (2nn!)−
1
2 is a normalization constant. The

eigenvalue of Ĥ corresponding to ψn is

(388) En = ~ω(n+
1

2
).

The first few Hermite polynomials are:

n Hn(x)
0 1
1 2x
2 4x2 − 2
3 8x3 − 12x
4 16x4 − 48x2 + 12
...

...

The evolution operator (384) is then

(389)

U(t) : H → H
ψ 7→

∑

n≥0

e−
iEnt

~ 〈ψn, ψ〉ψn =
∑

n≥0

e−i(n+ 1
2 )ωt〈ψn, ψ〉ψn

4.1.5. Creation/annihilation operators. Instead of directly looking for eigenvectors
and eigenvalues of the operator (383), one can obtain the result of Theorem 4.8 by

exploiting the hidden algebraic structure of the operator Ĥ (specific to the harmonic
oscillator case).

Let us introduce two new elements of the Weyl algebra66 – special complex linear
combinations of x̂, p̂:

â =

√
ω

2~
(x̂+

i

ω
p̂),(390)

â+ =

√
ω

2~
(x̂− i

ω
p̂).(391)

Operators â, â+ are called the “annihilation operator” and “creation operator,”
respectively. The are hermitian conjugates of one another and satisfy the commu-
tation relation

(392) [â, â+] = 1

66More pedantically, here we extend the ring of scalars in the Weyl algebra by tensoring it
with C[~1/2, ~−1/2].
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as a consequence of the canonical commutation relation (379). The inverse formulae
to (390), (391) are:

x̂ =

√
~

2ω
(â+ + â),(393)

p̂ = i

√
~ω
2

(â+ − â).(394)

The quantum Hamiltonian (383) expressed in terms of â, â+ is

(395) Ĥ = ~ω
1

2
(â+â+ ââ+) = ~ω

(
â+â+

1

2

)

The relation (392) implies the commutation relations between Ĥ and â, â+:

[Ĥ, â] = −~ωâ(396)

[Ĥ, â+] = ~ωâ+(397)

This implies that if in a representation of the Weyl algebra on a Hilbert space

H, a vector ψ ∈ H is an eigenvector of Ĥ with eigenvalue E, then

Ĥ(âψ) = (E − ~ω)(âψ),(398)

Ĥ(â+ψ) = (E + ~ω)(â+ψ).(399)

Thus, â, â+ take eigenvectors of Ĥ to eigenvectors; applying â+ raises the eigen-
value of by ~ω, while â lowers the eigenvalue by ~ω.Lecture 16,

9/28/2022 We can construct an irreducible unitary representation Hosc of the Weyl algebra
as follows: let |0〉 ∈ Hosc be the “vacuum vector” – a vector with the property

(400) â|0〉 = 0.

We will assume that |0〉 has norm 1 in Hosc. From (395) we infer that

(401) Ĥ|0〉 =
~ω
2
|0〉.

We then introduce the vectors |n〉 ∈ Hosc with n = 1, 2, 3, . . . as

(402) |n〉 : = αn(â+)n|0〉
where αn is a normalization factor, chosen in such a way that the vectors |n〉 are
of norm 1. From (399) we infer that

(403) Ĥ|n〉 =
(
n+

1

2

)
~ω|n〉

The representation space Hosc of the Weyl algebra is then

(404) Hosc =
{∑

n≥0

cn|n〉
∣∣∣ cn ∈ C,

∑

n≥0

|cn|2 <∞
}
.

One can calculate the norms/inner products of vectors in Hosc from the fact that
â, â+ are Hermitian conjugate, using the commutation relation (392). E.g., one has

(405)
〈
â+|0〉, â+|0〉

〉
=
〈
|0〉, ââ+|0〉

〉
= 〈0| ââ+

︸︷︷︸
â+â+1

|0〉 = 〈0|â+ â|0〉︸︷︷︸
0

+ 〈0|0〉︸︷︷︸
|| |0〉 ||2=1

= 1
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Here we used the Dirac’s notation: a covector in (Hosc)∗ dual to the vector |ψ〉 ∈
Hosc is denoted 〈ψ|; the inner product

〈
|ψ1〉, |ψ2〉

〉
Hosc

of two vectors in Hosc is

also denoted 〈ψ1|ψ2〉.
More generally, using the same strategy – commuting â to the right of the word

of creation/annihilition operators – one can show the following.

Lemma 4.9. For n,m = 0, 1, 2, . . ., one has

(406) 〈0|âm(â+)n|0〉 = n! δnm.

Proof. First note that we have the commutation relation

(407) [â, (â+)n] =

n∑

k=1

(â+)k−1 [â, â+]︸ ︷︷ ︸
1

(â+)n−k = n(â+)n−1.

Using it, we find

(408) â(â+)n|0〉 = [â, (â+)n]|0〉+ (â+)n â|0〉︸︷︷︸
0

= n(â+)n−1|0〉.

Thus, for m ≤ n, we have

(409) (â)m(â+)n|0〉 = (â)m−1â(â+)n|0〉 = (â)m−1n(â+)n−1|0〉 =

= (â)m−2nâ(â+)n−1|0〉 = (â)m−2n(n− 1)(â+)n−2|0〉
= · · · = n(n− 1) · · · (n−m+ 1)(â+)n−m|0〉

In particular, for m = n we have

(410) (â)n(â+)n|0〉 = n!|0〉,
which implies (406) for m = n.

If m < n, we have

(411) 〈0|âm(â+)n|0〉 =
n!

(n−m)!
〈0|(â+)n−m|0〉 = 0,

where we use the fact that 〈0|â+ is the covector dual to â|0〉 and thus vanishes.
Likewise, if m > n, we have

(412) 〈0|âm(â+)n|0〉 = n!〈0| âm−n|0〉︸ ︷︷ ︸
0

= 0.

�

In particular, vectors (402) with n = 0, 1, 2, . . . form an orthonormal basis for H
if we set the normalization factors to be

(413) αn =
1√
n!
.

In this basis, the operators â, â+ act as

(414) â|n〉 =
1√
n!

[â, (â+)n]︸ ︷︷ ︸
n(â+)n−1

|0〉 =
√
n |n− 1〉
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and

(415) â+|n〉 =
1√
n!︸︷︷︸

√
n+1√

(n+1)!

(â+)n+1|0〉 =
√
n+ 1 |n+ 1〉.

By Stone-von Neumann theorem, there is an isomorphism of representations of
the Weyl algebra

(416) Hosc ' L2
C(R)

– the “oscillator representation” and Schrödinger representation. Under this iso-
morphism vectors |n〉 ∈ Hosc correspond to vectors (386). In fact, one can obtain
the formula (386) from (402). Indeed: in Schrödinger representation, the operators
â, â+ are

â =
1√
2

(
y +

∂

∂y

)
=

1√
2
e−

y2

2
∂

∂y
e
y2

2 ,(417)

â+ =
1√
2

(
y − ∂

∂y

)
=
−1√

2
e
y2

2
∂

∂y
e−

y2

2 ,(418)

where we denoted y =
√

ω
~ x. Thus, the vacuum vector |0〉 in Schrödinger repre-

sentation is a function ψ0 satisfying the first-order ODE

(419) âψ0 = 0 ⇔ ∂

∂y

(
e
y2

2 ψ0(y)

)
= 0 ⇔ ψ0(y) = C0e

− y
2

2

with C0 a constant (which can be chosen to normalize ψ0 to unit norm). Vectors
|n〉 in Schrödinger representation are then

(420) ψn(y) = αn(â+)n|0〉 = αn(−1)n2−
n
2 e

y2

2
∂n

∂yn

(
e−

y2

2 ψ0(y)

)
=

= 2−
n
2 C0αne

− y
2

2

(
(−1)ney

2 ∂n

∂yn
e−y

2

)

︸ ︷︷ ︸
Hn(y)

.

This is exactly the formula (386).
In terms of the basis {|n〉} in the Hilbert space Hosc, the evolution operator

(389) acts as

(421) U(t) = e−
iĤt
~ :

∑

n≥0

cn|n〉 7→
∑

n≥0

cne
−i(n+ 1

2 )ωt|n〉.

Remark 4.10. The partition function of the harmonic oscillator on the circle of
length t (cf. Example 1.10) is
(422)

Z(S1
t ) = trHoscU(t) =

∑

n≥0

e−i(n+ 1
2 )ωt =

e−
iωt
2

1− e−iωt =
1

e
iωt
2 − e− iωt2

=
1

2i sin ωt
2

.

The Euclidean version of the partition function is obtained by the Wick rotation
t = −iTEucl with TEucl > 0. In this version, the sum over eigenvalues in (422)
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becomes absolutely convergent and one has

(423) ZEucl(S
1
TEucl

) : = Z(S1
t=−iTEucl

) =
∑

n≥0

e−(n+ 1
2 )ωTEucl =

1

2 sinh ωTEucl

2

.

Remark 4.11. The algebra of creation/annihilation operators (392) admits another
useful representation (unitarily isomorphic to Hosc and to the Schrödinger repre-
sentation), on the Segal-Bargmann space, constructed as follows. Consider the
following hermitian inner product on the space Hol(C) of holomorphic functions on
C:

(424) 〈f, g〉SB =
1

π

∫
i

2
dz ∧ dz̄ e−|z|2f(z)g(z).

Then the Segal-Bargmann space is defined as

(425) HSB : = {f ∈ Hol(C) | 〈f, f〉SB <∞}.
In this representation, creation and annihilation operators act as

(426) â =
∂

∂z
, â+ = z·

– holomorphic derivative and multiplication operator by the holomorphic coordi-
nate, respectively; these operators are hermitian conjugate of one another w.r.t.
the inner product (424). The vacuum vector |0〉 can be identified with the function
1 ∈ HSB; then the vectors |n〉 are identified with 1√

n!
zn ∈ HSB. The Hamiltonian

Ĥ = ~ω(z ∂
∂z + 1

2 ), up to normalization and a shift, is the Euler vector field and
thus counts the monomial degree of a function in z.

Normal ordering. Normal ordering is an operation acting on linear combination

words in the creation-annihilation operators â, â+ which reshuffles the letters in
each word, putting annihilation operators â to the right and creation operators â+

to the left. Normal ordering applied to a word W is denoted : W :. For instance,
one has

(427) : ââ+ââ+ := â+â+ââ.

We stress that normal ordering is an operation on words – it does not descend to
the Weyl algebra.

An important property of normal ordering is that if O is a sum of words, each
containing at least one creation or annihilation operator (i.e. no constant summand
in O), then one has

(428) 〈0| : O : |0〉 = 0.

This property is obvious: for each normally ordered word, the expression (428) will
contain a term â|0〉 and/or a term 〈0|â+, both of which vanish.

In particular, if we represent the Hamiltonian of the harmonic oscillator by the

combination of words Ĥ = ~ω 1
2 (ââ+ + â+â), then we have

(429) : Ĥ := ~ωâ+â.

– which differs from (395) by ~ω
2 . In particular, one has

(430) : Ĥ : |n〉 = ~ωn|n〉.
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In particular, the vacuum vector |0〉 is has zero eigenvalue w.r.t. the normally

ordered Hamiltonian : Ĥ :,

(431) : Ĥ : |0〉 = 0.

4.2. Free massless scalar field on Minkowski cylinder.

4.2.1. Lagrangian formalism. Consider the massless scalar field on the cylinder Σ =
R × S1 with Minkowski metric g = (dt)2 − (dσ)2. Here t (time) is the coordinate
on R and σ ∈ S1 = R/2πZ is the “spatial coordinate.”

Σ

t

σ

Figure 21. Cylinder.

Fields of the theory are smooth real functions φ(t, σ) on Σ and the action func-
tional is

(432) S(φ) =
κ

2

∫

Σ

dt dσ(φ̇2 − (∂σφ)2)

where dot means the derivative in t. We put a normalization factor κ in the
definition of the action – we will fix it later.

The space of fields of the theory Fields = Map(R × S1,R) can be thought of as
Map(R,Map(S1,R)). Thus, one can think of the field theory on the cylinder Σ as
classical mechanics on the worldline R with target

(433) X = Map(S1,R) = C∞(S1) 3 φ(σ)

and Lagrangian

(434) L =
κ

2

∮

S1

dσ(φ̇2 − (∂σφ)2)

– a function on TX (cf. (363)). We understand φ(σ)67 as a point in the base of

TX and φ̇(σ) as a tangent vector to X at φ(σ).
The Euler-Lagrange equation of the theory is the wave equation

(435) φ̈− ∂2
σφ = 0.

Its solution can be though of as a path in X parametrized by t ∈ R.
Let us expand φ(σ) in the Fourier series

(436) φ(σ) =
∑

n∈Z
φne

inσ.

Since φ is real-valued, the Fourier coefficients (or “modes”) φn ∈ C must satisfy the
reality condition φ−n = φn. A path in X is then specified by a collection of Fourier
modes φn(t) as functions of t ∈ R.

67Here we mean the function on S1, not its value at some particular σ.
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In terms of Fourier modes, the Lagrangian (434) is

(437) L =
κ

2
2π
∑

n∈Z

(
φ̇nφ̇−n − n2φnφ−n

)

4.2.2. Hamiltonian formalism. In Hamiltonian formalism, the phase space of the
system is

(438) Φ = T ∗X,

with X as in (433). Since X is a linear space, we identify T ∗X with X × T ∗X –
pairs of a function φ(σ) on S1 and a distribution π(σ) on S1 (the “momentum”).
The canonical symplectic form on Φ is

(439) ωsymp =

∮

S1

dt δπ(σ) ∧ δφ(σ).

The corresponding Poisson brackets between φ(σ), π(σ′) (thought of as coordinate
functions on Φ) are

(440) {φ(σ), π(σ′)} = −δper(σ − σ′), {φ(σ), φ(σ′)} = 0, {π(σ), π(σ′)} = 0,

where δper is the periodic Dirac delta-distibution on S1, δper(σ) =
∑

n∈Z
δ(σ + 2πn)

(where on the right δ are the usual Dirac delta-distributions on R).
To find the Legendre transform of the Lagrangian (434), we first find the relation

between momenta and velocities:

(441) π(σ) =
δL

δφ̇(σ)
= κφ̇(σ),

cf. (367). Then we find the Hamiltonian (cf. (366)) as

(442) H =

∮

S1

dσπ(σ)φ̇(σ)− L =

∮

S1

dσ

(
π(σ)2

2κ
+
κ

2
(∂σφ)2

)
,

where in the second step we expresses velocities in terms of momenta using (441).
The Hamiltonian equations generated by the Hamiltonian H are

(443) φ̇ =
1

κ
π, π̇ = κ∂2

σφ.

In particular, these equations imply the wave equation (435) for φ.

Remark 4.12. The components of the stress-energy tensor of the theory are

T00 = T11 =
κ

2
(φ̇2 + (∂σφ)2),(444)

T01 = T10 = κφ̇∂σφ(445)

We note that integrating T00 over {t} × S1 one gets

(446) H =

∮

S1

dσ T00

– the Hamiltonian (or “total energy”). Integrating T01 over {t} × S1 one gets

(447) P : =

∮

S1

dσ T01

– the “total momentum” of the system.
Modulo equations of motion, H and P do not depend on t – the position of

the spatial slice. One can infer this from Lemma 3.23: translations along R and
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rotations along S1 are source symmetries and yield conserved currents, Ti0 and
Ti1, hence the corresponding charges (fluxes through a spatial slice {t} × S1) are
conserved – independent of t modulo equations of motion.

Expanding the field φ(σ) and the momentum π(σ) in Fourier modes on S1, we
have

(448) φ(σ) =
∑

n∈Z
φne

inσ, π(σ) =
1

2π

∑

n∈Z
πne

inσ,

with reality conditions φ−n = φn and π−n = πn. Poisson brackets (440) correspond
to the following brackets between the modes:

(449) {φn, πm} = −δn,−m, {φn, φm} = 0, {πn, πm} = 0.

The Hamiltonian (442) written in terms of the parametrization of the phase
space by Fourier modes φn, πn is:

(450) H =
∑

n∈Z

1

2

1

2πκ
πnπ−n +

1

2
2πκn2φnφ−n.

At this point we want to fix the normalization factor κ to the value

(451) κ =
1

4π
.

Then we have

(452) H =
∑

n∈Z
πnπ−n +

1

4
n2φnφ−n = (π0)2 + 2

∑

n>0

(
|πn|2 +

1

4
n2|φn|2

)
.

Lecture 17,
9/30/2022 Similarly, the total momentum (447) is:

(453) P =
∑

n∈Z
inπ−nφn.

The Hamiltonian equations (443) spelled in terms of coordinates φn, πn on the
phase space read

(454) φ̇n = 2πn, π̇n = −n
2

2
φn.

As a consequence, φn satisfies the second-order ODE φ̈n + n2φn = 0 (cf. (358)).
Thus the system is a superposition of a collection of non-interacting subsystems:

variables (φ0, π0) describe a free particle of mass µ = 1
2 while variables (φn, πn) for

n 6= 0 describe a complex harmonic oscillator with frequency ωn = |n|.Explain
more/better?
Also: (φn, πn)
or (φn, π−n)?

Real oscillators. To get a better understanding of how the system breaks up into
a collection of harmonic oscillators (plus a free particle), it useful to rewrite it in

the real parametrization. Introduce the real variables φ
(1,2)
n , π

(1,2)
n , with n > 0,

related to complex variables φn, πn by

(455) φn = φ(1)
n + iφ(2)

n , πn =
1

2
(π(1)
n + iπ(2)

n ) for n > 0.

I.e., φ
(1,2)
n are the real/imaginary parts of φn, n > 0, and similarly for πn. The real

variables satisfy the Poisson brackets

(456) {φ(α)
n , π(β)

m } = δnmδαβ , {φ(α)
n , φ(β)

m } = 0, {π(α)
n , π(β)

m } = 0

for n > 0 and α, β ∈ {1, 2}. The Hamiltonian (452) in these variables reads
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(457) H = π2
0 +

∑

n≥1

2∑

α=1

(
(π

(α)
n )2

2
+
n2

2
(φ(α)
n )2

)

= Hfree particle, µ= 1
2

+
∑

n≥1

2∑

α=1

Hharmonic oscillator, ωn=n

The general solution of the Hamiltonian equations (443) is

φ(t, σ) =
∑

n 6=0

(
Ane

in(t+σ) +Bne
in(−t+σ)

︸ ︷︷ ︸
φn(t)einσ

)
+ Ct+D︸ ︷︷ ︸

φ0(t)

,(458)

π(t, σ) =
1

2π

(∑

n 6=0

in

2

(
Ane

in(t+σ) −Bnein(−t+σ)

︸ ︷︷ ︸
πn(t)einσ

)
+

C

2︸︷︷︸
π0(t)

)
,(459)

where An, Bn, C,D are arbitrary constants subject to the reality constraints

(460) A−n = An, B−n = Bn for n 6= 0, C,D ∈ R.

Remark 4.13. For the massive scalar field (242) on the Minkowski cylinder we can
repeat all the computations above, introducing the same parametrization of the
phase space by modes φn, πn. The Hamiltonian instead of (452) will then be

(461) H =
∑

n∈Z
πnπ−n +

1

4
ω2
nφnφ−n

with

(462) ωn =
√
n2 +m2

(with m the mass of the scalar field). Thus, the system is a collection of non-
interacting harmonic oscillators, one for each n ∈ Z, with n-th oscillator having
frequency (462).

m

n

ωn

0 1 2−1−2

Figure 22. Frequencies ωn of oscillators comprising the free mas-
sive scalar field.

In the massless limit m → 0, the frequencies become ωn → |n|. In particular,
the n = 0 oscillator in the limit becomes a free particle.

4.2.3. Aside: free particle. Since the free massless scalar field on a cylinder splits
into a family of harmonic oscillators and a single free particle (cf. (457)), we stop for
a moment to discuss the free particle, as a classical and as a quantum mechanical
system.
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The free particle moving on R is the Lagrangian formalism is defined by the
space of fields Fields = Map([t0, t1],R) with action functional

(463) S[x(t)] =

∫ t1

t0

dτ
µẋ2

2︸︷︷︸
L

,

where µ > 0 is a parameter – “mass” of the particle.
In the Hamiltonian formalism, the system is described by the phase space Φ =

T ∗R and the Hamiltonian

(464) H =
p2

2µ

(which is in particular the Legendre transform of the Lagrangian L = µv2

2 ).
In canonical quantization, we have the Weyl algebra generated by x̂, p̂ subject

to [p̂, x̂] = −i~, and the quantum Hamiltonian (using the symmetric Weyl quanti-
zation) is

(465) Ĥ =
p̂2

2µ
.

In Schrödinger representation of the Weyl algebra, the Hamiltonian acts as the
differential operator

(466) Ĥ = − ~2

2µ
∂2
x

on the Hilbert space H = L2
C(R).

The eigenvectors of Ĥ are the vectors

(467) |p〉 : = e
i
~px

with p ∈ R a parameter (momentum). One then has

(468) Ĥ|p〉 =
p2

2µ
|p〉.

In particular, the operator Ĥ has a continuum eigenvalue spectrum [0,∞), where
the eigenvalue 0 is nondegenerate and all positive eigenvalues have multiplicity 2.
We also note that eigenvectors (467) are not points of L2

C(R) (not square-integrable),
but rather are limit points of the space (which is the usual case for a continuum
spectrum).

4.2.4. Canonical quantization. We now proceed to the canonical quantization of
the free massless scalar field on the Minkowski cylinder.

We promote the modes φn, πn to generators φ̂n, π̂n of the Weyl algebra, subject
to the relations

(469) [π̂n, φ̂m] = −iδn,−m, [φ̂n, φ̂m] = 0, [π̂n, π̂m] = 0.

For convenience we set ~ = 1.
Next, we introduce a system of creation/annihilation operators ân, ân, n 6= 0,

subject to hermitian conjugation properties

(470) (ân)+ = â−n, (ân)+ = â−n
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and related to the Weyl generators φ̂n, π̂n, with n 6= 0 by68

(471)

φ̂n =
i

n
(−â−n + ân),

π̂n =
â−n + ân

2
.

The commutation relations corresponding to (469) are

(472) [ân, âm] = nδn,−m, [ân, âm] = nδn,−m, [ân, âm] = 0.

In terms of these creation/annihilation operators (and the zero-mode operators

φ̂0, π̂0 which need to be treated separately), the quantum Hamiltonian (obtained
by symmetric Weyl quantization) is:

(473) Ĥ =
∑

n 6=0

â−nân + â−nân
2

+ (π̂0)2 =
1

2

∑

n∈Z

(
â−nân + â−nân

)
.

In the second equality we introduced the notation

(474) â0 = â0 : = π̂0.

The canonical quantization of the total momentum operator (453), written in
terms of creation/annihilation operators, is

(475) P̂ =
1

2

∑

n∈Z

(
â−nân − â−nân

)
.

Remark 4.14 (Heisenberg Lie algebra). One can consider the Lie ∗-algebra (the
Heisenberg Lie algebra)

(476) Heis : = SpanC({ân}n∈Z,K)

where K is the central element and the commutation relations are

(477) [ân, âm] = nδn,−mK.

with the involution (hermitian conjugation) acting as â+
n = â−n, K+ = K. It is the

special case of the general Heisenberg Lie algebra (Definition 4.2), for the symplectic
vector space V of Laurent series on C∗

(478) V =
{
f(z) =

∑

n∈Z
fnz
−n
}

with symplectic form

(479) ωsymp(f, g) = i resz=0(fdg)

– the residue at z = 0 (i.e. the coefficient of z−1dz) of the meromorphic 1-form
fdg.69 The basis vectors z−n in V correspond to the generators ân of Heis.

68One can also express the operators ân, ân in terms of the standard creation/annihilation op-

erators (390), (391) for the real oscillators, as in (455): for n > 0 one sets ân =
√
n
2

(−iâ(1)
n − â(2)

n ),

â−n =
√
n
2

(iâ
(1)+
n − â(2)+

n ), ân =
√
n
2

(−iâ(1)
n + â

(2)
n ), â−n =

√
n
2

(iâ
(1)+
n + â

(2)+
n ).

69The normalization factor i in (479) compensates the factor −i in the general definition of

Heisenberg Lie algebra (371), i.e., one has the commutation relation [f̂ , ĝ] = resz=0(fdg) K.
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The full Lie algebra of mode operators of the free massless scalar fields can then
be described via two copies Heis, Heis of the algebra above:

(480) SpanC({φ̂n, π̂n}n∈Z,K) =
Heis⊕Heis

â0 = â0,K = K
⊕ C · φ̂0,

where on the right the extra generator φ̂0 interacts with the Heisenberg Lie algebras
via

(481) [â0, φ̂0] = −iK.
From (473) and (472) one easily finds the commutators between the Hamiltonian

Ĥ and the operators ân, ân:

(482) [Ĥ, ân] = −nân, [Ĥ, ân] = −nân, n ∈ Z.

In particular, for n > 0 applying ân or ân to an eigenvector of Ĥ decreases the
eigenvalue (total energy of the state) by n, while applying â−n or â−n increases

the eigenvalue by n. Thus, it is natural to think of ân, ân as annihilation operators
and of â−n, â−n as creation operators.

Next, consider the commutators of ân, ân with the total momentum operator
(475):

(483) [P̂ , ân] = −nân, [P̂ , ân] = +nân, n ∈ Z.

Thus, for n > 0, applying â−n to a joint eigenvector of Ĥ and P̂ increases the
energy and the total momentum of the system (creates – or adjoins to the system –

a “left-mover” – a quantum with positive momentum), while applying â−n increases
the energy but decreases the total momentum (creates a “right-mover”).

To summarize, we have the following table for each n > 0.

annihilation operator creation operator
left-mover ân â−n

right-mover ân â−n

The space of states. The space of states of the full system (the massless free
scalar theory) can be described as the tensor product of the spaces of states for the
constituent subsystems:

(484) H = Hfree particle ⊗
⊗

n 6=0

Hharmonic oscillator ωn=|n|.

One can choose to represent each factor in (484) by the Schrödinger representation,
thereby obtaining a tensor product of countably many copies of L2(R).

A different (better) description of H is as a “Fock space” – in the vein of the
description (404) of the space of states of harmonic oscillator as spanned by exci-
tations of a vacuum state given by repeatedly applying creation operators (Verma
module description). In the case of the free massless scalar field, we pick from
the first factor of (484) any vector |π0〉 (cf. (467)), with π0 ∈ R the zero-mode
momentum, tensored with vacua |0〉 in each oscillator factor – we denote the result
by abuse of notations again |π0〉 (this vector is referred to as “psedovacuum”).70

70Note that by construction we have ân|π0〉 = ân|π0〉 = 0 for any n > 0.
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Then we act on |π0〉 by the creation operators corresponding to different oscillators,
creating an excited state; this gives a basis for H:

(485) H =
⊕

r≥0,s≥0

SpanC

{ r∏

i=1

â−ni

s∏

j=1

â−nj |π0〉
∣∣∣

1 ≤ n1 ≤ n2 ≤ · · · ≤ nr,
1 ≤ n1 ≤ n2 ≤ · · · ≤ ns,

π0 ∈ R

}
.

Let us denote the basis vectors spanning H by

(486) |π0; {ni}, {nj}〉 : =

r∏

i=1

â−ni

s∏

j=1

â−nj |π0〉.

We think of the basis vector |π0; {ni}, {nj}〉 as a multiparticle state, consisting
of

• r left-moving quanta carrying energy-momentum 2-vectors (ni, ni), i =
1, . . . , r and
• s right-moving quanta carrying energy-momentum (n̄j ,−n̄j), j = 1, . . . , s.

We motivate this interpretation more below, after (492).
This is a bit murky,
I should explain bet-
ter

Remark 4.15. Thinking of the system a string moving in the target R (for each
time t, we have a map φ : {t} × S1 → R), the zero-mode momentum π0 can be
understood as the (target) momentum of the center-of-mass of the string, and has
nothing to do with the (source) total momentum P .

An equivalent description of H as a Fock space (a different way to enumerate
the basis vectors) is as follows:
(487)

H = SpanC




∏

n≥1

(â−n)kn
∏

n≥1

(â−n)kn |π0〉
∣∣∣ kn ≥ 0, kn ≥ 0,

finitely many of kn, kn are nonzero



 .

The numbers kn, kn are the “occupation numbers” for the excitations with energy-
momentum (n, n) and (n,−n), respectively (i.e. kn, kn are the numbers of quanta
of these types).

t

right-m
overs

lef
t-m

ov
er
s

σ

Figure 23. Left- and right-movers on a cylinder.

Lecture 18,
10/3/2022Note that applying the Hamiltonian (473) to the pseudovacuum |π0〉 we obtain

(488) Ĥ|π0〉 = π̂2
0 |π0〉+

1

2

∑

n>0

(
â−n ân|π0〉︸ ︷︷ ︸

0

+â−n ân|π0〉︸ ︷︷ ︸
0

)
+
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+
1

2

∑

n<0

(
â−nân︸ ︷︷ ︸
−n+ânâ−n

|π0〉+ â−nân︸ ︷︷ ︸
−n+ânâ−n

|π0〉
)

=
(
π2

0 +
∑

n<0

(−n)

︸ ︷︷ ︸
divergence!

)
|π0〉

– |π0〉 multiplied by a divergent factor. By a similar reason, each basis vector

|π0; {ni}, {nj}〉 is an eigenvector of Ĥ with a divergent eigenvalue. To deal with
this problem, one uses normal ordering.Uniformize the

conventions (Free-
Ass to Weyl) with
harmonic oscillator
case.

Normal ordering. Normal ordering (in the context of the free massless scalar
field) is defined as a C-linear map : · · · : from the free associative algebra generated

by the operators {ân, ân}n∈Z to the Weyl algebra (i.e., to the quotient of the free
associative algebra by relations (472)). Acting on a word, it puts the annihilation

operators â>0, â>0 to the right and creation operators â<0, â<0 to the left (and then
projects to the Weyl algebra).

For example, the normally ordered Hamiltonian (473) and total momentum op-
erators (475) are

: Ĥ : = π̂2
0 +

∑

n>0

(
â−nân + â−nân

)
,(489)

: P̂ : =
∑

n>0

(
â−nân − â−nân

)
.(490)

Acting with these normally ordered operators on basis vectors (486), we don’t
encounter any divergencies (unlike in (488)), and we have

: Ĥ : |π0; {ni}, {nj}〉 =


π2

0 +
∑

i

ni +
∑

j

nj


 |π0; {ni}, {nj}〉,(491)

: P̂ : |π0; {ni}, {nj}〉 =


∑

i

ni −
∑

j

nj


 |π0; {ni}, {nj}〉.(492)

In particular, all states |π0; {ni}, {nj}〉 are eigenvectors of both : Ĥ : and : P̂ :.
Interpreting the joint eigenvalue as the energy-momentum 2-vector, we see that:

• The pseudovacuum |π0〉 has energy-momentum (π2
0 , 0).

• Applying â−n with n > 0 to a state, we increase the energy-momentum
by (n, n) (which we interpret as adjoining a left-moving quantum to the
system).

• Applying â−n with n > 0 to a state, we increase the energy-momentum by
(n,−n) (which we interpret as adjoining a right-moving quantum).

Remark 4.16. There is a single (up to normalization) null-vector of : Ĥ : in H –
the vector

(493) |vac〉 : = |π0 = 0〉,
i.e. the pseudovacuum with π0 = 0. We call this vector the vacuum vector (or

vacuum state). It is a null-vector for both : Ĥ : and : P̂ :, which is interpreted as
invariance of |0〉 under time-translations and rotation along S1.71

Too long? Also, put
links to later sections
where central charge
and Ztorus are cov-
ered.

71Time-translation by time t is represented on the space of states by the evolution operator

U(t) = e−itĤ . Rotation by angle θ along S1 is similarly represented by R(θ) = e−iθP̂ .
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Remark 4.17. Later – after switching to Euclidean metric – we will see that the

partition function of a torus defined using the normally ordered operators : Ĥ : and

: P̂ : does not have the expected modular invariance property (see Section 1.4.1).

To restore it, one should replace : Ĥ : with the operator : Ĥ : − 1
12 (while : P̂ := P̂

does not have to be changed), which can be seen as the original operator Ĥ (473)
with the divergence regularized by Riemann zeta-function regularization:

(494) Ĥ =
1

2

∑

n∈Z

(
â−nân + â−nân

)
=

=
1

2

∑

n>0

(
â−nân + â−nân

)
+

1

2

∑

n<0

(
−2n+ â−nân + â−nân

)

=: Ĥ : +
∑

n>0

n =︸︷︷︸
zeta−regularization

: Ĥ : + lim
s→−1

∑

n>0

ns =: Ĥ : +ζ(−1) =: Ĥ : − 1

12
.

At the moment this zeta-regularization prescription looks entirely ad hoc, and it is
not clear why it should help with modular invariance. Note that with respect to

this regularized Ĥ, the vacuum state |vac〉 has energy − 1
12 instead of zero. EDIT

The (somewhat surprising) take-home message for the moment is that the normal
ordering breaks conformal invariance (in a mild way72) – in fact we will not see
any problem with normal ordering in the genus zero theory (correlators of point
observables on a cylinder/plane) – they do not contradict conformal invariance, but
in genus one we have a problem.

4.2.5. Aside: Schrödinger vs Heisenberg picture in quantum mechanics. In the
Scrödinger picture of quantum mechanics, time-evolution acts on states. I.e., one
has time-dependent families of states linked by the evolution operator:

(495) |ψ〉t = U(t− t0)|ψ〉t0
where

(496) U(t) = e−iĤt

is the unitary evolution operator. Put another way, one has a family of the spaces

of states Ht linked by isomorphisms Ht
U(t′−t)−−−−−→ Ht′ . Observables are operators Ô

acting on Ht at some particular t.
The infinitesimal version of (495) is the Schrödinger equation

(497)
d

dt
|ψ〉t = −iĤ|ψ〉t

(we mention it for comparison with the Heisenberg picture).
In the Heisenberg picture, evolution acts on observables instead of states. All

states are thought of as elements of Ht0 for some fixed reference time t0. But

an observable is understood as a family Ôt arising as a pullback of some fixed

(t-independent) operator Ô acting on Ht, along the evolution U(t− t0) : Ht0 → Ht:

(498) Ôt x Ht0
U(t−t0)−−−−−→ Ht

y

Ô

72The change of the quantum Hamiltonian by a multiple of identity is a somewhat subtle effect:

we usually need the commutators with Ĥ, not Ĥ itself. E.g. time-dependence of observables in

the Heisenberg picture (500) only depends on commutators with Ĥ.
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I.e., one has

(499) Ôt = U(t− t0)−1 Ô U(t− t0).

The infinitesimal version of this equation is the Heisenberg equation

(500) − i d
dt
Ôt = [Ĥ, Ôt].

Below we will use the notation Ô(t) : = Ôt for the time-dependent operators of the
Heisenberg picture.

Consider a correlator in Schrödinger picture (cf. Section 1.3.1) of quantum
mechanics on the source interval (cobordism) [tin, tout], with in/out states |ψin〉,
〈ψout|,73 of observables Ô1, . . . , Ôn inserted at times tin < t1 < · · · tn < tout.

Ôn

tin toutt1 t2 tn

|ψin〉 〈ψout|Ô1 Ô2

Figure 24. Correlator in quantum mechanics.

The correlator is given by

(501) 〈ψout| U(tout − tn) Ôn · · · Ô2 U(t2 − t1) Ô1 U(t1 − tin) |ψin〉
The same quantity can be equivalently written in Heisenberg picture, as

(502) 〈ψ̃out| Ôn(tn) · · · Ô2(t2) Ô1(t1) |ψ̃in〉
where Ôk(tk) : = U(tk − t0)−1 Ô U(tk − t0) are the time-dependent observables
(499) and

(503) |ψ̃in〉 = U(t0 − tin)|ψin〉, |ψ̃out〉 = U(t0 − tout)|ψout〉
are the in-out states expressed as elements of the reference Hilbert space Ht0 .
Herethe reference time t0 is chosen arbitrarily.

Remark 4.18. We remark that the product of time-dependent observables Ôn(tn) · · · Ô1(t1)
in (502) is time-ordered – the times satisfy tn > · · · > t1.clean it up a bit?

When we later consider field theory in Euclidean signature, this will correspond
to setting t = −itEucl in the formulae above, with tEucl > 0. Then the evolution

operator U(TEucl) = e−TEuclĤ is non-invertible and only defined for positive TEucl.
In this situation, only time-ordered products of operators are defined. In this setting
we should use (500) to define TEucl-dependent observables.

4.2.6. Back to free massless scalar field on a cylinder: time-dependent field operator.
Back to the quantum field theory on the cylinder, we think of it as a special model
of quantum mechanics, where we understood the space of states (485) and we have
a family of special operators

(504) φ̂(σ) =
∑

n∈Z
φ̂ne

inσ = φ̂0 +
∑

n 6=0

i

n
(−â−n + ân)einσ

73We remind that in Dirac’s notation | · · · 〉 are vectors in H and 〈· · · | are vectors in the linear
dual H∗.



LECTURE NOTES ON CONFORMAL FIELD THEORY 105

(one operator for each σ ∈ S1) acting on H and independent of t. We can treat
these as special examples of observables in the Schrödinger picture.

The corresponding time-dependent observables in the Heisenberg picture are
obtained by solving the equation (500), which yields

(505) φ̂(t, σ) = eiĤt︸︷︷︸
U(t)−1

φ̂(σ) e−iĤt︸ ︷︷ ︸
U(t)

=

= φ̂0 + 2tπ̂0 +
∑

n 6=0

i

n

(
− â−nein(t+σ) + âne

in(−t+σ)
)
.

Note the similarity of this formula with the formula for the general solution of the
equations of motion in the classical theory (458).

Then we can consider, e.g., correlators of the form

(506)

φ̂(tn, σn)

in out

|vac〉 〈vac|
φ̂(t1, σ1)

= 〈vac|φ̂(tn, σn) · · · φ̂(t1, σ1)|vac〉

with tn > · · · > t1 and with σn, . . . , σ1 ∈ S1. These correlators can be explicitly
computed using (505) and using the commutation relations (472). We will discuss
such correlators below, once we switch to Euclidean signature.

4.3. Free massless scalar field on C.

4.3.1. From Minkowski to Euclidean cylinder (via Wick rotation), and then to C∗

(via exponential map). Now let us switch the spacetime manifold of the free mass-
less scalar field from Minkowski cylinder to the cylinder Σ = R×S1 with Euclidean
metric g = (dτ)2 + (dσ)2. Here we will be denoting the Euclidean time – the
coordinate on R – by τ (instead of TEucl); σ is the coordinate on S1 as before.

Introducing a complex coordinate

(507) ζ = τ + iσ, ζ = τ − iσ,
we can identify Σ with C/2πiZ (where ζ is the standard coordinate on C).

Another useful model for Σ for us is the punctured complex plane C∗ = C\{0}
with complex coordinate z = eζ . This is in fact the model we will be using the
most.

τ

σ

2πi

C/2πiZ

z

ζ

C\{0}

∼ −→ζ 7→ z = eζ

Figure 25. Three models of Euclidean cylinder.
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The action functional of the classical theory is

(508)

SEucl(φ) =
κ

2

∫

R×S1

dτdσ ((∂τφ)2 + (∂σφ)2)

= 2κ

∫

C/2πiZ

i

2
dζ ∧ dζ ∂ζφ∂ζφ

= 2κ

∫

C\{0}

i

2
dz ∧ dz ∂zφ∂zφ

where κ = 1
4π , as before (451).

The stress-energy tensor written in the complex coordinates ζ, ζ or z, z reads

(509)

T = κ(∂ζφ)2

︸ ︷︷ ︸
Tζζ

(dζ)2 + κ(∂2
ζ
φ)

︸ ︷︷ ︸
Tζ ζ

(dζ)2

= κ(∂zφ)2

︸ ︷︷ ︸
Tzz

(dz)2 + κ(∂2
zφ)︸ ︷︷ ︸

Tz z

(dz)2.

The switch from Minkowski cylinder to Euclidean cylinder is achieved via “Wick
rotation” – by substituting

(510) t = −iτ

in the formulae for the Minkowski cylinder with τ > 0 the Euclidean time. In
particular, the evolution operator changes as

(511) eiĤt  e−Ĥτ .

The space of states H and the quantum Hamiltonian Ĥ are the same in Minkowski
and in Euclidean setting.74

The time-dependent (Heisenberg) field operator (505) in Euclidean setting be-
comes

(512)

φ̂(ζ) = φ̂0 − iπ̂0(ζ + ζ) +
∑

n6=0

i

n

(
âne
−nζ + âne

−nζ
)

= φ̂0 − iπ̂0 log(zz) +
∑

n 6=0

i

n

(
ânz
−n + ânz

−n
)
.

Lecture 19,
10/5/2022

4.3.2. Aside: Wick’s lemma (in the operator formalism). Let

(513) A = SpanC

(
{b̂k, b̂+k }k∈I ,K

)

74If we were to retrace our steps and start from the Euclidean action functional, reinterpret

it as Lagrangian mechanics, do the Legendre transform to obtain a Hamiltonian description and

then canonically quantize, we would have obtained a different quantum Hamiltonian. This has to
do with the fact that the rule of canonical quantization (375) is attuned to the unitary evolution;

in Euclidean theory the canonical commutation relations have to be changed accordingly.
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be the Heisenberg Lie algebra spanned by pairs of creation/annihilation operators
indexed by some set I, and the central element K, subject to commutation rela-
tions75

(514) [̂bi, b̂
+
j ] = δijK, [̂bi, b̂j ] = 0, [̂b+i , b̂

+
j ] = 0.

Remark 4.19. More abstractly, we think of a symplectic vector space (V, ω) equipped
with a compatible complex structure J : V → V , J2 = −id, with g(x, y) = ω(x, Jy)
a positive-definite bilinear form. (Put another way, (V, ω, J, g) is a Kähler vector
space.) Then one has a splitting C⊗ V = U ⊕ U of the complexified space V into
the ±i-eigenspaces of J . Then the Lie algebra (513) is the Heisenberg Lie algebra
of (V, ω) in the sense of Definition 4.2, where we have chosen some basis {bi} in U
and the dual basis {b+i } in U , which corresponds to creation/annihilation operators

{b̂i, b̂+i } in A.

Let {Ap}p∈Y be a collection of “preferred” elements of A which are some linear
combinations of creation/annihilation operators,

Ap =
∑

i∈I
cpib̂i + dpib̂

+
i ,

with cpi, dpi complex coefficients. The indexing set Y for the collection {Ap} is
arbitrary; it has no a priori relation to the set I indexing the basis in A.

We define the normal ordering : · · · : of an element of the free associative algebra
generated by {âk, â+

k }k∈I as a C-linear operation which reorders each word, putting

the annihiliation operators âk to the right of the word and creation operators â+
k

to the left of the word, and then projects the reordered word to the Weyl algebra
of A,76

(515) Weyl(A) = UA/(K = 1).

For any pair p, q one has the equality

(516) ApAq− : ApAq := gpq

in the Weyl algebra, with gpq ∈ C some complex numbers; we will (suggestively)
refer to the matrix (gpq)p,q∈Y as the “propagator.”

The reason for equality (516), with a multiple of identity on the right, is that
it is clearly true if both Ap and Aq are creation or annihilation operators, due to
the commutation relations (514); by linearity this property extends to Ap, Aq any
linear combinations of creation/annihilation operators.

Remark 4.20. Note that the normally ordered products satisfy the symmetry prop-
erty

(517) : Ap1
· · ·Apn :=: Apσ(1)

· · ·Apσ(n)
:

for σ any permutation of the set {1, . . . , n}. This property is obvious for Ap’s
being just creation/annihilation operators, then one extends to general Ap’s by
C-linearity.

75We call the creation/annihilation operators here b̂, b̂+ to avoid confusion with the operators

â, â in the scalar field theory – which are also creation/annihilation operators, just with a different
normalization convention.

76Cf. Definition 4.4. Unlike the setup of Section 4.1.3, here we are not thinking about ~→ 0
asymptotics (we are in purely quantum theory where we set ~ = 1), so we don’t consider coefficients

in formal power series in ~.
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The following is a very useful combinatorial statement allowing one to express
any element of the Weyl algebra (or the subalgebra generated by the elements
{Ap}p∈Y ) in terms of normally ordered elements.

Lemma 4.21 (Wick). For n > 0 and any sequence p1, . . . , pn ∈ Y , one has the
following equality in the Weyl algebra:

(518) Ap1Ap2 · · ·Apn =

=
∑

{α1, β1} t · · · t {αs, βs} ⊂ {1, . . . , n}
a matching on {1, . . . , n}

gpα1pβ1
· · · gpαspβs · :

∏

i∈{1,...,n}\∪k{αk,βk}

Api : .

The sum here goes over matchings on the set {1, . . . , n} – collections of non-
overlapping 2-element subsets considered up to permutation.

Examples:

• For n = 2, there are two matchings on the set {1, 2}: {1, 2} and {1, 2}.
We indicate by the bracket the matched elements, so in the first case, the
set is completely unmatched, s = 0. In the second case, both elements are
matched, s = 1. So, (518) yields

(519) AaAb = gab+ : AaAb :

(we are calling the indices a, b instead of p1, p2 for convenience). In fact,
this formula is just (516).

• For n = 3, the possible matchings are {1, 2, 3}, {1, 2, 3}, {1, 2, 3}, {1, 2, 3},
thus the Wick’s formula gives

(520) AaAbAc = gabAc + gacAb + gbcAa+ : AaAbAc : .

Note that : Ap := Ap for any p ∈ Y , so we don’t have to write the normal
ordering symbol for linear expressions in Ap’s.
• For n = 4, we have the following possible matchings:

(521)

{1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4},

{1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4},
{1, 2, 3, 4}.

In the first row here we have three perfect matchings (i.e. all of the set is
matched). Wick’s formula in this case gives

(522)
AaAbAcAd =

= gabgcd + gacgbd + gadgbc+

+gab : AcAd : +gac : AbAd : +gad : AbAc : +gbc : AaAd : +gbd : AaAc : +gcd : AaAb : +

+ : AaAbAcAd : .

Wick’s lemma is proven by considering A1 · · ·An to be a word comprised of only
the creation and annihilation operators – in which case it is proven directly, by
induction in n. Then the statement is extended to any Ap’s by C-linearity.
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4.3.3. Propagator for the free massless scalar field on C∗. Going back to the free
2d massless scalar field on Euclidean cylinder (which we can parameterize by the
complex coordinate z ∈ C∗), we are in the setting of Wick’s lemma: we have the

Weyl algebra generated by creation/annihilation operators {ân, ân}n 6=0 ∪ {φ̂0, π̂0}
(we are thinking of π̂0 as annihilation operator and of φ̂0 as creation operator w.r.t.
the normal ordering) and a family of preferred linear elements

(523) φ̂(z) = φ̂0 − iπ̂0 log(zz) +
∑

n 6=0

i

n

(
ânz
−n + ân z

−n
)

parametetrized by points z ∈ C∗. I.e., in the notations of Section 4.3.2, we have
I = Z (the indexing set for the basis of creation/annihilation operators) and Y = C∗

(the indexing set for preferred linear combinations).

Lemma 4.22. Assume z, w ∈ C∗ two points satisfying |z| ≥ |w|, z 6= w. Then one
has

(524) φ̂(z)φ̂(w)− : φ̂(z)φ̂(w) := −2 log |z − w|.
The right hand side of (524) is the propagator in the sense of (516).

Proof. We compute

(525) φ̂(z)φ̂(w)− : φ̂(z)φ̂(w) :=

=
∑

n,m 6=0

i

n
· i
m

(
(ânz

−n + ân z
−n)(âmw

−m + âm w
−m)− : (ânz

−n + ân z
−n)(âmw

−m + âm w
−m) :︸ ︷︷ ︸

I

)
+

+
(

(φ̂0−iπ̂0 log(zz))(φ̂0−iπ̂0 log(ww))− : (φ̂0−iπ̂0 log(zz))(φ̂0−iπ̂0 log(ww)) :
)
.

We note that the expression I vanishes if n 6= m, since in that case the elements
ânz
−n+ân z

−n and âmw
−m+âm w

−m commute. Also, I vanishes if m > 0, because
then product (ânz

−n + ân z
−n)(âmw

−m + âm w
−m) is already normally ordered.

That leaves only the terms with n = −m > 0. So, continuing the computation, we
have

(526) φ̂(z)φ̂(w)− : φ̂(z)φ̂(w) :=

=
∑

n>0

1

n2

(
[ân, â−n]︸ ︷︷ ︸

n

z−nwn + [ân, â−n]︸ ︷︷ ︸
n

z−nwn
)
− i [π̂0, φ̂0]︸ ︷︷ ︸

−i

log(zz)

=
∑

n>0

1

n

((w
z

)n
+

(
w

z

)n)
− log(zz) = − log

(
1− w

z

)
− log

(
1− w

z

)
− log(zz)

= −2 log |z − w|.
�

Note that the propagator (524) extends to a function on the configuration space
of two points z, w on C (allowing the point 0) and this extension is invariant under
translations on C, (z, w) 7→ (z + a,w + a).

Note also that the convergence behavior of the sum over n in the computation
(526) is as follows:

• it converges absolutely if |z| > |w|,
• converges conditionaly if |z| = |w| and z 6= w,
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• diverges if |z| < |w| or if z = w.

4.3.4. Correlators on the plane (in the radial quantization formalism). One calls
the canonical quantization formalism77 for the theory on the cylinder mapped to
C∗ (see Figure 25) the “radial quantization” formalism.

We define the radial ordering of a product of local operators (observables) on C∗

inserted at n distinct points z1, . . . , zn ∈ C∗ as follows:

(527) R
(
Ô1(z1) · · · Ôn(zn)

)
: = Ôσ(1)(zσ(1)) · · · Ôσ(n)(zσ(n)),

where σ ∈ Sn is a permutation of indices such that |zσ(1)| ≥ · · · ≥ |zσ(n)|.
Examples of local operators Ôk(z) are:

• The field operator φ̂(z).

• Any derivative of the field operator ∂rz∂
s
z φ̂(z), with r, s ≥ 0.

• Any normally ordered differential polynomial in φ̂(z), e.g., : ∂zφ̂(z) ∂2
z φ̂(z) :.

Remark 4.23. Local operators at the same radius commute:

(528) [Ô1(z), Ô2(w)] = 0 if |z| = |w|, z 6= w.

This can be seen as the spacial locality property. In the example of free scalar
field, for local operators as in the list above, (528) is a consequence of (524). This
remark shows that the possible ambiguity of radial ordering arising when several
of zi’s have the same absolute value does not affect the right hand side of (527).

Example 4.24. If z1, z2, z3 are three points on C∗ with absolute values satisfying

|z2| > |z3| > |z1| and Ô1,2,3 are some local operators, then one has

(529) R
(
Ô1(z1)Ô2(z2)Ô3(z3)

)
= Ô2(z2)Ô3(z3)Ô1(z1).

In particular, one can consider the vacuum expectation value of this expression

(530) 〈vac|R
(
Ô1(z1)Ô2(z2)Ô3(z3)

)
|vac〉 = 〈vac|Ô2(z2)Ô3(z3)Ô1(z1)|vac〉.

Note that only with this ordering in the right-hand side this is a well-defined ex-
pression.78move the footnote

into the main text?
clean it up a bit?

77We say “formalism” where we should really say “approach to quantization” or “method of

constructing a quantum field theory out of a classical one.”
78One can see this e.g. by converting back from Heisenberg to Schrödinger pricture – the we

will see that the operators Ôk are joined by the evolution operators U(log
|z2|
|z3| ), U(log

|z3|
|z1| ) and

only for a positive Euclidean time τ the evolution operator U(τ) = e−τĤ is well-defined.
The other way to see that radial ordering is necessary for convergence is to apply Wick’s lemma

to the product of local operators. Then we will have a computation similar to (526) where the

infinite sum will converge if and only if the operators are radially ordered.

A related comment is that the vector
∏n
i=1 Ôi(zi)|vac〉 (assuming that it exists) is in the

domain of a local operator Ô(z) if and only if |zi| ≤ |z| and z 6= zi for i = 1, . . . , n. Using this
argument inductively in n, one arrives to the necessity of radial ordering.
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〈vac| at ∞

|vac〉
0

z1

z3

z2

Ô1

Ô3

Ô2

Figure 26. Radial ordering.

Definition 4.25. In operator formalism, we will understand the correlator of sev-

eral local operators (point observables) Ô1, . . . , Ôn inserted at pairwise distinct
points z1, . . . , zn ∈ C∗ as the expression79

(531) 〈O1(z1) · · ·On(zn)〉 : = 〈vac|R
(
Ô1(z1) · · · Ôn(zn)

)
|vac〉.

Example 4.26. Lemma 4.22 implies

(532) R(φ̂(z)φ̂(w)) =: φ̂(z)φ̂(w) : −2 log |z − w|
for any z 6= w ∈ C∗. Note that the normally ordered expression in the r.h.s. does
is invariant under swapping z and w (cf. Remark 4.20).

Example 4.27. Two-point correlator of φ̂. From (532) we find

(533) 〈φ(z)φ(w)〉 : = 〈vac|R
(
φ̂(z)φ̂(w)

)
|vac〉 = −2 log |z − w|+ C

where Lecture 20,
10/7/2022

(534) C = 〈vac| : φ̂(z)φ̂(w) : |vac〉 = 〈vac|φ̂2
0|vac〉

Here we expand : φ̂(z)φ̂(w) : using (523). All terms in the expansion (except the

term φ̂2
0) contain â≥0 or â≥0 on the right which yields zero when acting on |vac〉,

and/or contain â<0, â<0 on the left, which vanishes when paired with 〈vac|.
Note that (534) is an ill-defined expression formally independent of z, w – an

“infinite constant.” This can be seen by examining the Schrödinger representa-
tion for the free particle (the zero-mode) where |vac〉 = |π0〉 is represented by the

Dirac delta-distribution δ(π0) and φ̂0 = i ∂
∂π0

. Thus, the expression 〈vac|φ̂2
0|vac〉 in

Schrödinger representation reads “the evaluation of distribution δ′′(π0) at π0 = 0.”
This evaluation does not exist.

Put differently, φ̂0 is an unbounded operator on H and the vector |vac〉 is not in
its domain.

79We are not putting hats on observables in the left hand side, because there we think of them

as classical objects (functions of jets of classical fields at a point), and we think of the symbol
〈· · · 〉 in the l.h.s. as averaging over the space of classical fields, cf. (49), (59).

Alternatively, we can say that Ok’s in the l.h.s. are elements of the abstract vector space V

of point observables in the sense of Section 1.7 (of which we don’t think as operators acting on
any Hilbert space and which do not depend on points zk), placed at points z1, . . . , zn. From that

viewpoint, we are defining the correlator by the operator expression in the r.h.s.
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Notation. In this section, we will be denoting the holomorphic derivative ∂z
by ∂ and the antiholomorphic derivative ∂z̄ by ∂̄. Thus, in this section symbols
∂ and ∂̄ do not stand for the holomorphic/antiholomorphic Dolbeault operators
dz ∂z, dz̄ ∂z̄.

To summarize, correlators of the field φ are ill-defined due to the presence of the

zero-mode φ̂0. However, correlators of the fields ∂φ, ∂̄φ are well-defined!
Note that from (523) one has the following nice expansions of the derivatives of

the field in terms of creation/annihilation operators:

(535) i∂φ̂(z) =
∑

n∈Z
ânz
−n−1, i∂̄φ̂(z) =

∑

n∈Z
ânz̄
−n−1.

Example 4.28. For the two-point correlator of derivatives of the field we have

(536)

〈∂φ(z)∂φ(w)〉 : = 〈vac|R
(
∂φ̂(z)∂φ̂(w)

)
|vac〉 = 〈vac|∂z∂w R

(
φ̂(z)φ̂(w)

)

︸ ︷︷ ︸
−2 log |z−w|+:φ̂(z)φ̂(w):

|vac〉 =

= 〈vac| − 1

(z − w)2

︸ ︷︷ ︸
∂z∂w(−2 log |z−w|)

+ : ∂φ̂(z)∂φ̂(w) : |vac〉 = − 1

(z − w)2
.

Here z 6= w are any two distinct points in C\{0}. We used the fact that : ∂φ̂(z)∂φ̂(w) :,

when expanded using (535), has only terms with â≥0 or â≥0 on the right, and/or

with â≤0, â≤0 on the left. Hence the vacuum expectation value 〈vac| : ∂φ̂(z)∂φ̂(w) : |vac〉
is zero.

By similar reasoning one has

(537) 〈∂̄φ(z)∂̄φ(w)〉 = − 1

(z̄ − w̄)2

and

(538) 〈∂φ(z)∂̄φ(w)〉 = 0.

We stress again that points z and w are assumed be distinct.80

One can proceed to compute several-point correlators of observables ∂φ, ∂̄φ using
Wick’s lemma.

Example 4.29. For the four-point correlator, one finds

(539)

〈∂φ(z1)∂φ(z2)∂φ(z3)∂φ(z4)〉 : = 〈vac|R
(
∂φ̂(z1)∂φ̂(z2)∂φ̂(z3)∂φ̂(z4)

)
|vac〉 =

〈vac|
(
∂φ̂(z1)∂φ̂(z2)∂φ̂(z3)∂φ̂(z4)+∂φ̂(z1)∂φ̂(z2)∂φ̂(z3)∂φ̂(z4)+∂φ̂(z1)∂φ̂(z2)∂φ̂(z3)∂φ̂(z4)+

+∂φ̂(z1)∂φ̂(z2)((((
((((: ∂φ̂(z3)∂φ̂(z4) :+5 similar terms+

((((
((((

(((
((

: ∂φ̂(z1)∂φ̂(z2)∂φ̂(z3)∂φ̂(z4) :
)
|vac〉

80It is possible to sense of the correlator (538) as a distibution on C × C rather than as a

function on the open configuration space C2(C\{0}). Then the correlator becomes 〈∂φ(z)∂̄φ(w)〉 =
πδ(z − w) – up to normalization, the Dirac delta-distribution supported on the diagonal Diag ⊂
C× C. This delta-distribution is an example of so-called “contact term.”
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=
1

z2
12z

2
34

+
1

z2
13z

2
24

+
1

z2
14z

2
23

.

Here we denoted zij : = zi−zj . Note that in this computation only the three terms
where all four operators are matched contribute.

By a similar computation one finds

(540) 〈∂φ(z1)∂φ(z2)∂̄φ(z3)∂̄φ(z4)〉 = 〈∂φ(z1)∂φ(z2)∂̄φ(z3)∂̄φ(z4)〉 =
1

z2
12z̄

2
34

– only a single matching contributes.
More generally, by the same logic, the correlator

(541) 〈∂φ(z1) · · · ∂φ(zn)∂̄φ(w1) · · · ∂̄φ(wm)〉
(all points z1, . . . , zn, w1, . . . , wm are assumed to be distinct) vanishes unless both n
and m are even, n = 2ν, m = 2µ. If they are even, the correlator is given by a sum
over pairs (perfect matching of zi’s, perfect matching of wj ’s) – thus, in total there
are (2ν− 1)!! · (2µ− 1)!! terms. E.g. in the case m = 0, one obtains a meromorphic
function on Cn with second-order poles on principal diagonals. For instance,

(542) 〈φ(z1) · · ·φ(z6)〉 =
−1

z2
12z

2
34z

2
56

+ 14 similar terms,

since one has 5!! = 5 · 3 · 1 perfect matchings on the set of 6 elements.
Examining the terms contributing to the correlator (541) for general m,n, we

can notice that it factorizes into a meromorphic part and an antimeromorphic part:
(543)
〈∂φ(z1) · · · ∂φ(zn)∂̄φ(w1) · · · ∂̄φ(wm)〉 = 〈∂φ(z1) · · · ∂φ(zn)〉 · 〈∂̄φ(w1) · · · ∂̄φ(wm)〉

Example 4.30. We have

(544) 〈∂∂̄φ(z)∂φ(w)〉 =
∂

∂z̄
〈∂φ(z)∂φ(w)〉︸ ︷︷ ︸
− 1

(z−w)2

= 0.

For the next example we need a slightly enhanced version of Wick’s lemma,
rearranging a product of normally-ordered words in terms of fully normally-ordered
expressions.

Lemma 4.31. In the notations of Lemma 4.21, for n > 0, let p1, . . . , pn ∈ Y and
let

(545) {1, . . . , n} = S1 t · · · t Sm
be a partitioning of the set {1, . . . , n} into nonempty disjoint subsets Sj. Then one
has the following equality in the Weyl algebra:

(546) :
∏

p∈S1

Ap : · · · :
∏

p∈Sm

Ap :=

=
∑

{α1, β1} t · · · t {αs, βs} ⊂ {1, . . . , n}
a matching on {1, . . . , n} s.t.

{αi, βi} 6⊂ Sj ∀i, j

s∏

i=1

gpαipβi · :
∏

i∈{1,...,n}\∪k{αk,βk}

Api : .
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In other words, the right hand side is the sum over matchings, as in (518),
except that now elements of each subset of Sj of labels corresponding to one of the
normally-ordered words in the l.h.s. are not allowed to be matched.

Example:

(547) : AaAb : Ac = gacAb + gbcAa+ : AaAbAc : .

Here the partitioning (545) is {1, 2, 3} = {1, 2} t {3} and the labels are p1 = a,
p2 = b, p3 = c. Notice that in comparison with (520), the term gabAc corresponds

to a prohibited contraction {1, 2, 3} and doesn’t appear in the r.h.s.

Example 4.32. Consider the correlator

(548)

〈∂φ(z1)
(

: ∂φ(z2)∂φ(z3) :
)
∂φ(z4)〉 : = 〈vac|R

(
∂φ̂(z1)

(
: ∂φ̂(z2)∂φ̂(z3) :

)
∂φ̂(z4)

)
|vac〉 =

= 〈vac|∂φ̂(z1)
(

: ∂φ̂(z2)∂φ̂(z3) :
)
∂φ̂(z4) + ∂φ̂(z1)

(
: ∂φ̂(z2)∂φ̂(z3) :

)
∂φ̂(z4)|vac〉

=
1

z2
12z

2
34

+
1

z2
13z

2
24

.

Here the 2-point observable : ∂φ̂(z2)∂φ̂(z3) : on the l.h.s. is a formal symbol defined
by its correlators with other local fields, like in this example, where this observable
is replaced in the operator language by a normally-ordered product of derivatives
of field operators. Notice in comparison with (539) the absence of the term 1

z2
23z

2
14

corresponding to a prohibited matching. In particular, (548) is a regular (in fact,
holomorphic) function on the diagonal z2 → z3 in C4.

This example illustrates that one can define a new point observable

(549) : ∂φ(z)∂φ(z) : : = lim
w→z

: ∂φ(w)∂φ(z) := lim
w→z

(
∂φ(w)∂φ(z) +

1

(w − z)2

)
.

One sometimes calls point observables of this type – constructed as normally-
ordered differential polynomials in the field – “composite fields.” This definition is
understood as an equality under a correlator with an arbitrary collection of other
local observables (“test observables”) inserted at points 6= z. In the operator lan-

guage, we should replace φ→ φ̂ everywhere.
This new observable has well-defined correlators. E.g., taking the limit z2 → z3

in (548), we obtain

(550) 〈∂φ(z1)
(

: ∂φ(z3)∂φ(z3) :
)
∂φ(z4)〉 =

2

z2
13z

2
34

.

Definition 4.33. We can define the (quantum) holomorphic/antiholomorphic stress-
energy tensor in the massless scalar field theory as the composite fields

(551) Tzz : = −1

2
: ∂φ(z)∂φ(z) : , Tz̄z̄ : = −1

2
: ∂̄φ(z)∂̄φ(z) : .

Note that the conventional normalization factor in (551) is different than what
we had in the classical theory (509). It is useful to also consider a local observable

(552) T total(z) = Tzz(dz)
2 + Tz̄z̄(dz̄)

2

valued in quadratic differentials – the total (quantum) stress-energy tensor. For
instance, its correlator with, e.g. a collection of fields ∂φ(zi) will be a section of the
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pullback of the bundle of quadratic differentials K⊗2 ⊕K⊗2 → Σ to the space of
configurations of points (z, z1, . . . , zn) ∈ Σ, with K = (T 1,0)∗Σ the canonical line
bundle. Here Σ = C\{0}.

Notation. From now on we will denote Tzz by T and Tz̄z̄ by T̄ . This is the
standard convention in the literature on CFT. Lecture 21,

10/10/2022
4.4. Operator product expansions. Recall from Section 1.7.7 that the operator
product expansions (OPEs) express the product of two local observables at points
z, w as a linear combination (with singular coefficients) of single local observables at
w, in the asymptotics z → w. These expressions are to be substituted in a correlator
with an arbitrary collection of “test” local observables at points z1, . . . , zn 6= z, w
and control the asymptotics of the correlator as z → w.

Example 4.34. From Wick’s lemma we have the equality

(553) R ∂φ̂(z)∂φ̂(w) = − 1

(z − w)2
1̂+ : ∂φ̂(z)∂φ̂(w) :

for any z 6= w ∈ C\{0}, as equality of linear operators on H. Here for the moment

we make the identity operator 1̂ explicit in the notations. Note that the second
term is regular81 (in fact, holomorphic) as z → w. Thus, for any collection of point
observables O1, . . . , On at points z1, . . . , zn (distinct among themselves and distinct
from w), one has

(554)

〈∂φ(z)∂φ(w)O1(z1) · · ·On(zn)〉 = 〈vac|R
(
∂φ̂(z)∂φ̂(w)Ô1(z1) · · · Ôn(zn)

)
|vac〉 ∼

z→w

∼
z→w

− 1

(z − w)2
〈vac|R

(
1̂(w)Ô1(z1) · · · Ôn(zn)

)
|vac〉+reg. = − 1

(z − w)2
〈1(w)O1(z1) · · ·On(zn)〉+reg.

– this is an asymptotic expression for the correlator as z → w giving the principal
part of its Laurent expansion in z−w; reg. stands for a term with regular behavior
as z → r. The identity operator operator 1̂ and identity field 1 do not affect the
correlators in the r.h.s.

Thus, one has the operator product expansion ∼ vs. = is inconsis-
tent throughout this
section(555) ∂φ(z)∂φ(w) ∼ − 1

(z − w)2
+ reg.

The symbol ∼ means that one can trade the l.h.s. with the r.h.s. under a correlator Am I being com-
pletely redundant
here?

with test observables, yielding the asymptotics as z → w.

Remark 4.35. One can also be more explicit about the regular part: one can write
the rightmost term in (553) as

(556) : ∂φ̂(z)∂φ̂(w) :=
∑

n≥0

1

n!
(z − w)n : ∂n+1φ̂(w) ∂φ̂(w) : .

The refined version of the OPE (555) is then

(557) ∂φ(z)∂φ(w) ∼ − 1
(z − w)2

+
∑

n≥0

1

n!
(z − w)n : ∂n+1φ(w) ∂φ(w) :

︸ ︷︷ ︸
reg.

.

81Generally, “regular” for us in the context of OPEs means just “continuous.”
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The r.h.s. is now a linear combination of local composite fields at the point w.
Under a correlator with test observables, one has

(558) 〈∂φ(z)∂φ(w)O1(z1) · · ·On(zn)〉 ∼
z→w

∼
z→w

− 1

(z − w)2
〈1(w)O1(z1) · · ·On(zn)〉+

∑

n≥0

1

n!
(z−w)n〈: ∂n+1φ(w)∂φ(w) : O1(z1) · · ·On(zn)〉.

The sum on the right converges absolutely if and only if |z − w| < min{|zi −
w|}ni=1 and in this convergence radius is equal to the l.h.s. Thus, the ∼ symbol
here is actually equality, for z sufficiently close to w (closer than any of the test
observables).

Similarly to (553) (or (555)), one finds

(559) R∂̄φ̂(z)∂̄φ̂(w) ∼ − 1̂
(z̄ − w̄)2

+ reg., R∂φ̂(z)∂̄φ̂(w) ∼ reg.

These are again equalities of operators on H; removing the hats and the radial
ordering sign, we have the OPEs in the form similar to (555) – in the language of
abstract correlators of observables as elements of V (of Section 1.7).

Example 4.36. As the next example, consider the OPE between the stress-energy
tensor and ∂φ. From Wick’s lemma we find

(560) R T̂ (z)︸︷︷︸
:− 1

2∂φ̂(z)∂φ̂(z):

∂φ̂(w) =

= −1

2
: ∂φ̂(z)∂φ̂(z) : ∂φ̂(w) +−1

2
: ∂φ̂(z)∂φ̂(z) : ∂φ̂(w) + : −1

2
∂φ̂(z)∂φ̂(z)∂φ̂(w) :

︸ ︷︷ ︸
reg.

∼ ∂φ̂(z)

(z − w)2
+ reg.

This is not quite the desired OPE yet, as the operator in the r.h.s is at z whereas
we want to express the operator productin terms of local operators at w. This is

remedied by expanding ∂φ̂(z) in Taylor series centered at w: ∂φ̂(z) = ∂φ̂(w) + (z−
w)∂2φ̂(w) +O((z − w)2).82 Thus, one has

(561) RT̂ (z)∂φ̂(w) ∼ ∂φ̂(w)

(z − w)2
+
∂2φ̂(w)

z − w + reg.

Similarly, one obtains
(562)

RT̂ (z)∂̄φ̂(w) ∼ ∂̄φ̂(w)

(z̄ − w̄)2
+
∂̄2φ̂(w)

z̄ − w̄ +reg., RT̂ (z)∂̄φ̂(w) ∼ reg., RT̂ (z)∂φ̂(w) ∼ reg.

Example 4.37 (TT OPE). Let us calculate the OPE of the holomorphic compo-
nent of the stress-energy tensor T with itself:

(563) RT̂ (z)T̂ (w) = R : −1

2
∂φ̂(z)∂φ̂(z) : : −1

2
∂φ̂(w)∂φ̂(w) : =

Wick

82Here we used the fact that ∂φ̂(z) is holomorphic in z, see (535), thus, e.g., one does not have

a term (z̄ − w̄)∂∂̄φ̂(w) in the Taylor expansion.
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=
Wick

1

4
: ∂φ̂(z)∂φ̂(z)∂φ̂(w)∂φ̂(w) : +

1

4
: ∂φ̂(z)∂φ̂(z)∂φ̂(w)∂φ̂(w) : +

+
1

4
: ∂φ̂(z)∂φ̂(z)∂φ̂(w)∂φ̂(w) : +

1

4
: ∂φ̂(z)∂φ̂(z)∂φ̂(w)∂φ̂(w) : +

+
1

4
: ∂φ̂(z)∂φ̂(z)∂φ̂(w)∂φ̂(w) : +

1

4
: ∂φ̂(z)∂φ̂(z)∂φ̂(w)∂φ̂(w) : +

1

4
: ∂φ̂(z)∂φ̂(z)∂φ̂(w)∂φ̂(w) :

∼
1
2 1̂

(z − w)4
− : ∂φ̂(z)∂φ̂(w) :

(z − w)2
+ reg.

=
expand ∂φ̂(z) at w

1
2 1̂

(z − w)4
− : ∂φ̂(w)∂φ̂(w) :

(z − w)2
− : ∂2φ̂(w)∂φ̂(w) :

z − w + reg.

=
1
2 1̂

(z − w)4
+

2T̂ (w)

(z − w)2
+
∂T̂ (w)

z − w + reg.

Note the appearance of the fourth order pole here. As we will see later, it is linked
to the phenomenon of central charge (and thus to projectivity of CFT as a Segal’s
functor).

By similar computations, one finds

(564) RT̂ (z)T̂ (w) ∼
1
2 1̂

(z̄ − w̄)4
+

2T̂ (w)

(z̄ − w̄)2
+
∂T̂ (w)

z̄ − w̄ + reg., RT̂ (z)T̂ (w) ∼ reg.

4.5. Digression: path integral formalism (in the example of free scalar
field).

4.5.1. Finite-dimensional Gaussian integral. Let F be anN -dimensional real vector
space equipped with Euclidean metric h and with a positive-definite bilinear form
B : Sym2F → R and let B ∈ End(F ) be an endomorphism such that B(u, v) =
h(u,Bv). Then one has the following well-known Gaussian integral

(565)

∫

F

µhe
− 1

2B(u,u) = (2π)
N
2 (detB)−

1
2 .

Here µh is the Lebesgue measure on F associated with the metric h and B(u, u) is
the quadratic function on F – the restriction of B to the diagonal Diag ⊂ F × F .

4.5.2. Wick’s lemma for the moments of Gaussian measure. For f a polynomial
function on F , consider its expectation value (average) with respect to the normal-
ized Gaussian measure,

(566) 〈f〉 : =
1

(2π)
N
2 (detB)−

1
2

∫

F

µhe
− 1

2B(u,u)f(u).

Note that the normalization factor in the r.h.s. is chosen such that one has

(567) 〈1〉 = 1.

Lemma 4.38 (Wick’s lemma for the moments of Gaussian measure). Let θ1, . . . , θn
be some linear forms on F . Consider the Gaussian expectation value

(568) 〈θ1 · · · θn〉
Then one has

(i) If n is odd, the expectation value (568) is zero.
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(ii) If n = 2m is even, one has

(569) 〈θ1 · · · θn〉 =
∑

perfect matchings
{1, . . . , n} = tmi=1{αi, βi}

B−1(θα1
, θβ1

) · · ·B−1(θαm , θβm).

For example, for n = 2, one has

(570) 〈θ1θ2〉 = B−1(θ1, θ2).

Here on the r.h.s., B−1 is understood as a map B−1 : F ∗⊗F ∗ → R which is adjoint
to the map F ∗ → F – the inverse of the map B# : F → F ∗.

For n = 4, one has
(571)
〈θ1θ2θ3θ4〉 = B−1(θ1, θ2)B−1(θ3, θ4)+B−1(θ1, θ3)B−1(θ2, θ4)+B−1(θ1, θ4)B−1(θ2, θ3),

where the terms correspond to the three perfect matchings on the set {1, 2, 3, 4}.
Note that the r.h.s. of (569) looks similar to the r.h.s. of (518) if we were to

retain only the contributions of perfect matchings (and identify the propagator gpq
with B−1(θp, θq)).

Sketch of proof of Lemma 4.38. First note that part (i) of Lemma is obvious, since
in this case the integrand in (566) changes sign under u→ −u.

For part (ii), consider the “generating functions for moments” – the following
expectation value depending on the “source” parameter J ∈ F ∗:
(572)

〈e〈J,u〉〉 = C

∫

F

µh e
− 1

2B(u,u)+〈J,u〉 = C

∫

F

µh e
− 1

2B(u−B−1J,u−B−1J)+ 1
2B
−1(J,J) =

=
v : =u−B−1J

C

∫

F

µhe
− 1

2B(v,v)+ 1
2B
−1(J,J) = e

1
2B
−1(J,J)

where C = (2π)−
N
2 det(B)

1
2 . Then we can obtain correlators of monomials (569)

by taking multiple partial derivatives of (572) in J and then setting J = 0.
More explicitly, consider an orthonormal basis in F w.r.t. the metric g and

let {up} be the corresponding coordinates on F . It suffices to prove (569) for
θ1 = up1 , . . . , θn = upn a collection of coordinate functions; the general result then
follows by linearity. We have

(573)

〈up1 · · ·upn〉 =
∂

∂Jp1

· · · ∂

∂Jpn

∣∣∣∣
J=0

〈e〈J,u〉〉 =
∂

∂Jp1

· · · ∂

∂Jpn

∣∣∣∣
J=0

e
1
2B
−1(J,J) =

=
∂

∂Jp1

· · · ∂

∂Jpn

∣∣∣∣
J=0

1

2mm!

(
B−1(J, J)

)m

where in the last step we selected the m-th term from the Taylor series of the
exponential, since only it contributes to the n = 2m-th derivative in J at J = 0
(note that in the last expression the restriction to J = 0 is irrelevant – the derivative
is a constant). At this point we see that the answer is the sum over the ways to

distribute the 2m derivatives in J over 2m copies of J in
(
B−1(J, J)

)m
. This resultsThis is a bit rushed..

in the sum over perfect matchings in the r.h.s. of (569).83 E.g., for m = 1 (i.e.

83Note that the set of perfect matchings on the set of 2m elements can be seen as a coset of
the symmetric group, S2m/(Sm n Zm2 ).
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n = 2) we have

(574) 〈up1up2〉 =
1

2

∂

∂Jp1

∂

∂Jp2

(B−1)pqJpJq =

=
1

2

∂

∂Jp1

∂

∂Jp2

(B−1)pqJpJq +
1

2

∂

∂Jp1

∂

∂Jp2

(B−1)pqJpJq = (B−1)p1p2 ,

which is (569) specialized to the coordinate monomial θ1θ2 with θ1 = up1 , θ2 = up2 .
Here brackets show which derivatives hit which instances of J . �

Lecture 22,
10/12/2022

4.5.3. Scalar field theory in the path integral formalism. Let Σ be a surface equipped
with Riemannian metric g. In the path integral (or more appropriately, “functional
integral”) approach, the partition function of the scalar field on Σ is given by a
formal Gaussian integral

(575) Z(Σ) = “

∫

FieldsΣ

Dφ e− 1
4πS(φ)”

over the (infinite-dimesnional) space of functions FieldsΣ = C∞(Σ). Here

(576) S(φ) =

∫

Σ

1

2
(dφ ∧ ∗dφ+

m2

2
φ2dvolg) =

∫

Σ

1

2
φ(∆ +m2)φ dvolg

Here for the moment we are considering scalar field with mass m ≥ 0; later we will
want to set m = 0 to have a conformal theory. In (576) we assume that either Σ
is closed or else an appropriate boundary condition is imposed on fields φ, so that
the boundary term

∫
∂Σ

1
2φ ∗ dφ vanishes – then the right equality in (576) is valid.

The expression (575) is similar to the l.h.s. of (565) if we make the identifications

(577)

F = FieldsΣ, u = φ, h(φ1, φ2) =

∫

Σ

φ1φ2 dvolg,

B(φ1, φ2) =
1

4π

∫

Σ

φ1(∆ +m2)φ2 dvolg, B =
1

4π
(∆ +m2).

Understanding the infinite-dimensional integral (575) as a measure-theoretic in-
tegral is problematic and we think of it as defined by the r.h.s. of (565):

(578) Z(Σ): = det(c(∆ +m2))−
1
2 ,

where c = 1
8π2 .

Remark 4.39. Determinants of differential operators are also nontrivial to make
sense of, but there are viable solutions. One method is “zeta-regularization”: for
D a differential operator with a discrete eigenvalue spectrum, one constructs the
zeta-function of D – a function of a complex variable s defined as

(579) ζD(s) : =
∑

λ

λ−s.

The sum is over the eigenvalues of D (in the case of continuum spectrum, the sum
should be replaced by an integral). The sum converges to a holomorphic function
for Re(s) > A for some A and admits a unique meromorphic continuation to C with
s = 0 a regular point. Then the zeta-regularized determinant is defined in terms of
the derivative of the meromorphically continues zeta-function at s = 0 as

(580) detζ−reg(D) : = e−ζ
′
D(0).



120 PAVEL MNEV

Note that in (565) we wanted the quadratic form B (and thus the operator B) to
be strictly positive. For the scalar field on a closed surface Σ that forces m > 0; in
the massless case the operator B = ∆ has a 1-dimensional kernel given by constant
functions on Σ. Correspondingly, the determinant det ∆ is not well-defined even
with zeta-regularization due to appearance of the eigenvalue λ = 0, which means
that the zeta-function (579) is not defined. For m > 0, the partition function (578)
is well-defined via zeta-regularization.

Moments of Gaussian measure. Correlators in the path integral formalism are
given as Gaussian averages of products of fields and so are given by the Wick’s
lemma (569). For instance for p1 6= p2 ∈ Σ two points, one has

(581) 〈φ(p1)φ(p2)〉 = “
1

Z(Σ)

∫

FieldsΣ

Dφ e− 1
4πS(φ)φ(p1)φ(p2)” : = G(p1, p2)

– the Green’s function of the operator 1
4π (∆ + m2). Here the Green’s function –

the integral kernel of the operator (∆ + m2)−1 = B−1 is analogous to the matrix
element of B−1 appearing in (570), (574). One should think of the r.h.s. of (581)
as the mathematical definition of the l.h.s., motivated by Wick’s lemma in the
finite-dimensional case. Put another way, in the context of infinite-dimensional
Gaussian integrals, Wick’s lemma becomes not a lemma (equality between two
well-defined objects), but a definition of the moments of the infinite-dimensional
Gaussian measure.

Likewise, for the four-point correlator one has

(582)

〈φ(p1)φ(p2)φ(p3)φ(p4)〉 = “
1

Z(Σ)

∫

FieldsΣ

Dφ e− 1
4πS(φ)φ(p1)φ(p2)φ(p3)φ(p4)” : =

: = G(p1, p2)G(p3, p4) +G(p1, p3)G(p2, p4) +G(p1, p4)G(p2, p3)

We note that formulae (581), (582) make sense for any closed surface, for m > 0
(for m = 0, the operator ∆ is non-invertible and hence the Green’s function does
not exist).

Case Σ = C. Let us restrict to the case Σ = C – the complex plane. The Green’s
function G(z, w) can be explicitly found in terms of Bessel’s function K0,84

(583) G(z, w) = 2K0(m · |z − w|),
In particular for m→ 0 and z 6= w fixed one has the asymptotic behavior

(584) G(z, w) ∼
m→0

−2 log |z − w|+ C(m)

where C(m) = −2 logm + c is a constant (in z, w) which diverges as m → 0; here
c = 2(log 2− γ). Thus, we find that the two-point correlator

(585) 〈φ(z)φ(w)〉 = G(z, w)

computed in the path integral formalism does not exist in the conformal limit
m→ 0. Recall that its counterpart in the radial quantization picture (533) is also

problematic due to the appearance of an “infinite constant” 〈vac|φ̂2
0|vac〉.

84Bessel’s function K0(r) is a solution of the ODE
(
d2

dr2
− 1
r
d
dr

+ 1
)
y = 0; it has logarithmic

asymptotics K0(r) ∼ − log r + (log 2 − γ) + o(r) as r → 0 (where γ = 0.5772 . . . is the Euler’s

constant). At r → +∞ the function K0 is exponentially decaying, K0(r) ∼
√

π
2r
e−r.
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Next, if we consider the two-point correlator of derivatives of the field

(586) 〈∂φ(z)∂φ(w)〉 = ∂z∂wG(z, w) →
m→0

− 1

|z − w|2 ,

we see that it has a well-defined limit m → 0, which also agrees with our earlier
result obtained in the radial quantization picture (536).

One can apply this method to construct similar correlators of derivatives of fields
on any surface – the Green’s function itself does not exist in the limit m → 0 but
its derivatives do have a limit.85

As an example of a more complicated local observable, we can consider the
following quadratic polynomial on FieldsΣ:

(587) : ∂φ(z)∂φ(z) : : = lim
w→z

(
∂φ(w)∂φ(z) +

1

(w − z)2

)

When computing the correlator of this observable with a collection of other other
observables by Wick’s lemma, the correction 1

(z−w)2 cancels the contribution of

Wick contraction ∂φ(w)∂φ(z) – so effectively one can say this contraction is pro-
hibited when computing correlators involving : ∂φ(z)∂φ(z) :.86

As an illustration, let us compute the correlator of the stress-energy tensor with
itself (in the path integral formalism):

(588) 〈T (z)T (w)〉 = 〈: −1

2
∂φ(z)∂φ(z) : : −1

2
∂φ(w)∂φ(w) :〉 =

= 〈: −1

2
∂φ(z)∂φ(z) : : −1

2
∂φ(w)∂φ(w) :〉+ 〈: −1

2
∂φ(z)∂φ(z) : : −1

2
∂φ(w)∂φ(w) :〉

=
2

4

−1

(z − w)2

−1

(z − w)2
=

1

2

1

(z − w)4
.

Note that contractions inside : · · · : are prohibited.
OPEs. We remark that one can also find OPEs within the path integral formalism

(from Wick’s lemma). For example, consider the correlator

(589) 〈∂φ(z)∂φ(w)O1(z1) · · ·On(zn)︸ ︷︷ ︸
test observables

〉

in the asymptotics z → w. The correlator is given by a sum over perfect matchings
of constituent fields, where we should distinguish two subclasses of matchings:

(i) Matchings where ∂φ(z) and ∂φ(w) are paired (Wick-contracted) – these terms
sum up to − 1

(z−w)2 〈O1(z1) · · ·On(zn)〉.
(ii) Matchings where ∂φ(z) and ∂φ(w) are not paired (rather, each is paired with

one of Oi’s.) These terms are regular as z → w.

Thus, one obtains

(590) 〈∂φ(z)∂φ(w)O1(z1) · · ·On(zn)〉 ∼
z→w

− 1

(z − w)2
〈O1(z1) · · ·On(zn)〉+ reg.

85Of course, on a general surface we don’t have the radial quantization picture to compare to –

that one is specific to Σ = C. So on general Σ it makes sense to take the path integral prescription
as the definition of CFT correlators.

86In the path integral formalism we cannot talk about normal ordering of operators – since we
don’t have operators – so the limiting process in the r.h.s. of (587) becomes the definition of the

“normally-ordered” differential polynomial in the l.h.s.
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This corresponds to the OPE (555) which we previously obtained from the radial
quantization picture.

singular

z w

z1

z2

∂φ ∂φ

∂φ

∂φ
∂2φ

∂2φ

O2

O1

C

regular

z w

z1

z2

∂φ ∂φ

∂φ

∂φ
∂2φ

∂2φ

O2

O1

C

Figure 27. An example of a singular and a regular (as z → w)
contribution to the correlator (589). In this example, the two test
observables are O1 =: ∂φ∂φ : and O2 =: ∂2φ∂2φ :; we depict ob-
servables as corollas with the number of prongs being the degree
of the differential monomial in φ; edges correspond to Wick con-
tractions. Thus each picture is one summand in the computation
of the correlator via Wick’s lemma.

Remark 4.40. When studying the theory on C we introduced a small positive mass
m in order to have well-defined Green’s function (and then we let m → 0 in cor-
relators). Another possibility, instead of introducing a mass, is to have a massless
theory, but replace C with a disk DR = {z ∈ C | |z| ≤ R} of large radius R,
where one imposes Dirichlet boundary condition φ|∂DR = 0. Then one can write
an explicit Green’s function

(591) G(z, w) = −2 log
|z − w|
|R− zw̄

R |
∼

R→∞
−2 log |z − w|+ C

with C = 2 logR.

Summary: path integral vs. radial quantization. The path integral formalism al-
lows one another way to compute the same quantities as the radial quantization (or
“operator formalism”) does – correlators and OPEs. The two formalisms should be
seen as complementing each other: path integral formalism has the benefit that it
can be applied to general surfaces, not just C. The benefit of the operator formalism
is that it also recovers the space of states (and extra structure it might have, e.g.,
in the case of scalar field, the action of the Heisenberg Lie algebra). So, ultimately,
the path integral formalism is better suited for handling global geometry (nontrivial
surfaces) while the operator formalism gives a good handle of the local picture of
CFT near a puncture (where Σ can be approximated by C∗).

5. General CFT on C: Belavin-Polyakov-Zamolodchikov axiomatic
picture

In this Section we will be talking about Belavin-Polyakov-Zamolodchikov [6]
picture of a general CFT on C, sometimes using the scalar field as an illustration.
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5.1. Virasoro algebra.

Definition 5.1. Virasoro algebra is the central extension C → Vir → W of the
Witt algebra W (the Lie algebra of meromorphic vector fields on C with only pole
at 0 allowed, see Section 2.5.1), defined by the Lie brackets

(592)

[
f(z)

∂

∂z
, g(z)

∂

∂z

]Vir

= (fg′ − gf ′) ∂
∂z

+
c

12
K
∮

γ

dz

2πi
f ′′′(z)g(z),

where K is the central element, c ∈ C is a complex number (a parameter of the
central extension) – the “central charge,” γ is a closed simple curve going around
0 counterclockwise.87

Virasoro algebra has the standard set of generators {Ln}n∈Z,K subject to com-
mutation relations

(593) [Ln, Lm] = (n−m)Ln+m + δn,−m
c

12
(n3 − n)K, n,m ∈ Z

and [K, · · · ] = 0; Ln are the lifts of the standard generators ln = −zn+1∂z of the
Witt algebra.

Exercise: check that the Lie brackets (592) or equivalently (593) satisfy the
Jacobi identity.

In fact, Virasoro algebra is the unique (up to a choice of the value of the param-
eter c) central extension of the Witt algebra, which is the content of the following
theorem.

Feigin-Fuchs?
Theorem 5.2. One has

(594) H2
Lie(W,C) = C

– the second Lie algebra (Chevalley-Eilenberg) cohomology of the Witt algebra (with
coefficients in the trivial module) has rank 1. This cohomology is generated by the
cohomology class of the Lie 2-cocycle

(595) λ(f(z)∂z, g(z)∂z) =
1

12

∮

γ

dz

2πi
f ′′′(z)g(z).

Lecture 23,
10/14/2022

5.2. Axiomatic CFT on C. Action of Virasoro algebra on H. We will start
setting up general conformal field theory on C as an axiomatic picture, following
[6].

In this picture, a CFT is the following collection of data.

(I) Space of states. One has a complex vector space – the space of states H –
with a distinguished vector |vac〉 ∈ H.

(II) Space of fields, local operators. One has a complex vector space of local
observables (or “space of composite fields”) V . For z ∈ C we will denote Vz
a copy of V placed at z;88 we denote a copy of an element Φ ∈ V placed at
a point z by Φ(z) ∈ Vz.

87The conventional normalization factor 1
12

in (592) is chosen in such a way that the central

charge of the free massless scalar field is c = 1.
88I.e. we are thinking of a trivial vector bundle V = V ×C over C with typical fiber V and Vz

the fiber over a specific point z.
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For z 6= 0, Φ(z) ∈ Vz is represented by a (possibly unbounded) operator

Φ̂(z) ∈ End(H).89

(III) Field-state correspondence. One has a linear isomorphism

(596) s : V
∼−→ H

mapping a field Φ ∈ V to the state limz→0 Φ̂(z)|vac〉. (In particular, such a
limit is required to exist for any Φ and determine an isomorphism between
fields and states.) See Section 5.3 below for an example.

(IV) Inner product. Both H and V carry real structures and hermitian inner
products (intertwined by s). For the hermitian conjugate of a local operator
one has

(597) (Φ̂(z))+ = z̄−2hz−2h̄Φ̂∗(1/z̄).

Here ∗ denotes the complex conjugation in V and (h, h̄) is the conformal
weight of the field V (see Definition 5.12 below).

(V) Radial ordering, domains of field operators, same-time commuta-
tivity. For any n-tuple of elements Φ1, . . . ,Φn ∈ V , the vector

(598) Φ̂1(z1) · · · Φ̂n(zn)|vac〉
is assumed to be well-defined if zi’s are radially ordered, |z1| ≥ · · · ≥ |zn|. As
a consequence (using the same axiom for a string of n+1 local operators) the

vector (598) is in the domain of Φ̂(z) if |z| ≥ |z1| and z 6= zi for i = 1, . . . , n.

Operators Φ̂1(z), Φ̂2(w) are assumed to commute if z 6= w and |z| = |w|.
(VI) Correlators. For an n-tuple of elements Φ1, . . . ,Φn ∈ V , the correlator is

defined as

(599) 〈Φ1(z1) · · ·Φn(zn)〉 : = 〈vac|R
(

Φ̂1(z1) · · · Φ̂n(zn)
)
|vac〉.

where 〈vac| : =
〈
|vac〉,−

〉
H ∈ H∗ is the covector dual to the vector |vac〉.

The correlator (599) is a smooth function on Cn(C) – the open configuration
space of n points on C, depending linearly on the fields Φ1, . . . ,Φn.90

(VII) Identity field and stress-energy tensor. V contains a element 1 act-
ing on H by identity and special elements T , T satisfying holomorphic-
ity/antiholomorphicity

(600) ∂̄T̂ (z) = 0, ∂T̂ (z) = 0

and the OPEs

RT̂ (z)T̂ (w) ∼
c
2 1̂

(z − w)4
+

2T̂ (w)

(z − w)2
+
∂T̂ (w)

z − w + reg.(601)

RT̂ (z)T̂ (w) ∼
c̄
2 1̂

(z̄ − w̄)4
+

2T̂ (w)

(z̄ − w̄)2
+
∂̄ T̂ (w)

z̄ − w̄ + reg.(602)

RT̂ (z)T̂ (w) ∼ reg.(603)

with c, c̄ some complex numbers (the holomorphic and antiholomorphic cen-
tral charges).

89In other words, there is a map Y : V × C∗ → End(H), linear in V and smooth on C∗. We

denote Y (Φ, z) by Φ̂(z).
90If one of the points zi in the l.h.s. of (599) is zero, one understands the r.h.s. as a limit

zi → 0.
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Elements 1, T, T ∈ V are real (with respect to the real structure on V ).
(VIII) Projective action of conformal vector fields on states. One has a

projective representation ρ of the Lie algebra of conformal vector fields on
C∗ on H, where the conformal vector field v = u(z)∂z +u(z)∂z̄ on C∗ (with u
a meromorphic function on C with pole allowed only at z = 0) is represented
by the operator

(604) ρ(u∂ + ū∂̄) : = − 1

2πi

∮

γ

(
dz u(z) T̂ (z)− dz̄ u(z) T̂ (z)

)
∈ End(H)

where γ ∈ C∗ is a closed contour going around zero once counterclockwise.91

In particular the standard generators of the Witt algebra W, ln = −zn+1∂z,
are represented by

(605) L̂n : = ρ(−zn+1∂z) =
1

2πi

∮

γ

dz zn+1T̂ (z) ∈ End(H)

and likewise for the generators of the antiholomorphic copy W of the Witt
algebra:

(606) L̂n : = ρ(−z̄n+1∂z̄) =
1

2πi

∮

γ

dz̄ z̄n+1T̂ (z̄) ∈ End(H).

We remark that the inverse formulae for (605) and (606), expressing the

stress-energy tensor in terms of operators L̂n, L̂n are:

(607) T̂ (z) =
∑

n∈Z
z−n−2L̂n, T̂ (z) =

∑

n∈Z
z̄−n−2L̂n.

I.e., essentially (and up to a shift in numbering), operators L̂n are the Fourier

modes of the field T̂ (z) restricted to a circle.

Lemma 5.3. (i) As a consequence of the TT OPE (601), operators L̂n satisfy
the Virasoro commutation relation (593) with central charge c (the coefficient
in the fourth order pole in (601)).

(ii) Similarly, as a consequence of T T OPE (602), operators L̂ satisfy the Vira-
soro commutation relation with central charge c̄.

(iii) As a consequence of TT OPE (603), the generators of the holomorphic and

antiholomorphic copies of the Virasoro algebra commute: [L̂n, L̂m] = 0.

We will prove this lemma in Section 5.2.2 below.

Remark 5.4. In the axioms above, it would be more correct to distinguish two
versions of the space of states:

• H = Hsmall – the one identified with V by the field-state correspondence
(596), containing the vector |vac〉 and carrying a hermitian inner product.

91If we combine T̂ (z) and T̂ (z) into a single object – the total stress-energy operator T̂ total(z) =

T̂ (z)(dz)2 + T̂ (z)(dz̄)2 – a quadratic differential on C∗ valued in End(H), we can phrase (604) as

ρ(v) = − 1

2πi

∮
γ
ιvT̂

total.

Here the contraction with the vector field v converts the total stress-energy tensor from a quadratic
differential into an (operator-valued) 1-form, which can then be integrated over the 1-cycle γ.
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• A completion Hbig of Hsmall on which the field operators Φ̂(z) act (it should
be a completion containing all vectors of the form (598)).

E.g. in the scalar field theory, we can define Hsmall to be the set of all finite
linear combinations of basis vectors (486), while Hbig is spanned by the same basis
but has to contain certain infinite linear combinations.

We note that neither Hsmall nor Hbig is a Hilbert space: Hsmall carries a hermit-
ian form, but is not complete with respect to it, while Hbig contains vectors (598)
which generally have infinite L2 norm if |z1| ≥ 1.

One can also consider the L2 completion HHilb of Hsmall. As follows from the
axioms (IV) and (V), HHilb is guaranteed to contain the vector (598) only if zi’s are
distinct, radially-ordered and are contained in the open unit disk {z ∈ C | |z| < 1}.92

Remark 5.5. The hermitian conjugate of the Virasoro generator L̂n (605) is readily
computed from (597):

(608) L̂+
n =

−1

2πi

∮

γ

dz̄ z̄n+1 z̄−4T̂ (1/z̄)︸ ︷︷ ︸
T̂ (z)+

=
w=1/z̄

1

2πi

∮

γ′
dww−n+1T̂ (w) = L̂−n

Here γ′ is the image of the contour γ under the inversion map z 7→ 1/z̄, which is
again a contour going once around zero in positive direction. We have used the fact
that T has conformal weight (2, 0), see Example 5.13. Similarly, one proves

(609) L̂
+

n = L̂−n.

The following is also an immediate consequence of (597).

Lemma 5.6. For any fields Φ1, . . . ,Φn and z1, . . . , zn ∈ C\{0} an n-tuple of dis-
tinct points one has

(610) 〈Φ1(z1) · · ·Φn(zn)〉 =

n∏

i=1

z̄−2hi
i z−2h̄i

i · 〈Φ∗1(1/z̄1) · · ·Φ∗n(1/z̄n)〉

where (hi, h̄i) is the conformal weight of Φi. The bar over the correlator in the l.h.s.
stands for complex conjugation.

Proof. Without loss of generality we may assume that points zi are radially ordered,
|z1| ≥ · · · ≥ |zn|. We have

(611) 〈Φ1(z1) · · ·Φn(zn)〉 = 〈vac|Φ̂1(z1) · · · Φ̂n(zn)|vac〉 =

= 〈vac|
(

Φ̂1(z1) · · · Φ̂n(zn)
)+

|vac〉 = 〈vac|Φ̂n(zn)+ · · · Φ̂1(z1)+|vac〉

=
(597)

n∏

i=1

z̄−2hi
i z−2h̄i

i · 〈vac|Φ̂∗n(1/z̄n) · · · Φ̂∗1(1/z̄1)|vac〉

92Indeed, for the square of the L2 norm of the vector (598) we have

||Φ̂1(z1) · · · Φ̂n(zn)|vac〉||2 = 〈vac|
(
Φ̂n(zn)

)+ · · · (Φ̂1(z1)
)+

Φ̂1(z1) · · · Φ̂n(zn)|vac〉 =∏n
i=1 z̄

−2hi
i z

−2h̄i
i · 〈vac|Φ̂∗n(1/z̄n) · · · Φ̂∗1(1/z̄1)Φ̂1(z1) · · · Φ̂n(zn)|vac〉. The correlator on the

right is certain to exist only if the insertion points of the operators 1/z̄n, . . . , 1/z̄1, z1, . . . , zn are

distinct and the sequence is radially ordered. This implies that all zi’s must be in the open unit
disk. (Note that if |z1| = 1 then 1/z̄1 = 1/z1, thus the sequence is radially ordered but not all
points are distinct.)
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=

n∏

i=1

z̄−2hi
i z−2h̄i

i · 〈Φ∗1(1/z̄1) · · ·Φ∗n(1/z̄n)〉

�

5.2.1. Example: action of Virasoro algebra on H in the scalar field theory. Abelian
Sugawara construction. In the example of the free scalar field theory we know the
stress-energy tensor (551):

(612) T̂ (z) = −1

2
: ∂φ̂(z)∂φ̂(z) :=

1

2

∑

j,k∈Z

z−j−k−2 : âj âk :

where we used the expansion (535) of ∂φ̂(z) in terms of creation-annihilation oper-

ators. In particular, T̂ (z) has no dependence on z̄, i.e. the holomorphicity axiom

(600) holds (we skip the computations for T̂ (z) – they are similar). OPEs (601),
(602), (603) hold with the central charges c = c̄ = 1 – we know this from the explicit

computation in Example 4.37. From (605) and (612) we find the operators L̂n to
be

(613) L̂n =
1

2

∑

k∈Z

: âkân−k :

and similarly

(614) L̂n =
1

2

∑

k∈Z

: ̂̄ak̂̄an−k :

Note that the normal ordering is only relevant for L̂n, L̂n with n = 0, as for n 6= 0
the operators âk, ân−k commute for any k, and likewise for ̂̄ak, ̂̄an−k.

Exercise: Show by a direct computation that the operators (613) satisfy Vira-
soro commutation relations with c = 1, from the commutation relations (472) for
the creation/annihilation operators.

Equality (613) expresses the generators of Virasoro algebra with central charge
c = 1 as quadratic polynomials in generators of the Heisenberg Lie algebra (476).
Thus, we have an inclusion

(615) Virc=1 ↪→ U (2)Heis,

where U (2) means the subspace of (at most) quadratic elements in the universal
enveloping algebra (of the Heisenberg Lie algebra). This inclusion is the abelian
version of the Sugawara construction, realizing Virasoro algebra (at certain other
values of c) inside the quadratic part of the universal enveloping algebra of the
affine Lie algebra (a.k.a. Kac-Moody algebra) ĝ. We will come to the non-abelian
Sugawara construction later, when talking about Wess-Zumino-Witten model.

Remark 5.7. Comparing (613) and (614) with (489), (490), we observe the equalities

(616) L̂0 + L̂0 = Ĥ, L̂0 − L̂0 = P̂ ,

expressing the quantum Hamiltonian and the total momentum operators in terms

of Virasoro generators L̂0, L̂0. In a general CFT, formulae (616) become the defi-
nitions of the Hamiltonian and the total momentum operators.

Note that due to (604), the operator Ĥ = L̂0 + L̂0 represents on H the vector
field −z∂z − z̄∂z̄ or, in terms of coordinates τ, σ on the cylinder, the vector field
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−∂τ . Likewise, the operator P̂ = L̂0 − L̂0 represents the vector field −z∂z + z̄∂z̄
or, in terms of the cylinder, i∂σ. Ultimately, the operators represent infinitesimal
translations along the cylinder and rotations of the cylinder, as the Hamiltonian
and total momentum should, cf. Remark 4.12.

5.2.2. Virasoro commutation relations from TT OPE (contour integration trick).
Let us prove Lemma 5.3. We will focus on the case (i): assuming that the TT OPE

(601) is known, let us calculate the commutator of operators L̂n, L̂m using their
definition via the stress-energy tensor (605):

(617) [L̂n, L̂m] = L̂nL̂m − L̂mL̂n =

=

∮

γ0,R

dz

2πi

∮

γ0,r

dw

2πi
zn+1wm+1T̂ (z)T̂ (w)−

∮

γ0,R

dw

2πi

∮

γ0,r

dz

2πi
wm+1zn+1T̂ (w)T̂ (z)

=

∮

γ0,R

dw

2πi

∮

Γ

dz

2πi
zn+1wm+1R

(
T̂ (z)T̂ (w)

)
.

Here we denoted γz,r the circle of radius r centered at z, with counterclockwise
orientation; we assume the two radii to satisfy 0 < r < R; Γ is the 1-cycle γR′ − γr
with R′ > R. We are exploiting the freedom to deform the integration contour,
due to holomorphicity of the integrand for z 6= w and z, w 6= 0 (in particular,
the property (600)). We can then further deform the contour Γ to the circle γw,ε
centered at w, of radius 0 < ε < R.

w w

Γ

w

0 0 0

Figure 28. Deformation of the integration contour for the integral
over z (solid curve). The dashed circle is the (fixed) integration
contour for w.

Replacing the radially ordered product of stress energy tensors with the OPE
(601), we have then

(618)

[L̂n, L̂m] =

∮

γ0,R

dw

2πi

∮

γw,ε

dz

2πi
zn+1wm+1

(
c
2 1̂

(z − w)4
+

2T̂ (w)

(z − w)2
+
∂T̂ (w)

z − w + reg.

)

=
z = w + α,
expand in α

∮

γ0,R

dw

2πi

∮

γ0,ε

dα

2πi

(
wn+1 + (n+ 1)wnα+

(n+ 1)n

2
wn−1α2 +

(n+ 1)n(n− 1)

6
α3 + · · ·

)
·

· wm+1

(
c
2 1̂

α4
+

2T̂ (w)

α2
+
∂T̂ (w)

α
+ reg.

)
.
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Here the integral over α simply computes the residue at α = 0 of the integrand,
i.e., the coefficient of α−1. Thus, continuing the computation we have

(619)

[L̂n, L̂m] =

∮

γ0,R

dw

2πi

(
wn+m+2∂T̂ (w)︸ ︷︷ ︸
integrate by parts

+2(n+1)wn+m+1T̂ (w)+
(n+ 1)n(n− 1)

6

c

2
wn+m−11̂

)

=

∮

γ0,R

dw

2πi

(
(2(n+ 1)− (n+m+ 2))︸ ︷︷ ︸

n−m

wn+m+1T̂ (w) +
c

12
(n3 − n)wn+m−11̂

)

=
(605)

(n−m)L̂n+m +
c

12
(n3 − n)δn,−m1̂.

This is indeed the Virasoro commutation relation (593). This proves case (i) of
Lemma 5.3. The other two cases are proved similarly. Lecture 24,

10/22/2022
5.3. Field-state correspondence in the example of the scalar field CFT.
Let us examine the field-state correspondence is the map (596),

(620)
s : V → H

Φ 7→ lim
z→0

Φ̂(z)|vac〉

in the case of the scalar field theory. We start with simple examples.
For Φ = i∂φ, we have

(621) s(i∂φ) : = lim
z→0

i∂φ̂(z)|vac〉 = lim
z→0

∑

n∈Z
z−n−1ân|vac〉

where we used (535) to express the derivative of the field operator in terms of
creation/annihilation operators. Notice that for n ≥ 0 one has ân|vac〉 = 0, while
for n ≤ −2 one has z−n−1 →

z→0
0. So, the only surviving term in the r.h.s. of (621)

is n = −1:

(622) s(i∂φ) = â−1|vac〉
– a state with a single left-mover of energy-momentum (1, 1).

For higher derivatives of the fundamental field φ we find
(623)

s(i∂pφ) = lim
z→0

i∂pφ̂(z)|vac〉 = lim
z→0

∑

n∈Z
(−n−1)(−n−2) · · · (−n−p+1)z−n−pân|vac〉

where p ≥ 1. In the r.h.s. the summand satisfies the following:

• vanishes for n ≥ 0, since then ân|vac〉 = 0,
• vanishes as z → 0 for n ≤ −p− 1, since then limz→0 z

−n−p = 0,
• vanishes for n = −1,−2, . . . ,−p+1, since then the product (−n− 1)(−n− 2) · · · (−n− p+ 1)

vanishes.

Thus, the only surviving term is n = −p:
(624) s(i∂pφ) = (p− 1)! â−p|vac〉
– a state with a single left-mover of energy-momentum (p, p).

Remark 5.8. Note that

(625) s(φ) = lim
z→0

φ̂(z)|vac〉 =
(523)

lim
z→0

φ̂0|vac〉



130 PAVEL MNEV

is ill-defined. This absence of the image of φ under field-state correspondence
(together with the fact that correlators of φ are ill-defined) reinforces the point
that φ should not be considered as an element of V (while derivatives of φ are in
V ).

As a more complicated example, consider the normally ordered differential mono-
mial Φ =: i∂φ ∂φ :,
(626)

s(: i∂φ i∂φ :) = lim
z→0

: i∂φ̂(z) i∂φ̂(z) : |vac〉 =
∑

n,m∈Z
z−n−m−2 : ânâm : |vac〉 = â−1â−1|vac〉

– the state with two left-moving quanta of energy-momentum (1, 1). Here the only
surviving term in the double sum is n = m = −1, similarly to the situations above.

In particular, since the quantum stress-energy tensor (as an element of V ) T =
− 1

2 : ∂φ∂φ :, we have

(627) s(T ) =
1

2
â−1â−1|vac〉.

Note that using (613), we can write the r.h.s. as L̂−2|vac〉.
Remark 5.9. In fact, in any CFT one has

(628) s(T ) = L̂−2|vac〉.
This, together with properties L̂≥−1|vac〉 = 0 and L̂−2−p = s( 1

p!∂
pT ) for p ≥ 0, is

a consequence of (607).

A generalization of the examples above is the case where Φ is a general normally-
ordered differential monomial in φ:

(629) s
(

:




r∏

j=1

i∂njφ

(nj − 1)!



(

s∏

k=1

i∂̄n̄kφ

(n̄k − 1)!

)
:
)

=

= â−n1 · · · â−nr â−n̄1 · · · â−n̄s |vac〉 =
(486)

|0; {ni}; {n̄j}〉

where 1 ≤ n1 ≤ · · · ≤ nr, 1 ≤ n̄1 ≤ · · · ≤ n̄s. The computation is similar to the
computations above (only a single term in the (r + s)-fold sum survives). Note
that we identified all basis vectors (486) of H with π0 = 0 as images of particular
vectors in V (differential monomials), under the field-state correspondence.

Since the map (620) is supposed to be an isomorphism, this means that V should
contain some more elements in addition to differential polynomials in φ,93 with
images of these extra elements giving the states with π0 6= 0.

5.3.1. Vertex operators (in the scalar field theory). A vertex operator is defined as

(630) V̂α(z) : = : eiαφ̂(z) :

where α ∈ R is a parameter (“charge”). We emphasize that the vertex operator is
a construction specific to the scalar field theory. We understand the operator (630)
as a local operator acting on H, corresponding to an abstract field Vα ∈ V placed
at a point z ∈ C.

93We mean normally-ordered differential polynomials, where φ is not allowed to appear without
derivatives, cf. Remark 5.8.
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Let us find the state corresponding to the vertex operator Vα:

(631) s(Vα) = lim
z→0

V̂α|vac〉 = lim
z→0

: eiαφ̂(z) : |vac〉 =

=
(523)

eiα
∑
n<0

i
n (ânz

−n+ânz̄
−n)eiα

∑
n>0

i
n (ânz

−n+ânz̄
−n)eiαφ̂0���

��
eαπ̂0 log(zz̄)|vac〉

Here the last exponential acting on |vac〉 acts as identity, since π̂0|vac〉 = 0.
The next observation is that in Schrödinger representation of the quantum free
particle system (corresponding to the zero-mode φ0, π0), with states being L2

functions of π0, one has π̂0 = π0· a multiplication operator and φ̂0 = i ∂
∂π0

a

derivation operator (cf. the discussion in Example 4.27). Thus, the exponential

eiαφ̂0 : ψ(π0) 7→ ψ(π0 − α) is the shift operator. In particular, it maps the vacuum
|π0 = 0〉 represented by the delta-function centered at zero to the delta-function

centered at α, i.e., the vector |π0 = α〉. In other words, eiαφ̂0 maps the vacuum |vac〉
to the pseudo-vacuum |π0 = α〉 with zero-mode momentum α. Thus, continuing
the computation (631), we have

(632) s(Vα) = eiα
∑
n<0

i
n (ânz

−n+ânz̄
−n)eiα

∑
n>0

i
n (ânz

−n+ânz̄
−n)|π0 = α〉

Here the right exponential acts by identity, since the annihilation operators in the
exponent kill the pseudovacuum. The left exponential becomes identity as z → 0,
thus one has

(633) s(Vα) = |π0 = α〉
So, the image of a vertex operator under the field-state correspondence is a

pseudovacuum. Combining this computation with the computation with (629), we
have

(634) s(: (differential monomial in φ) · Vα :) = |α; {ni}; {n̄j}〉
with differential monomial as in the l.h.s. of (629). Thus are recovering all basis
vectors ofH as images of elements of V , once we have adjoined the vertex operators.
Put another way, for the field-state correspondence to be an isomorphism, we should
set the space of local fields in the scalar field theory to be

(635) V = spanC{: (differential polynomials in φ) · Vα : | α ∈ R}
where as usual differential polynomials are not allowed to contain φ without deriva-
tives. Lecture 25,

10/26/2022
5.4. Local Virasoro action at a puncture. We continue with the CFT data/axioms
list:

(IX) Local projective action of conformal vector fields on fields at a point
z. Similarly to the projective action (604) of conformal vector fields on states,
one has a projective action of conformal vector fields with singularities (vector

fields of the form v = u(w)∂w + u(w)∂w̄ with u a meromorphic function) on
fields at a point z ∈ C\{0},

(636) ρ(z) : confsing(C)→ End(Vz)

given by
(637)

ρ(z)(u∂ + ū∂̄) ◦ Φ(z) : = − 1

2πi

∮

γz

(
dw u(w)T (w) Φ(z) + dw̄ u(w)T (w) Φ(z)

)
,
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for any field Φ(z) ∈ Vz. Here γz is a contour going around z once in a positive
direction (and small enough so that it does not enclose any poles of u apart
from z). We understand the r.h.s. of (637) as defining a new local field at
z. Equality (637) is understood either (a) as an equality under a correlator
with an arbitrary collection of test field, or (b) as equality of local operators
(then we put hats on T , Φ and the l.h.s., and we radially order the operator
product in the r.h.s.).

In particular, the vector fields −(w − z)n+1∂w (standard meromorphic vector
fields generating the Witt algebra, centered at z instead of the origin) correspond

to certain operators L
(z)
n acting on Vz:

(638) L(z)
n Φ(z) : = ρ(z)(−(w − z)n+1∂w)Φ(z) =

1

2πi

∮

γz

dw (w − z)n+1T (w) Φ(z)

We will also write the l.h.s. as (LnΦ)(z). Calculating the integral on the right as a
residue, we observe that the fields LnΦ are the coefficients of the OPE T (w)Φ(z):

(639) T (w)Φ(z) ∼
∑

n∈Z
(w − z)−n−2(LnΦ)(z) =

= · · ·+ (L1Φ)(z)

(w − z)3
+

(L0Φ)(z)

(w − z)2
+

(L−1Φ)(z)

w − z +(L−2Φ)(z) + (w − z)(L−3Φ)(z) + · · ·︸ ︷︷ ︸
reg.

By an argument similar to Lemma 5.3 (and the computation of Section 5.2.2),
operators Lzn acting on Vz satisfy Virasoro commutation relations.

Similarly to (638), one defines operators L
(z)

n acting on Vz, corresponding to the
terms in the OPE T (w)Φ(z).Explain

more/prove? Remark 5.5 has an analog for the hermitian conjugates of the operators L
(z)
n , L

(z)

n :

(640) (L(z)
n )+ = L

(z)
−n, (L

(z)

n )+ = L
(z)

−n.

This follows from Remark 5.5 by field-state correspondence.

Remark 5.10. Consider the OPE (639) for Φ = 1 the identity field. One has

(641) T (w)1(z) = T (w) =
∑

n≥0

1

n!
(w − z)n∂nT (z)

Where on the right we have the Taylor expansion of T (w) centered at z; the sum is
convergent for w sufficiently close to z.94 Comparing the coefficients in (641) and
in (639) with Φ = 1, we obtain
(642)

. . . , L11 = 0, L01 = 0, L−11 = 0, L−21 = T , L−31 = ∂T, L−41 =
1

2!
∂2T . . .

One has similar formulae for Ln1, in particular, one has L−21 = T .

(X) L−1 axiom.95 For any Φ ∈ V one has

(L−1Φ)(z) = ∂Φ(z),(643)

94More precisely, under a correlator with test fields Φ1(z1), . . . ,Φn(zn), the field T (w) can be

replaced with the r.h.s. of (641) – and the sum is convergent – if |w − z| < |zi − z| for all i.
95Informally, the axiom can be phrased as “L−1 acts by infinitesimally moving the puncture

z.”
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(L−1Φ)(z) = ∂̄Φ(z).(644)

Here one understands that the field ∂Φ(z) is defined by its behavior under a
correlator with test fields: 〈∂Φ(z)Φ1(z1) · · ·Φn(zn)〉 = ∂z〈Φ(z)Φ1(z1) · · ·Φn(zn)〉
(or in the language of field operators, ∂̂Φ(z) : = ∂

∂z Φ̂(z)). The case of ∂̄Φ is
similar.

Remark 5.11. If v = u∂ + ū∂̄ is a conformal vector field on C without singularities
(except possibly at zero), then the field operator corresponding to (637) is

(645) ̂ρ(z)(v) ◦ Φ(z) = [ρ(v), Φ̂(z)]

where the r.h.s. is the commutator of the field operator with the operator (604)
representing the vector field v on the space of states H. Equality (645) is proven
by a contour integration trick similar to one of Section 5.2.2: the r.h.s. of (645) is
an integral over a cycle Γ – the difference of two circles, one of radius R > |z| and
one of radius r < |z|; this contour can be deformed to a single circle centered at z,
which yields the l.h.s. of (645).

Definition 5.12. We say that a field V ∈ Φ has conformal weight (or conformal
dimension) (h, h̄) ∈ R2 if one has

(646) (L0Φ)(z) = hΦ(z), (L0Φ)(z) = h̄Φ(z),

i.e., Φ is an eigenvector of operators L0, L0 simultaneously, with eigenvalues h, h̄.

Example 5.13. Consider (639) for Φ = T and compare with the standard TT
OPE (601). We obtain

(647) L≥3T = 0, L2T =
c

2
1, L1T = 0, L0T = 2T, L−1T = ∂T

Likewise, from TT OPE (603) we have

(648) L≥−1T = 0.

In particular, we see that T has conformal weight (h, h̄) = (2, 0). Similarly, T has
conformal weight (0, 2).

We will be assuming that L0, L0 are simultaneously diagonalizable on V ,96 thus
the space V is bi-graded by conformal weight:

(649) V =
⊕

h,h̄⊂∆

V h,h̄

where ∆ ⊂ R2 is some set of admissible conformal weights.
The action of a Virasoro generator L−n changes the conformal weight of a field

as97

(650) (h, h̄)→ (h+ n, h̄).

Similarly, the action of L−n changes the conformal weight as

(651) (h, h̄)→ (h, h̄+ n).

96There are interesting examples of CFTs where this diagonalizability assumption fails. Such
CFTs are called “logarithmic.”

97This is a consequence of the relation [L0, L−n] = nL−n in Virasoro algebra: if L0Φ = hΦ,

then one has L0(L−nΦ) = L−n(L0 + n)Φ = (h+ n)L−nΦ. Likewise, [L0, L−n] = 0 implies that

the eigenvalue of L0 does not change under the action of L−n.
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The following is a standard assumption on admissible conformal weights.

Assumption 5.14.

(a) ∆ ⊂ R≥0 × R≥0,98

(b) If (h, h̄) ∈ ∆ then99

(652) h− h̄ ∈ Z,

(c) V 0,0 = Span(1).

5.5. Primary fields.

Definition 5.15. A field V ∈ Φ is said to be primary, of conformal weight (h, h̄)
if it satisfies the OPE

(653) T (w)Φ(z) ∼ hΦ(z)

(w − z)2
+
∂Φ(z)

w − z +reg., T (w)Φ(z) ∼ h̄Φ(z)

(w̄ − z̄)2
+
∂̄Φ(z)

w̄ − z̄ +reg.

Equivalently, Φ ∈ V is primary, with conformal weight (h, h̄), if

(654)
L>0Φ = 0, L>0Φ = 0,
L0Φ = hΦ, L0Φ = h̄Φ.

Put another way, a primary field is a highest weight vector of V as a module over
Virasoro⊕Virasoro, of weight (h, h̄).

For Φ a primary field, fields obtained from it by repeated application of negative
Virasoro generators L<0, L<0, i.e., fields of the form

(655) L−kr · · ·L−k1
L−ls · · ·L−l1Φ

with k1, . . . , kr, l1, . . . , ls ≥ 1, are called “descendants” of Φ. If Φ has conformal
weight (h, h̄) then the descendant (655) has conformal weight (h+

∑
i ki, h̄+

∑
j lj)

(cf. (650), (651)). The subspace of V spanned by all descendants of a primary field
Φ is called the “conformal family” of Φ.add a table of first

descendants? The space of fields V splits as a direct sum of irreducible highest weight modules
of the Lie algebra Vir⊕Vir with primary fields being the highest weight vectors:

(656) V =
⊕

α

V (Φα).

Here the sum is over species of primary fields (i.e. over a basis in the subspace of
primary fields in V ); V (Φα) is the conformal family of Φα.

Remark 5.16. There can be linear dependencies between descendants of a given
Φα.100 More precisely, one can consider a Verma module Vh,h̄ (free highest weight
module) of the Lie algebra Vir⊕Vir – the span of formal expressions L−kr · · ·L−k1L−ls · · ·L−l1Φα
with 1 ≤ k1 ≤ · · · ≤ kr, 1 ≤ l1 ≤ · · · ≤ ls (i.e. all ordered descendants are con-
sidered to be independent), with Φα a vector of weight (h, h̄) and annihilated by

L>0, L>0. Then V (Φα) is the quotient of the Verma module Vh,h̄ by a submodule,

(657) V (Φα) ' V(h,h̄)/N

98Otherwise the 2-point correlator 〈Φ(z)Φ(w)〉 can grow as points z and w become farther and
farther apart, which contradicts the physical intuition of local interactions.

99Needed for single-valuedness of correlators, cf. Remark 1.18.
100For instance, in any CFT one has L−11 = 0. Also, see (667) below for a nontrivial example

in scalar field theory.
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The submodule N that one quotients out is the kernel of the sesquilinear form 〈, 〉
on Vh,h̄, defined in such a way that one has L+

n = L−n, L
+

n = L−n and the highest

vector has norm 1 (in particular, vectors in N have zero norm). Also, N ⊂ Vh,h̄ is

the submodule generated by “singular vectors” χ ∈ Vh,h̄ – vectors with with the
property L>0χ = 0, L>0χ = 0.

5.5.1. Transformation property of a primary field. Let us fix a conformal vector
field v = u(w)∂w + u(w)∂w̄ regular at z. For Φ ∈ V a primary of conformal weight
(h, h̄), by (637) and (653) we have

(658) ρ(z)(u∂ + ū∂̄)Φ(z) =

= − 1

2πi

∮

γz

dw u(w)︸ ︷︷ ︸
u(z)+(w−z)∂u(z)+···

T (w)Φ(z)︸ ︷︷ ︸
hΦ(z)

(w−z)2
+
∂Φ(z)
w−z +reg.

+dw̄ u(w)︸ ︷︷ ︸
u(z)+(w̄−z̄)∂̄u(z)+···

T (w)Φ(z)︸ ︷︷ ︸
h̄Φ(z)

(w̄−z̄)2
+
∂̄Φ(z)
w̄−z̄ +reg.

= −u(z)∂Φ(z)− u(z)∂̄Φ(z)− h∂u(z)Φ(z)− h̄∂̄ u(z) Φ(z)

– a computation of the contour integral as a residue.
Finite version, interpretation #1: “active transformations.” Formula (658) ex-

presses the change of a field under an infinitesimal conformal map. For a finite
conformal (holomorphic) map z 7→ w(z), it implies that the field transforms as

(659) Φ(z) 7→ Φ′(w) =

(
∂w

∂z

)−h(
∂w̄

∂z̄

)−h̄
Φ(z)

As a check of compatibility with (658), take a map close to identity, w(z) = z+εu(z).
Then in the first order in ε we have

(660) δΦ(z) = Φ′(z)− Φ(z) = ε · (r.h.s. of (658))

In Section 5.6.1 below we will see that (659) will become an equivariance property
of correlators of primary fields under the diagonal action of a global conformal map
on all field insertion points.

Finite version, interpretation #2: “passive transformations” Instead of moving
points on the surface Σ = C, we can think about z 7→ w(z) as a change of local co-
ordinate. We will use z, w as names of local coordinate charts and call p (previously
z) the point on Σ. Think of the vector bundle V of fields over Σ; it has typical fiber
V and its local trivialization at a point p depends on a choice of local coordinate z
or w around p. Thus there is an isomorphism V → Vp from the standard fiber to
the particular fiber over the point depending on a choice of a local coordinate near
p. Fix Φ ∈ V a field and denote its image in Vp using the chart z by Φ(z)(p). Then
we have

(661) Φ(w)(p) =

(
∂w

∂z

∣∣∣∣
p

)−h(
∂w̄

∂z̄

∣∣∣∣
p

)−h̄
Φ(z)(p)

Thus, the Jacobian on the right hand side is the transition function of the vector
bundle.

Put another way, the combination

(662) Φ(z) = Φ(z)(dz)h(dz̄)h̄
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is a coordinate-independent object valued in the line bundle

(663) Kh,h̄ : = K⊗h ⊗K⊗h̄

over Σ. Here K = (T 1,0)∗Σ is the line bundle of (1, 0)-forms and K = (T 0,1)∗Σ is
the line bundle of (0, 1)-forms. For instance (see below), a correlation function of
primary fields is a section of the product of several line bundles (663) pulled back
to the configuration space of points on Σ.

5.5.2. Examples of primary fields in scalar field theory. In the scalar field theory,
we have the following.

• The field ∂φ(z) is primary, with (h, h̄) = (1, 0). This follows from the OPEs
(561), (562). Similarly, ∂̄φ(z) is (0, 1)-primary.
• The stress-energy tensor T is a field of conformal weight (2, 0), but it is not

primary, since T (w)T (z) OPE contains a fourth-order pole (563).
• The field ∂2φ has conformal weight (2, 0) but is not primary: differentiating

(561) we have

(664) T (w)∂2φ(z) ∼ 2∂φ(z)

(w − z)3
+

2∂2φ(z)

(w − z)2
+
∂3φ(z)

w − z + reg.

– contains a third-order pole.

Here is another example.

Lemma 5.17. The vertex operator Vα =: eiαφ :, with α any real number, is pri-

mary, of conformal weight (h, h̄) = (α
2

2 ,
α2

2 ).

Note that h, h̄ are (generally) not integers! (Thus, in particular, we really do
need real tensor powers of the line bundles in (663)).

Proof. Let us calculate the OPE T (w)Vα(z) in the language of field operators:

(665) RT̂ (w)V̂α(z) = R : −1

2
∂φ̂(w)∂φ̂(w) :

∑

n≥0

(iα)n

n!
: φ̂(z)φ̂(z) · · · φ̂(z)︸ ︷︷ ︸

n

:=

=
Wick

: −1

2
∂φ̂(w)∂φ̂(w)

∑

n≥0

(iα)n

n!
n(n− 1)φ̂(z)φ̂(z) φ̂(z) · · · φ̂(z)︸ ︷︷ ︸

n−2

: +

+ : −∂φ̂(w)∂φ̂(w)
∑

n≥0

(iα)n

n!
nφ̂(z) φ̂(z) · · · φ̂(z)︸ ︷︷ ︸

n−1

: + : T̂ (w)V̂α(z) :︸ ︷︷ ︸
reg.

∼ −1

2

1

(w − z)2
(iα)2V̂α(z) +

1

w − z : ∂φ̂(w)(iα)eiαφ̂(z) : +reg.

∼
α2

2 V̂α(z)

(w − z)2
+
∂V̂α(z)

w − z + reg.

The OPE T (w)Vα(z) is computed similarly. Comparing with (653) we see that Vα
is primary (no cubic or higher poles in the OPE with T , T ), and the conformal

weight is h = h̄ = α2

2 as claimed. �
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Exercise 5.18. (a) Show that the field

(666) : 2(∂φ)4 − 3(∂2φ)2 + 2∂φ ∂3φ :

is primary, of conformal weight (4, 0). Or, equivalently, check that the corre-
sponding by (629) state (2â4

−1 + 3â2
−2 − 4â−3â−1)|vac〉 ∈ H is annihilated by

operators L̂>0 and has eigenvalue 4 w.r.t. L̂0.
(b) Show that one has

(667) (2L−3 − 4L−2L−1 + L3
−1)∂φ = 0,

i.e., this particular Virasoro descendant of the primary field ∂φ in free scalar
theory vanishes (in terms of Remark 5.16, this descendant belongs to N – the
quotiented-out submodule).

EDIT
Remark 5.19. Classification of all primary fields in scalar field theory is a nontrivial
problem; the answer is known as a corollary of a theorem by Feigin-Fuchs [12].

First note that the space of fields (or space of states) of the free scalar theory is

(668) V =
⊕

α∈R
VHeis
α ⊗ VHeis

α

where VHeis
α be the Verma module of the Heisenberg Lie algebra, with highest vector

of â0-weight α.
Let Mh be the highest weight irreducible Virasoro module with L0-highest weight

h and central charge c = 1 and let VVir
h be the highest weight Verma module

(possibly reducible) of the Virasoro algebra with L0-highest weight h and central
charge c = 1. One has:

(1) If α 6∈ 1√
2
Z then

(669) VHeis
α 'Mα2

2

= VVir
α2

2

is a single irreducible representation of Virasoro and contains no singular
vectors.

(2) If α = ± N√
2

for some N = 0, 1, 2, . . ., then one has

(670) VHeis
α 'MN2

4

⊕M (N+2)2

4

⊕M (N+4)2

4

⊕ · · ·

For instance, VHeis
0 contains an infinite sequence of Virasoro-highest weight

(primary) vectors χ0 = 1, χ1 = i∂φ, χ2, χ3, . . ., with χn having conformal
weight h = n2; χ2 is given explicitly by (666).

In the full scalar field theory, the Verma module VHeis⊕Heis
0,0 = VHeis

0 ⊗VHeis
0

of the two copies of Heisenberg algebra contains a two-parameter family of
Virasoro-highest weight vectors (primary fields) χn,n̄ with n, n̄ = 0, 1, 2, . . .,
with conformal weights (h = n2, h̄ = n̄2).

(3) A related point to the above is that the Virasoro Verma module VVir
h for

h = N2

4 is reducible and contains singular vectors at levels (N+2k)2

4 − N2

4
with k = 1, 2, . . .. Vanishing descendant (667) above gives an example of
a singular vector at level 3 in VVir

h=1; here N = 2, k = 1. Also, VVir
h fits

(depending on parity of N) into one of the two sequences of maps between
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Virasoro Verma modules

(671)
VVir

0 ← VVir
1 ← VVir

22 ← VVir
32 ← · · ·

VVir

( 1
2 )

2 ← VVir

( 3
2 )

2 ← VVir

( 5
2 )

2 ← VVir

( 7
2 )

2 ← · · ·

For each map here, the image of the highest vector or a singular vector is a
singular vector in the target module (and each singular vector arises that
way – ultimately comes from the highest vector of one of the modules to the
right in the sequence). Also, one has that the irreducible Virasoro module

(672) MN2

4

= VVir
N2

4

/VVir
(N+2)2

4

is the quotient of the Verma module by the submodule generated by the
first singular vector (all subsequent singular vectors are already in that
submodule).

Lecture 26,
10/28/2022

5.5.3. More on vertex operators. Here are some other interesting properties of ver-
tex operators in free scalar theory.

• The 2-point correlator of vertex operators is

(673) 〈Vα(w)Vβ(z)〉 =

{
|w − z|−2α2

if β = −α,
0 otherwise

More generally, the n-point correlator of vertex operators is

(674) 〈Vα1
(z1) · · ·Vαn(zn)〉 =





∏

1≤j<k≤n

|zj − zk|2αjαk if α1 + · · ·+ αn = 0,

0 otherwise

• Vertex operators satisfy the OPE

(675) Vα(w)Vβ(z) ∼ |w − z|2αβVα+β(z) + (less singular terms).

• One has the OPE

(676) i∂φ(w)Vα(z) ∼ α

w − z Vα(z) + reg.

All these properties follow from the explicit formula for the vertex operator (630)
and Wick’s lemma. For instance, let us prove (673). We apply Wick’s lemma to
the product of two vertex operators (as operators on H: For simplicity, assume
|w| > |z|. We have

(677) V̂α(w)V̂β(z) =
∑

n,m≥0

1

n!m!
(iα)n(iβ)m : φ̂(w)n : : φ̂(z)m :=

=
Wick

∑

k≥0

∑

n,m≥k

1

n!m!

(
n
k

)(
m
k

)
k!

︸ ︷︷ ︸
#(k-fold Wick contractions)

(iα)n(iβ)m(−2 log |w−z|)k : φ̂(w)n−kφ̂(z)m−k :

=
∑

k≥0

∑

n,m≥k

1

(n− k)!(m− k!)k!
(iα)n(iβ)m(−2 log |w − z|)k : φ̂(w)n−kφ̂(z)m−k :

=
n′=n−k,m′=m−k

∑

k≥0

(2αβ)k

k!
(log |w − z|)k

∑

n′,m′≥0

(iα)n
′
(iβ)m

′

n′!m′!
: φ̂(w)n

′
φ̂(z)m

′
:
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= e2αβ log |w−z| : eiαφ̂(w)eiβφ̂(z) := |w − z|2αβ : V̂α(w)V̂β(z) :

The normally ordered product of vertex operators on the right can be written as

ei(α+β)φ̂0(1 + · · · ) where · · · are normally ordered terms with zero VEV (vacuum

expectation value). The operator ei(α+β)φ̂0 shift the vacuum |vac〉 to a pseudovac-
uum |π0 = α + β〉, so it has expectation value zero unless α + β = 0, and in the
latter case the VEV is 1. Thus,

(678) 〈vac|V̂α(w)V̂β(z)|vac〉 = |w − z|2αβ ·
{

1 if α+ β = 0,
0 otherwise

This finishes the proof of (673).
Note that the computation (677) also implies the OPE (675):

(679) RV̂α(w)V̂β(z) = |w − z|2αβ : V̂α(w)︸ ︷︷ ︸
expand around z

V̂β(z) :=

= |w − z|2αβ
∑

k,l≥0

(w − z)k(w̄ − z̄)l
k!l!

: ∂k∂̄lV̂α(z) V̂β(z) :

= |w − z|2αβV̂α+β(z) +O(|w − z|2αβ+1),

where we used the property : V̂α(z)V̂α(z) := V̂α+β(z), obvious from the definition
of the vertex operator (630).

The correlator (674) is also obtained from Wick’s lemma, see [8, section 9.1.1].
The OPE (676) is obtained by a computation similar to (665) (actually simpler,

as there are only single Wick contractions).

5.6. Conformal Ward identity (via contour integration trick). In any CFT
on C one the following.

Theorem 5.20 (Conformal Ward identity). Fix a collection of fields Φ1, . . . ,Φn ∈
V , a collection of distinct points z1, . . . , zn ∈ C, a conformal vector field v =
u(w)∂w + u(w)∂w̄ with u(w)∂w a meromophic vector field on CP1 with poles al-
lowed only at the points z1, . . . , zk (in particular we are assuming that w =∞ is a
regular point of u∂). Then one has

(680)

n∑

k=1

〈Φ1(z1) · · · ρ(zk)(v) ◦ Φk(zk) · · ·Φn(zn)〉 = 0

where ρ(zk)(v) ◦Φk(zk) is the action of the vector field v on the field Φk defined via
(637).

We denote the l.h.s. of (680) by δv〈Φ1(z1) · · ·Φn(zn)〉 – the action of the vector
fields on the correlator (via acting on individual fields). Thus, the Ward identity
says that the action of a conformal vector field on a correlator vanishes.

Note that (by complexification) we can treat u(w)∂w and u(w)∂w̄ in (680) as in-
dependent meromorphic and antimeromorphic vector fields (not complex conjugate
to one another).

Proof. Consider the action of a meromorphic vector field u(w)∂w on a correlator.
Let Γ = C0,R be a circle centered at the origin of a large radius R (in particular,
large enough that it encloses all zi’s). Then we have
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(681) − 1

2πi

∮

Γ

dw u(w)
〈
T (w)Φ1(z1) · · ·Φn(zn)

〉
=

=
deformation of contour

n∑

k=1

− 1

2πi

∮

γk

dw u(w)
〈
T (w)Φ1(z1) · · ·Φn(zn)

〉

=
(637)

n∑

k=1

〈Φ1(z1) · · · ρ(zk)(u∂) ◦ Φk(zk) · · ·Φn(zn)〉 = δu∂〈Φ1(z1) · · ·Φn(zn)〉,

Here γk = Czk,rk is a circle around zk of radius rk small enough that γk does
not enclose any zi with i 6= k. We used the fact that the correlator with T (w) is
meromorphic in w, with possible poles at w = z1, . . . , zn, to deform the integration
contour Γ to γ1 ∪ · · · ∪ γn.

C
Γ

z1
zn

−→

C

γ1

γnz1
zn

Figure 29. Deformation of the integration contour Γ (large circle)
into a collection of small circles γ1, . . . , γn around punctures
z1, . . . , zn.

It remains to show that the l.h.s. of (681) vanishes. For that, let us use Lemma
5.6:

(682) − 1

2πi

∮

Γ

dw u(w)
〈
T (w)Φ1(z1) · · ·Φn(zn)

〉
=

=
1

2πi

∮

Γ3w
dw̄u(w)w̄−4〈T (1/w̄)Φ∗1(1/z̄1) · · ·Φ∗n(1/z̄n)〉 ·

n∏

i=1

z̄−2hi
i z−2h̄i

i

=
y=1/w̄

− 1

2πi

∮

Γ′3y
dy uy(y)〈T (y)Φ∗1(1/z̄1) · · ·Φ∗n(1/z̄n)〉 ·

n∏

i=1

z̄−2hi
i z−2h̄i

i

where uy(y) = u(w)/w̄2 is regular at y = 0, since the vector field u(w)∂w was
required to be regular at w = ∞; Γ′ is a circle around zero of small radius 1/R.
The integrand in the r.h.s. of (682) is a meromorphic function in y and Γ′ does
not enclose any poles (in particular y = 0 is a regular point), hence (682) vanishes.
This proves that the r.h.s. of (681) is zero.

The case of the action of an antimeromorphic vector field on a correlator is
similar. �

Informally, the argument is: take the integral in the l.h.s. (681) over a contour
around w =∞ in CP1. One the one hand the integral vanishes, since integrand is
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holomorphic around w =∞. On the other hand, the contour can be deformed into
a union of small circles around field insertions zi, which yields δv of the correlator.

Γ

γnz1
zn

0

∞CP1

−→

CP1

γ1

γnz1
zn

0

∞

Figure 30. Deformation of the integration contour on CP1.

Example 5.21. Let u(w)∂w = −∂w
w−z0 – a meromorphic vector field with a simple

pole at z0. Assume that Φ1, . . . ,Φn are primary fields with conformal weights
(hi, h̄i). Applying (680) to the correlator 〈1(z0)Φ1(z1) · · ·Φn(zn)〉,101 we obtain

(683) 0 = 〈ρz0
( −∂w
w − z0

)
◦ 1(z0) Φ1(z1) · · ·Φn(zn)〉+

+

n∑

k=1

〈���1(z0)Φ1(z1) · · · ρzk
( −∂w

w − z0︸ ︷︷ ︸
expand at zk

)
◦ Φk(zk) · · ·Φn(zn)〉

=
(638)

〈(L−21)(z0)Φ1(z1) · · ·Φn(zn)〉+

+

n∑

k=1

〈Φ1(z1) · · · ρ
(
− 1

zk − z0
∂w +

w − zk
(zk − z0)2

∂w −
(w − zk)2

(zk − z0)3
∂w + · · ·

)
◦Φk(zk) · · ·Φn(zn)〉

= 〈(L−21)(z0)︸ ︷︷ ︸
T (z0)

Φ1(z1) · · ·Φn(zn)〉+

+

n∑

k=1

〈Φ1(z1) · · ·
( 1

zk − z0
L−1−

1

(zk − z0)2
L0+
���

���
���1

(zk − z0)3
L1 − · · ·

︸ ︷︷ ︸
since Φk is primary

)
◦Φk(zk) · · ·Φn(zn)〉

= 〈T (z0)Φ1(z1) · · ·Φn(zn)〉+
n∑

k=1

〈Φ1(z1) · · ·
(

1

zk − z0

∂

∂zk
− hk

(zk − z0)2

)
Φk(zk) · · ·Φn(zn)〉.

Or, written another way:
(684)

〈T (z0)Φ1(z1) · · ·Φn(zn)〉 =

(
n∑

k=1

hk
(zk − z0)2

− 1

zk − z0

∂

∂zk

)
◦ 〈Φ1(z1) · · ·Φn(zn)〉.

101We inserted 1(z0), which does not affect the correlator, since we required that the vector
field only has poles at the points where fields are inserted.
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Thus, the correlator of the stress-energy with a collection of primary fields is ex-
pressed as a certain differential operator acting on the correlator of just the primary
fields.

Example 5.22. If the correlator of primary fields Φ1, . . . ,Φn is known then any
correlator of their descendants can be recovered as a certain differential operator
acting on 〈Φ1 · · ·Φn〉. Such an expression is obtained from Ward identity by re-
peatedly applying meromorphic vector fields of the form −(w − zk)−r+1∂w to the
correlator of the primary fields.

For instance applying the vector field u∂ = −(w − z1)−r+1∂w (for some r ≥ 1)
to 〈Φ1(z1) · · ·Φn(zn)〉 we find

(685) 0 = δu∂〈Φ1(z1) · · ·Φn(zn)〉 =

= 〈(L−rΦ1)(z1) Φ2(z2) · · ·Φn(zn)〉+

+

(
n∑

k=2

(zk − z1)−r+1∂zk − (r − 1)(zk − z1)−rhk

)

︸ ︷︷ ︸
−D

◦〈Φ1(z1)Φ2(z2) · · ·Φn(zn)〉.

Thus, one has

(686) 〈(L−rΦ1)(z1) Φ2(z2) · · ·Φn(zn)〉 = D〈Φ1(z1)Φ2(z2) · · ·Φn(zn)〉

with D the differential operator appearing in (685). Here we were assuming that
Φ1, . . . ,Φn are primary.

5.6.1. Constraints on correlators from global conformal symmetry. Let us explore
the consequences of the Ward identity (680) with v a conformal vector field on CP1

without singularities.
For Φ1, . . . ,Φn ∈ V primary and v = u∂ + ū∂̄ a conformal vector field without

singularities, the Ward identity reads

(687) 0 = δv〈Φ1(z1) · · ·Φn(zn)〉 =

=

n∑

k=1

〈Φ1(z1) · · ·
(
−u(zk)∂zk−u(zk)∂z̄k−hk∂u(zk)−h̄k∂u(zk)

)
Φk(zk) · · ·Φn(zn)〉

The “finite” (or “integrated”) version is then as follows: for z 7→ w(z) a holomorphic
map CP1 → CP1 (i.e., a Möbius transformation) one has
(688)

〈Φ1(w(z1)) · · ·Φn(w(zn))〉 =

n∏

i=1

(
∂w

∂z
(zi)

)−hi (∂w̄
∂z̄

(zi)

)−h̄i
· 〈Φ1(z1) · · ·Φn(zn)〉

Put another way, one has an equality

(689) 〈Φ1(z1)(dz1)h1(dz̄1)h̄1 · · ·Φn(zn)(dzn)hn(dz̄n)h̄n〉 =

= 〈Φ1(w1)(dw1)h1(dw̄1)h̄1 · · ·Φn(wn)(dwn)hn(dw̄n)h̄n〉

Using the notation (662),

(690) Φ(z) : = Φ(z)(dz)h(dz̄)h̄ ∈ V ⊗Kh,h̄
z ,
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the n-point correlator of primary fields is a section of a certain line bundle on the
open configuration space of points on CP1, invariant under the Möbius group (the
latter being the statement of the Ward identity):

(691) 〈Φ1(z1) · · ·Φn(zn)〉 ∈ Γ

(
Cn(CP1),

n⊗

i=1

π∗iK
hi,h̄i

)PSL2(C)

where πi : Cn(CP1)→ CP1 is the map selecting the i-th point of the n-tuple; Khi,h̄i

is the line bundle (663) on CP1.

Remark 5.23. If the vector field v is at most linear in coordinates, then (687)
holds without assuming that fields Φ1, . . . ,Φn are primary. At the level of “finite”
conformal maps, the identity (688) holds for z 7→ w(z) translations, rotations and
dilations, without assuming that the fields are primary.

Lemma 5.24. If the OPE of fields Φ1,Φ2 ∈ V contains the term

(692)
C

(w − z)α(w̄ − z̄)ᾱΦ(z)

with some field Φ ∈ V and C a constant, then the exponents in (692) satisfy

(693) h(Φ1) + h(Φ2) = α+ h(Φ), h̄(Φ1) + h̄(Φ2) = ᾱ+ h̄(Φ),

where h, h̄ are the conformal weights of the fields involved.

Proof. This is a consequence of (688) and Remark 5.23: one considers the correlator
〈Φ1(w)Φ2(z)Φ3(z3) · · ·Φn(zn)〉, with Φ3, . . . ,Φn ∈ V arbitrary test fields, and acts
on it with rotation and dilation around z. For simplicity, set z = 0 and consider
the map z 7→ λz with λ ∈ C∗. Then we have, in the asymptotics w → 0,
(694)

〈Φ1(λw)Φ2(0)Φ3(λz3) · · ·Φn(λzn)〉
∏n
i=1 λ

−hi λ̄−h̄i〈Φ1(w)Φ2(0)Φ3(z3) · · ·Φn(zn)〉

OPE
∥∥∥ OPE

∥∥∥
C

λαλ̄ᾱwαw̄ᾱ
〈Φ(0)Φ3(λz3) · · ·Φn(λzn)〉+ · · · C

wαw̄ᾱ

∏n
i=1 λ

−hi λ̄−h̄i〈Φ(0)Φ3(z3) · · ·Φn(zn)〉+ · · ·

(688)
∥∥∥ ∥∥∥

Cλ−h(Φ)λ̄−h̄(Φ)

λαλ̄ᾱwαw̄ᾱ

∏n
i=3 λ

−hi λ̄−h̄i〈Φ(0)Φ3(z3) · · ·Φn(zn)〉+ · · · C
wαw̄ᾱ

∏n
i=1 λ

−hi λ̄−h̄i〈Φ(0)Φ3(z3) · · ·Φn(zn)〉+ · · ·

Here · · · stands for the other terms in the OPE. Equality in the last row implies
the claimed relation on the OPE exponents (693). �

One-point correlators.

Lemma 5.25. Let Φ ∈ V be a field (not necessarily primary) of conformal weight
(h, h̄). Then

(695) 〈Φ(z)〉 =

{
CΦ if h = h̄ = 0,
0 otherwise

where CΦ is a constant function. (the value of the constant depends on Φ).

Proof. Using the Ward identity with v a constant vector field a∂w + ā∂w̄ (with
arbitrary coefficients a, ā ∈ C), we find that the one-point correlator satisfies (a∂z+
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ā∂z̄)〈Φ(z)〉 = 0, i.e., the correlator is a constant function. Applying the vector field
v = b(w − z)∂w + b̄(w̄ − z̄)∂w̄ to the correlator, we see that it satisfies

(696) (bh+ b̄h̄)〈Φ(z)〉 = 0

for any b, b̄ ∈ C. Thus, the one-point correlator must vanish unless h = h̄ = 0. �

Two-point correlators.

Lemma 5.26. Let Φ1,Φ2 ∈ V be two fields of conformal weights (hi, h̄i), i = 1, 2.

(a) One has

(697) 〈Φ1(z1)Φ2(z2)〉 = CΦ1Φ2

1

(z1 − z2)h1+h2(z̄1 − z̄2)h̄1+h̄2

with CΦ1Φ2
some constant depending on Φ1,Φ2.

(b) If Φ1,Φ2 are primary, then the constant CΦ1,Φ2
in (697) vanishes unless one

has

(698) h1 = h2, h̄1 = h̄2.

(c) For Φ1,Φ2 two fields satisfying condition (698) on conformal weights, the con-
stant CΦ1Φ2

in (697) is related to the hermitian inner product on V (cf. Axiom
(IV)) by

(699) CΦ1Φ2
= 〈Φ∗1,Φ2〉V .

Proof. Part (a) follows from (688) for translations, rotations and dilations (we
exploit Remark 5.23).

For (b), let us fix the two points at z1 = 0 and z2 = 1 and act on the correlator
with the vector field u∂w = w(1− w)∂w – a holomorphic vector field on the entire
CP1. The Ward identity (687) in this case reads

(700) 0 = 〈−h1Φ1(z1)Φ2(z2)〉+ 〈Φ1(z1)h2Φ2(z2)〉 = (h2 − h1)〈Φ1(z1)Φ2(z2)〉.
Thus unless h1 = h2, the 2-point correlator vanishes. Likewise, acting with the
vector field w̄(1 − w̄)∂w̄, we find that unless h̄1 = h̄2, the correlator also has to
vanish.

For (c), we calculate the r.h.s. of (699) exploiting the state-field correspondence:

(701)

〈Φ∗1,Φ2〉V = lim
w,z→0

〈
Φ̂∗1(w)|vac〉, Φ̂2(z)|vac〉

〉
H

= lim
w,z→0

〈vac|Φ̂∗1(w)+Φ̂2(z)|vac〉

=
(597)

lim
w,z→0

w̄−2h1w−2h̄1〈vac|Φ̂1(1/w̄)Φ̂2(z)|vac〉

=
(697)

CΦ1Φ2
lim
w,z→0

w̄−2h1w−2h̄1 (1/w̄ − z)−h1−h2 (1/w − z̄)−h̄1−h̄2

= CΦ1Φ2 .

Here in the last step we used the condition (698). �

Example 5.27. In scalar field theory, the correlators

(702) 〈∂φ(w)∂φ(z)〉 = − 1

(w − z)2
, 〈Vα(w)Vβ(z)〉 =

{
1

|w−z|2α2 , α = β

0, α 6= β
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(cf. (536), (673)) are examples of two-point correlators of primary fields (of weight

(1, 0) in the first case and of weight (α
2

2 ,
α2

2 ) in the second case). They are clearly
consistent with the general ansatz (697).

Example 5.28. The TT OPE (601) and the ansatz (697) imply that the two-point
correlator of the stress-energy tensor is

(703) 〈T (w)T (z)〉 =
c/2

(w − z)4
.

With (699) this implies

(704) 〈T, T 〉V =
c

2
.

Since the inner product on V is assumed to be positive definite, this means that
the central charge c must be a positive number.102

Lecture 27,
10/31/2022Three-point correlators of primary fields.

Lemma 5.29. For any three primary fields Φ1,Φ2,Φ3 ∈ V , with Φi of conformal
weights (hi, h̄i), one has

(705) 〈Φ1(z1)Φ2(z2)Φ3(z3)〉 = CΦ1Φ2Φ3

∏

1≤i<j≤3

1

(zi − zj)2αij (z̄i − z̄j)2ᾱij
,

where CΦ1Φ2Φ3
is a constant (depending on the fields but not on the points z1, z2, z3)

and the exponents are expressed in terms of conformal weights of the fields:

(706)
α12 =

1

2
(h1 + h2 − h3), α13 =

1

2
(h1 + h3 − h2), α23 =

1

2
(h2 + h3 − h1),

ᾱ12 =
1

2
(h̄1 + h̄2 − h̄3), ᾱ13 =

1

2
(h̄1 + h̄3 − h̄2), ᾱ23 =

1

2
(h̄2 + h̄3 − h̄1).

Proof #1 (idea). Take the unique Möbius transformation f : CP1 → CP1 that maps
points z1, z2, z3 to 0, 1, 2. Then the Ward identity (688) allows one to write the 3-
point correlator as

(707) 〈Φ1(z1)Φ2(z2)Φ3(z3)〉 =

3∏

i=1

(∂f(zi))
hi(∂f(zi))

h̄i · 〈Φ1(0)Φ1(1)Φ3(2)〉︸ ︷︷ ︸
C̃

with C̃ some constant. Computing explicitly the derivatives in the r.h.s., one ob-
tains (705). �

Let us introduce the notation

(708) µ =
dz1 ∧ dz2

(z1 − z2)2
∈ Γ(C2(CP1), π∗1K ⊗ π∗2K) ⊂ Ω2(C2(CP1)).

with πi as in (691). We will call µ the Szegö kernel.103

Lemma 5.30. The Szegö kernel defined by (708) is the unique (up to normaliza-
tion) nowhere vanishing Möbius-invariant holomorphic 2-form on the configuration
space of two points on CP1.

102Positivity of the inner product on V is a part of the unitarity assumption for a CFT. There

are interesting examples (e.g. the so-called ghost system or bc system) where it fails, and the

central charge can be negative. For instance, in the bc system one has c = −26.
103In the standard terminology, it is the square root of µ that is called the Szegö kernel.
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Proof. To check that µ is Möbius-invariant, we observe that it is invariant under (a)
translations z 7→ z + a, (b) rotation and dilation z 7→ λz (since µ is homogeneous

of degree zero), (c) the map i : z 7→ 1/z (indeed, i∗µ =

−dz1
z21

−dz2
z22

( 1
z1
− 1
z2

)2 = µ). These

transformation generate all Möbius transformations, thus µ is Möbius-invariant.
The fact that µ is nowhere vanishing is obvious if z1, z2 6= ∞. For z1 = ∞ we
switch for the point z1 to the coordinate chart w1 = 1/z1 near the point ∞ ∈ CP1.
We have then µ = − dw1∧dz2

(1−w1z2)2 – it is nonvanishing at w1 = 0. The case z2 = ∞ is

similar.
If ν is some other Möbius-invariant section of the line bundle π∗1K ⊗ π∗2K over

C2(CP1), we must have ν = fµ for some Möbius-invariant function f on C2(CP 1).
Such a function has to be constant, since any two points on CP1 can be moved to 0, 1
by a Möbius transformation (and thus f(z1, z2) = f(0, 1) for any z1 6= z2 ∈ CP1).
This proves uniqueness of µ up to a multiplicative constant. �

In terms of the Szegö kernel, the three-point function of primary fields (705)
admits an equivalent expression:

(709) 〈Φ1(z1)Φ2(z2)Φ3(z3)〉 = CΦ1Φ2Φ3

∏

1≤i<j≤3

(π∗ijµ)αij (π∗ij µ̄)ᾱij

where πij : C3(CP1) → C2(CP1) maps (z1, z2, z3) 7→ (zi, zj) and we used the nota-
tion (690). The exponents (706) are chosen in such a way that the r.h.s. of (709)
is the section of the same line bundle over C3(CP1) as the l.h.s., i.e., so that the
power of dzi is the same on both sides for i = 1, 2, 3:

(710) h1 = α12 + α13, h2 = α12 + α23, h3 = α13 + α23,

and similarly for powers of dz̄i.

Proof #2 of Lemma 5.29. Denote the r.h.s. of (709) without the factor CΦ1Φ2Φ3

by A. The l.h.s. of (709) and A both are sections of the line bundle
⊗3

i=1 π
∗
iK

hi,h̄i

over C3(CP1). Moreover, both are Möbius invariant (the ll.h.s by Ward identity
and A by Möbius-invariance of Szegö kernel) and A is nonvanishing. Therefore,
one has

(711) (l.h.s. of (709)) = f ·A
where f is a Möbius-invariant function on C3(CP1). Since Möbius group acts 3-
transitively on CP1, such a function has to be constant. �

Correlators of n ≥ 4 primary fields

Lemma 5.31. For Φ1, . . . ,Φn ∈ V a collection of n ≥ 4 primary fields, with Φi of
conformal dimension (hi, h̄i), one has

(712) 〈Φ1(z1) · · ·Φn(zn)〉 =
∏

1≤i<j≤n

(π∗ijµ)αij (π∗ij µ̄)ᾱij · FΦ1···Φn(λ1, . . . , λn−3),

where µ is the Szegö kernel (708), λi = [z1, z2 : z3, zi+3] for i = 1, . . . , n − 3 are
cross-ratios, the exponents αij, ᾱij are

(713) αij =
1

n− 2
(hi + hj −

1

n− 1

n∑

k=1

hk), ᾱij =
1

n− 2
(h̄i + h̄j −

1

n− 1

n∑

k=1

h̄k)
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and FΦ1···Φn is some smooth function on Cn−3(CP1\{0, 1,∞}) (it cannot be deter-
mined from the global conformal symmetry).

Put another way, the result is that any Möbius-invariant section of the line bundle
in the r.h.s. of (691) is built out of two types of “building blocks” – cross-ratios
and Szegö kernels.

Proof. The proof is similar to the proof #2 of Lemma 5.29 above: the l.h.s. of
(712) and B : =

∏
1≤i<j≤n(π∗ijµ)αij (π∗ij µ̄)ᾱij are both Möbius-invariant sections of

the line bundle104
⊗n

i=1 π
∗
iK

hi,h̄i over Cn(CP1) and B is nonvanishing, therefore
one has

(714) (l.h.s. of (712)) = g ·B
with g a Möbius-invariant function on Cn(CP1). Choosing a Möbius transformation
that maps (z1, . . . , zn) to (1, 0,∞, λ1, . . . , λn−3), we obtain

(715) g(z1, . . . , zn) = g(1, 0,∞, λ1, . . . , λn−3) =: F(λ1, . . . , λn−3).

�

5.7. Holomorphic fields, mode operators.

5.7.1. Holomorphic fields.

Definition 5.32. We call a (not necessarily primary) field Φ ∈ V “holomor-
phic” if it satisfies ∂̄Φ = 0. Then in particular, correlation functions of the form
〈Φ(z)Φ1(z1) · · ·Φn(zn)〉 are holomorphic in z (for z away ). Similarly, we call Φ ∈ V
“antiholomorphic” if it satisfies ∂Φ = 0.

Lemma 5.33. If a field Φ ∈ V has conformal weight of the form (h, 0) (i.e. h̄ =
0) then it is holomorphic. Similarly, if Φ has conformal weight (0, h̄) then it is
antiholomorphic.

Proof. Consider a field Φ ∈ V of conformal weight (h, h̄ = 0). Computing the
square of the norm of L−1Φ we find

(716)
〈
L−1Φ, L−1Φ

〉
=

(640)

〈
Φ, L1L−1Φ

〉
=
〈

Φ, (2L0+L−1L1)Φ
〉

= 2h̄〈Φ,Φ〉 = 0.

Here we used that L1Φ = 0, since if it were nonzero it would be a field of con-
formal weight (h,−1), and by Assumption 5.14 (a) negative conformal weights are
inadmissible. Since the hermitian form on V is assumed to be nondegenerate, this
implies

(717) L−1Φ = ∂̄Φ = 0,

i.e., Φ is a holomorphic field. �

For example, in any CFT, the stress-energy tensor T is a (2, 0)-field and there-
fore is holomorphic.105 In the scalar field theory, ∂φ is a (1, 0)-field and thus is
holomorphic.

104Note that the exponents (713) are chosen in such a way that one has αij = αji and∑
j 6=i αij = hi (and similarly for ᾱij), which implies that both sides of (712) are sections of the

same line bundle.
105We already included holomorphicity of T as a part of axiomatics in (600). Lemma 5.33

provides another explanation why T should be holomorphic.
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5.7.2. Mode operators.

Definition 5.34. Let Ξ ∈ V be a holomorphic field of conformal weight (h, 0),
with h ∈ Z. One defines the “mode operators” associated with Ξ as the operators
Ξ(n) ∈ End(V ), with n ∈ Z, defined by

(718) Ξ(n)Φ(z) =
1

2πi

∮

γz

dw(w − z)n+h−1Ξ(w)Φ(z)

for any test field Φ ∈ V , with γz the contour going around z. Put another way,
operators Ξ(n) yield terms in the OPE of Ξ with the test field:

(719) Ξ(w)Φ(z) ∼
∑

n∈Z

Ξ(n)Φ(z)

(w − z)n+h
.

For instance, the mode operators for the stress-energy tensor T are the Virasoro
generators Ln, cf. (638). Another example: mode operators for the identity field 1
are 1(n) = δn,0 idV .

The shift by h in the definition (718) is designed in such a way that the operator
Ξ(−n) shifts the conformal weight by (n, 0).

5.7.3. The Lie algebra of mode operators.

Lemma 5.35. Assume that the CFT contains a collection of holomorphic fields
{Φi}i∈I (with I an indexing set) of conformal weights (hi, 0) satisfying the OPEs

(720) Φi(w)Φj(z) ∼
∑

k∈I

fijk
Φk(z)

(z − w)hi+hj−hk
+ reg.

with fijk some constants (note that the exponents in the OPE are fixed by Lemma
5.24). Then the mode operators of fields Φi satisfy the commutation relations

(721) [Φi(n),Φj(m)] =
∑

k∈I

fijk

(
n+ hi − 1

hi + hj − hk − 1

)
Φk(n+m).

The proof is similar to the proof of Virasoro commutation relations from TT
OPE in Section 5.2.2.

Remark 5.36. Similarly to Definition 5.34, one also has the “centered-at-zero ver-
sion” of mode operators: for Ξ ∈ V a holomorphic field, one has mode operators

Ξ̂(n) acting on the space of states H defined by

(722) Ξ̂(n) =
1

2πi

∮

γ0

dwwn+h−1Ξ̂(w)

with γ0 a contour around zero, or equivalently:

(723) Ξ̂(w) =
∑

n∈Z

Ξ̂(n)

wn+h
.

For example, in the scalar field theory, for the holomorphic field Ξ = i∂φ, the
corresponding mode operators acting on states are the creation/annihilation oper-
ators:

(724) (î∂φ)(n) = ân,

as follows from (535).
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5.7.4. Ward identity associated with a holomorphic field.

Lemma 5.37. Assume that the CFT contains a holomorphic Ξ of conformal weight
(h, 0). Then one has the corresponding Ward identity: for any collection of fields
Φ1, . . . ,Φn ∈ V and meromorphic section f = f(w)(∂w)h−1 of the line bundle
K⊗(1−h) over CP1 with singularities allowed at z1, . . . , zn, one has

(725)

n∑

k=1

〈Φ1(z1) · · · ρ(zk)
Ξ (f) ◦ Φk(zk) · · ·Φn(zn)〉 = 0

where the action of f on Vz is given by the contour integral around z,

(726) ρ
(z)
Ξ (f) ◦ Φ(z) : =

1

2πi

∮

γz

dw f(w)Ξ(w)︸ ︷︷ ︸
ιf (Ξ(w)(dw)h)

Φ(z).

The proof is completely analogous to the proof of the conformal Ward identity
(680).

Example 5.38. In the scalar field theory, take Ξ = i∂φ and Φ1 = Vα1
, . . . ,Φn =

Vαn vertex operators, and set f = 1. Then the Ward identity (725) reads

(727) (α1 + · · ·+ αn)〈Vα1
(z1) · · ·Vαn(zn)〉 = 0

where we used the OPE (676). This implies the result that the correlator of vertex
operators can be nonzero only if the sum of their charges αi vanishes (cf. (674)).

5.8. Transformation law for the stress-energy tensor. The action of a holo-
morphic vector field u(w)∂w on the stress-energy tensor is given by

(728) ρ(z)(u∂)T (z) =
(637)

− 1

2πi

∮

γz

dwu(w)T (w)T (z) =

= − 1

2πi

∮

γz

dw(u(z) + (w− z)∂u(z) +
1

2
(w− z)2∂2u(z) +

1

6
(w− z)3∂3u(z) + · · · )·

·
(

c/2

(w − z)4
+

2T (z)

(w − z)2
+
∂T (z)

w − z + reg

)

= −u(z)∂T (z)− 2∂u(z)T (z)− c

12
∂3u(z)

If not for the last term, this would have been the transformation law of a (2, 0)-
primary field (cf. (658)). The last term in (728) is a certain correction due to the
projective property of CFT (a manifestation of conformal anomaly). We note that
the action of an antiholomorphic vector field on T is zero,

(729) ρ(z)(ū∂̄)T (z) = 0,

since T̄ T OPE is regular.
The calculation (728) expresses the infinitesimal transformation of T under a

conformal vector field (seen as an infinitesimal conformal map). Its counterpart for
a “finite” conformal (holomorphic) transformation z 7→ w(z) is:

(730) T(z)(z) 7→ T(w)(w) =

(
∂w

∂z

)−2

(T(z)(z)−
c

12
S(w, z))
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where

(731) S(w, z) : =
∂3
zw

∂zw
− 3

2

(
∂2
zw

∂zw

)2

is the so-called Schwarzian derivative of the holomorphic map f : z 7→ w(z) (we
will also use the notation S(f) for the Schwarzian derivative).

Here are some properties of the Schwarzian derivative:

(a) S vanishes on Möbius transformations,
(b) S satisfies a chain-like rule

(732) S(f ◦ g) = (S(f) ◦ g) · (g′)2 + S(g).

In particular, combining with (a), we have that for f a Möbius transformation
and g any holomorphic map, S(f ◦ g) = S(g).

(c) S can be restricted to smooth maps S1 → S1. This restriction can be un-
derstood as a degree 1 group cocycle of diffeomorphisms of the circle with
coefficients in the module of densities of weight 2:

(733) S ∈ H1(Diff(S1),Dens2(S1)).

This is ultimately a consequence of the “chain rule” (732).

As in Section (5.5.1), the transformation law (730) can either be understood
in “active way” (moving points on the surface Σ) or “passive way” (action of a
coordinate transformation).

Example 5.39. Consider w = log(z) as a holomorphic map from the punctured
plane to the cylinder

(734)
C\{0} → C/2πiZ
z 7→ w = log(z)

From (731) one finds

(735) S(w, z) =
1

2z2
.

In particular, (730) becomes

(736) T(z)(z) 7→ T(w)(w) = z2T(z)(z)−
c

24
.

In particular, on C one has 〈T (z)〉plane = 0 (this is a consequence of e.g. Lemma
5.25). Thus, on the cylinder one has

(737) 〈T (w)〉cylinder = − c

24
.

Thus, the vacuum energy on the cylinder should be − c+c̄24 instead of zero. InThis is just throw-
ing in a physics buz-
zword

physics this mysterious effect has the name “Casimir energy associated with periodic
boundary conditions.”

6. More free CFTs

6.1. Free scalar field with values in S1. An important deficiency of the free
scalar field, our main (and only) example of a CFT so far, is that the evolution
operator it assigns to a cylinder (or annulus) is not trace-class, which leads to the
genus one partition function being ill-defined. This is remedied if we consider free
scalar field with values in a circle (instead of values in R). This model is also
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known as “free boson compactified on S1” (compactification refers to the target)
or “compactified free boson.”

6.1.1. Classical theory. We will introduce the model and quickly retrace our steps
in Sections 4.2, 4.3.1, pointing out where the change of target from R to S1 changes
the story.

Classically, the model on a Minkowski cylinder Σ = R × S1 is defined by the
action functional

(738) S(φ) =

∫
dt

∫
dσ

κ

2
((∂tφ)2 − (∂σφ)2)

︸ ︷︷ ︸
L

(the same formula as (432)) where φ now is a smooth map Σ → S1
target where

S1
target = R/2πrZ is a circle of a fixed radius r. Such a maps φ fall into homotopy

classes, classified by a winding number m ∈ Z: a map with winding m satisfies
φ(t, σ + 2π) = φ(t, σ) + 2πrm. We included the conventional normalization κ = 1

4π
in (738).

Thus, the space of fields splits as a disjoint union of spaces of maps to S1
target

with a given winding number:

(739) Fields = Map(Σ, S1
target) =

⊔

m∈Z
Mapm(Σ, S1

target)︸ ︷︷ ︸
maps with winding number m

One can then consider this model as classical mechanics with target

(740) X =
⊔

m∈Z
Mapm(S1, S1

target)

with Lagrangian L as in (738). A field φ ∈ Xm with winding m can be expanded in
Fourier modes, plus a shift linear in Σ, accounting for the winding:

(741) φ(σ) = mrσ +
∑

n∈Z
φne

inσ

Transitioning to the Hamiltonian formalism (by Legendre transform), we have
the phase space

(742) Φ = T ∗X =
⊔

m∈Z
T ∗Xm︸ ︷︷ ︸

Φm

parameterized in m-th sector by the field φ(σ) and the Darboux-conjugate “momen-
tum” π(σ) = 1

2π

∑
n∈Z πne

inσ. The modes satisfy the standard Poisson brackets
(449). The Hamiltonian on Φm in terms of Fourier modes is

(743) H = π2
0 +

(mr
2

)2

+
∑

n 6=0

(πnπ−n +
1

4
n2φnφ−n).

Note that this differs from the Hamiltonian (452) by a shift
(
mr
2

)2
which arises from

the σ-linear term in (741).
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6.1.2. Canonical quantization. We proceed with canonical quantization of the the-
ory. The splitting (742) of the phase space means that the space of states splits as
a direct sum

(744) H =
⊕

m∈Z
Hm,

where Hm consists of states with winding number m.
Let m̂ be the operator on H which has eigenvalue m on Hm. The quantum

hamiltonian is

(745) Ĥ = π̂2
0 +

(
m̂r

2

)2

+
∑

n6=0

(π̂nπ̂−n +
1

4
n2φ̂nφ̂−n).

Similarly to Section 4.2.4, the Hamiltonian splits into

• A collection of harmonic oscillators (one for each n 6= 0, with frequency
ωn = |n|). For the oscillators we introduce creation/annihilation operators

ân, ân, n 6= 0, exactly as before (471); they satisfy the usual commutation
relations (472).

• A free particle of mass µ = 1
2 with values in S1

target (described by φ̂0, π̂0).

• A shift by a constant depending on winding,
(
m̂r
2

)2
.

For a free quantum particle on S1
target the space of states in Schrödinger rep-

resentation is L2(S1
target) (the space of 2πr-periodic L2 functions ψ(φ0)) with φ̂0

acting by multiplication ψ(φ0) 7→ φ0ψ(φ0) and π̂0 = −i ∂
∂φ0

the derivation. Two

important points here (in comparison with Section 4.2.3):

• The eigenvectors of π̂0 are functions ψe(φ0) = e
ie
r φ0 with e ∈ Z, the cor-

responding eigenvalue is e
r . In particular, the eigenvalue spectrum of π̂0 is

discrete:

(746)
{ e
r

}
e∈Z

=
1

r
Z,

unlike the case of a free particle on R where the spectrum of momentum
operator is R.

• “Operator” φ̂0 is multi-valued (defined modulo 2πrZ · Id). In particular,
it is not a well-defined operator in the usual sense, though exponentials

v̂n : = ei
n
r φ̂0 are well-defined operators for n ∈ Z.106 They satisfy the

commutation relation

(747) [π̂0, v̂
n] =

n

r
v̂n.

Retracing our steps with the scalar field, we proceed with the canonical quantiza-
tion, construct the Heisenberg field operator, switch to Euclidean cylinder by Wick
rotation and map to C\{0} by the exponential map, arriving at the Heisenberg field
operator

(748) φ̂(z) = φ̂0 − i
m̂r

2
log

z

z̄
− iπ̂0 log(zz̄) +

∑

n 6=0

i

n
(ânz

−n + ânz̄
−n)

106In v̂n, the superscript can be read either as index or as a power (of the operator v̂ = v̂1).
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As we discussed above, π̂0 has eigenvalue spectrum 1
rZ. So, we introduce the

operator ê : = rπ̂0 which has integer eigenvalues. In terms of this new notation,
the field operator (748) is

(749) φ̂(z) = φ̂0 − i
m̂r

2
log

z

z̄
− i ê

r
log(zz̄) +

∑

n 6=0

i

n
(ânz

−n + ânz̄
−n)

Lecture 28,
11/2/2022The derivatives of the field operator are

(750) i∂φ̂(z) =
∑

n∈Z
ânz
−n−1, i∂̄φ̂(z) =

∑

n∈Z
ânz̄
−n−1

(same formulae as (535)), where we defined

(751) â0 : =
ê

r
+

m̂r

2
, â0 : =

ê

r
− m̂r

2
.

The stress-energy tensor is given by the same formula as for the scalar field
valued in R, T =: − 1

2∂φ∂φ : (the normal ordering is defined as usual, putting the

operator â≥0, â≥0 to the right). Thus, the Virasoro generators are again given
by (613), (614) and the Hamiltonian and total momentum operators are given by
(616):

(752)

Ĥ = L̂0 + L̂0 =
1

2

∑

n∈Z
: ânâ−n + ânâ−n :,

P̂ = L̂0 − L̂0 =
1

2

∑

n∈Z
: ânâ−n − ânâ−n :

6.1.3. Space of states. The space of states of the scalar field with values in S1
target

(the Fock space) is

(753) H = SpanC

{
â−nr · · · â−n1

â−n̄s · · · â−n̄1
|e,m〉

∣∣∣
1 ≤ n1 ≤ · · · ≤ nr,
1 ≤ n̄1 ≤ · · · ≤ n̄s,

(e,m) ∈ Z2

}

The vector |e,m〉 ∈ H (“pseudovacuum”) is annihilated by the annihilation opera-

tors â>0, â>0 and is an eigenvector of â0, â0:

(754) â0|e,m〉 =
( e
r

+
mr

2

)

︸ ︷︷ ︸
αe,m

|e,m〉, â0|e,m〉 =
( e
r
− mr

2

)

︸ ︷︷ ︸
ᾱe,m

|e,m〉

where we introduced the notations αe,m, ᾱe,m for the respective eigenvalues.
Another way to express the the space of states is as a direct sum of Verma

modules of the Lie algebra Heis⊕Heis (the direct sum of two Heisenberg Lie algebras

(476)) with highest weights (eigenvalues of â0, â0) given by pairs (αe,m, ᾱe,m):

(755) H =
⊕

(e,m)∈Z2

VHeis⊕Heis
(αe,m,ᾱe,m)︸ ︷︷ ︸
He,m

Note that the main distinction from the case of the usual free scalar theory
(485) is the structure of pseudovacua: previously we had a continuum family of
pseudovacua |π0〉 characterized by the value of the zero-mode momentum π0 ∈ R,
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whereas now we have a lattice of pseudovacua |e,m〉 characterized by the (integer)
zero-mode momentum e and the winding number m.107

The energy and total momentum of pseudovacua are found from (752):

(756)
Ĥ|e,m〉 =

1

2
(α2

e,m + ᾱ2
e,m)|e,m〉 =

(( e
r

)2

+
(mr

2

)2
)
|e,m〉,

P̂ |e,m〉 =
1

2
(α2

e,m − ᾱ2
e,m)|e,m〉 = em|e,m〉

Note that while the eigenvalue of Ĥ is a non-negative real number, the eigenvalue

of P̂ is always an integer. Also note that the only pseudovacuum with zero energy

(eigenvalue of Ĥ) is |e = 0,m = 0〉. It also has zero total momentum and we identify
this particular state as the “true” (as opposed to “pseudo-”) vacuum, |vac〉 : = |0, 0〉

As in the ordinary free scalar theory, we have that

• applying â−n to a state changes energy-momentum by (n, n) (creates a
“left-mover”),

• applying â−n to a state changes energy-momentum by (n,−n) (creates a
“right-mover”),

where we assume n > 0.
The pseudovacuum |e,m〉 is also an eigenvector of the Virasoro generators L̂0,

L̂0 with

(757) L̂0|e,m〉 =
1

2
α2
e,m

︸ ︷︷ ︸
he,m

|e,m〉, L̂0|e,m〉 =
1

2
ᾱ2
e,m

︸ ︷︷ ︸
h̄e,m

|e,m〉.

6.1.4. Vertex operators. The counterpart of pseudovacua |e,m〉 via the field-state
correspondence are the vertex operators Ve,m ∈ V , constructed somewhat differently
than in the non-compactified scalar field theory.

Let us introduce an “operator” µ̂ on H, defined modulo 2πZ · Id (similarly to

the operator φ̂0) satisfying [µ̂, m̂] = i and commuting with â6=0, â6=0, ê, φ̂0. Then for

k ∈ Z the exponential eikµ̂ is a well-defined operator on H satisfying

(758) [m̂, eikµ̂] = keikµ̂,

cf. (747), i.e., the operator
(759)
eikµ̂ : He,m → He,m+k

â−nr · · · â−n1 â−n̄s · · · â−n̄1 |e,m〉 7→ â−nr · · · â−n1 â−n̄s · · · â−n̄1 |e,m + k〉
shifts the magnetic (or winding) number m by k.108 Similarly, due to (747), the

operator eilφ̂0/r shifts the electric number e by l:
(760)

eilφ̂0/r : He,m → He+l,m

â−nr · · · â−n1
â−n̄s · · · â−n̄1

|e,m〉 7→ â−nr · · · â−n1
â−n̄s · · · â−n̄1

|e + l,m〉 .

107The notations e,m correspond to “electric” and “magnetic” number.
108Instead of introducing the operator µ̂, one can treat (759) as the definition of a family of

operators on H, formally denoted eikµ̂. From this viewpoint, µ̂ is a purely notational device, only
meaningful in the combination eikµ̂.
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Further, let us introduce the following two multivalued operators (the “holomor-

phic/antiholomorphic parts of φ̂”):
(761)

χ̂(z) =
1

2
φ̂0+

µ̂

r
−iâ0 log z+

∑

n6=0

i

n
ânz
−n, χ̂(z) =

1

2
φ̂0−

µ̂

r
−iâ0 log z̄+

∑

n6=0

i

n
ânz̄
−n.

In particular, one has φ̂(z) = χ̂(z) + χ̂(z).

Definition 6.1. The vertex operator Ve,m in the compactified free scalar field CFT
is defined by

(762) V̂e,m(z) : = : eiαe,mχ̂(z)eiᾱe,mχ̂(z) :

Here the parameters e,m are integers and αe,m, ᾱe,m are as in (754).

The normal ordering puts operators â≥0, â≥0 to the right and operators â<0, â<0, φ̂0, µ̂
to the left. Written more explicitly, the vertex operator is

(763) V̂e,m(z) = eieφ̂0/reimµ̂e−
∑
n<0

1
n (αe,mânz

−n+ᾱe,mânz̄
−n)·

· e−
∑
n>0

1
n (αe,mânz

−n+ᾱe,mânz̄
−n)eαe,mâ0 log z+ᾱe,mâ0 log z̄.

Somewhat non-obviously, this is a single-valued operator: the multi-valued op-

erators φ̂0, µ̂ are only present in single-valued exponential expressions; the last
exponential is single valued when acting on He′,m′ since one has

(764) αe,mαe′,m′ − ᾱe,mᾱe′,m′ = em′ + me′ ∈ Z.

Performing computations similar to those of Section 5.3.1, 5.5.2, 5.5.3, one proves
the following properties of vertex operators:

• Ve,m is a primary field of conformal weight

(765) he,m =
1

2

( e
r

+
mr

2

)2

, h̄e,m =
1

2

( e
r
− mr

2

)2

– same he,m, h̄e,m as in (757).
• One has

(766) lim
z→0

V̂e,m(z)|vac〉 = |e,m〉,

i.e., as claimed in the beginning of this section, the state corresponding to
the vertex operator Ve,m by the field-state correspondence is the pseudovac-
uum |e,m〉. More generally, one has

(767)

lim
z→0

:

r∏

j=1

i∂nj φ̂(z)

(nj − 1)!

s∏

k=1

i∂̄n̄k φ̂(z)

(n̄k − 1)!
V̂e,m(z) : |vac〉 = â−nr · · · â−n1

â−n̄s · · · ân̄1
|e,m〉,

i.e., the fields corresponding to basis states of H are the vertex operators
multiplied by differential polynomials in φ.
• The correlator of n vertex operators is

(768)〈
n∏

k=1

Vek,mk(zk)

〉
=





∏

1≤i<j≤n

(zi − zj)αei,mi
αej ,mj (z̄i − z̄j)ᾱei,mi

ᾱej ,mj , if
∑n
i=1 ei =

∑n
i=1 mi = 0,

0, otherwise
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Despite the real exponents appearing here, the entire expression on the right
is in fact a single-valued function on Cn(CP1), due to (764). For instance,
for n = 2 one has

(769) 〈Ve,m(w)V−e,−m(z)〉 = |w − z|−2
(
( e
r )

2
+(mr

2 )
2
)(

w − z
w̄ − z̄

)−em

– note that the first exponent on the right is real while the second is an
integer, making the expression single-valued.

6.1.5. Torus partition function in a general CFT. Consider the torus T obtained
from the annulus {z ∈ C | rin ≤ |z| ≤ rout} by identifying the inner and outer
circles via the identification rine

iσ ∼ route
iσ. Equivalently, we map the annulus by

the map z 7→ ζ = log z to the cylinder

(770) cyl = {ζ = t+ iσ ∈ C/2πiZ | log rin ≤ t ≤ log rout}
and identify the boundary circles by log rin + iσ ∼ log rout + iσ. This yields a
complex torus with modular parameter

(771) τ =
i

2π
T

with T = log rout

rin
.

2πilog

T

rin

rout

annulus

glue boundaries

cylinder

glue boundaries

Figure 31. Torus obtained from annulus or cylinder by identify-
ing the boundary circles.

The evolution operator for the cylinder of Euclidean length T is

(772) Z(cylT ) = e−TĤ = e−T (L̂0+L̂0)

The partition function for the torus is the trace of this evolution operator over the
space of states,

(773) Z(Tτ ) = trHe
−TĤ = trHe

2πiτ(L̂0+L̂0)

with τ the modular parameter (771).Lecture 29,
11/4/2022 Gluing with a twist by angle θ. More generally, one can glue the inner and outer

boundary circles of the annulus with a twist by angle θ: rine
iσ ∼ route

iσ+θ, or
equivalently identify the boundary circles of the cylinder as log rin + iσ ∼ log rout +
i(σ + θ). Denote cylT,θ the mapping cylinder (6) of length T (understood as a
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cobordism S1 → S1), associated with mapping ρr : S1 → S1 rotating the circle by
angle θ. Then one has

(774) Z(cylT,θ) = e−TĤ−iθP̂ = e2πiτL̂0−2πiτ̄L̂0 = qL̂0 q̄L̂0

with P̂ the total momentum operator. In (774) we denoted

(775) q = e2πiτ

and q̄ is its complex conjugate; note that since Im(τ) > 0, one has |q| < 1. We used

the expressions (616) for the total energy/momentum as L̂0 ± L̂0.
This yields a complex torus with modular parameter τ = i

2π (T + iθ) and the
corresponding partition function is

(776) Z(Tτ ) = trHZ(cylT,θ) = trHq
L̂0 q̄L̂0

Correction due to central charge. In fact, one needs to introduce a correction in
(776):

(777) Z(Tτ ) = trHZ(cylT,θ) = trHq
L̂0− c

24 q̄L̂0− c̄
24 ,

with (c, c̄) the holomorphic/antiholomorphic central charge of the CFT (one also
needs similar correction in (774)). The reason for this correction can be explained
in several ways:

(i) The correction in (777) arises from the Schwarzian derivative correction in the
transformation law of the stress-energy tensor (730), (736), which implies

(778)

Ĥcyl =
1

2π

∮

t=const

ι ∂
∂t

(Tcyl(dζ)2 + T cyl(dζ̄)2) = Ĥplane −
c+ c̄

24
= L̂0 + L̂0 −

c+ c̄

24
.

and similarly for the total momentum operator; Virasoro generators L̂0, L̂ are
understood as pertaining to the plane and to the radial quantization picture
(thus, when mapping to the cylinder by the map z 7→ ζ = log(z) they receive
the Schwarzian correction).

(ii) Expression (777) is the partition function for a torus with flat metric (ob-
tained from the flat metric on the cylinder), whereas (776) is the partition
function for the torus with a singular metric obtained by taking the flat annu-
lus and identifying the two boundary circles (the glued surface has a metric
which is flat almost everywhere, except at the circle where the gluing was
performed – there the metric is singular, since e.g. the identified circles had
different lengths). Conformal anomaly means that the partition function has
a dependence on the metric within the conformal class (32). Thus, the factor

q−
c
24 q̄−

c̄
24 in (777) is the explonential of the Liouville action in (32) correspond-

ing to the change from the singular metric on T coming from the annulus to
the flat metric.

(iii) Pragmatic viewpoint: the partition function for the torus is expected to be
modular invariant, in particular, it should be invariant under τ 7→ − 1

τ . As we

will see in the example of the free scalar field with values in S1, expression
(777) has this property, while (776) does not. This is connected with item
(ii) above: flat tori with modular parameters τ and −1/τ are connected by a
constant Weyl transformation, for which the Liouville action in (32) is zero.
For the singular metric coming from the annulus, this is not true: the metric



158 PAVEL MNEV

tori Tτ , T−1/τ have “scars” – singular loci of the metric – and they are not
intertwined by the conformal map Tτ → T−1/τ .

6.1.6. Torus partition function for the free scalar field with values in S1. In our
case the central charge is c = c̄ = 1 and the formula (777) becomes

(779) Z(τ) = trHq
L̂0− 1

24 q̄L̂0− 1
24 =

=
∑

(e,m)∈Z2

∑

1≤n1≤···≤nr, 1≤n̄1≤···≤n̄s

qhe,m+
∑r
i=1 ni−

1
24 q̄h̄e,m+

∑s
j=1 n̄j−

1
24

For brevity we denote the partition function of the torus with modular parameter

τ simply as Z(τ). Here we used that the operators L̂0, L̂0 are diagonal in the
basis (753); the exponents in the r.h.s. of (779) are the corresponding eigenvalues
shifted by − 1

24 ; he,m, h̄e,m are the conformal weights of the pseudovacua (757),
(765). Continuing the computation, we have

(780) Z(τ) =
∑

(e,m)∈Z2

qhe,m q̄h̄e,m(qq̄)
1
24

∑

k,l≥0

P (k)P (l)qkq̄l,

where P (k) is the number of partitions of k, i.e., the number of nondecreasing
sequences 1 ≤ n1 ≤ · · ·nr such that k = n1 + · · ·+nr, for some r ≥ 1. For instance,
one has

(781)

4 = 1 + 1 + 1 + 1

= 1 + 1 + 2

= 2 + 2

= 1 + 3

= 4,

thus, P (4) = 5. In (780), the left factor is the sum over pseudovacua, the middle
factor is the central charge correction, and the right factor accounts for the con-
tributions of Heis ⊕ Heis-descendants of the pseudovacuum (and P (k)P (l) is the
count of descendants of conformal weight (he,m + k, h̄e,m + l)).

The generating function for the numbers of partitions is a well-studied object of
combinatorics,

(782)
∑

k≥0

P (k)qk =
1∏

n≥1(1− qn)
=

q
1
24

η(τ)

where

(783) η(τ) = q
1
24

∏

n≥1

(1− qn)

is the Dedekind eta-function which satisfies the modular equivariance properties109

η(τ + 1) = eiπ/12η(τ),(784)

η(−1/τ) = (−iτ)
1
2 η(τ)(785)

109Property (784) is obvious from the definition (783). Property (785) follows from the Euler’s

identity
∏
n≥1(1−qn) =

∑
j∈Z(−1)jq

3j2−j
2 by applying Poisson summation formula (cf. footnote

10).
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Finally, the partition function (780) can be written in the form

(786) Z(τ) =
1

η(τ)η(τ̄)

∑

(e,m)∈Z2

q
1
2 ( e

r+ mr
2 )

2

q̄
1
2 ( e

r−
mr
2 )

2

When we are interested in the dependence of the partition function on the radius
of the target circle, we will write it as a function of two arguments Z(τ, r).

Lemma 6.2 (Properties of Z(τ)). The torus partition function (786) satisfies the
following properties.

(a) Modular invariance:

Z(τ + 1) = Z(τ),(787)

Z(−1/τ) = Z(τ).(788)

(b) “T-duality”:

(789) Z(τ, r) = Z(τ, 2/r)

(c) Large-radius asymptotics

(790) Z(τ, r) ∼
r→∞

r
1√

Im(τ) η(τ)η(τ̄)

Modular invariance (787), (788) means that the genus one partition function
belongs to C∞(Π+)PSL2(Z), i.e., descends to a smooth function on the moduli
space of complex toriM1,0 – which is the general feature expected in any CFT, cf.
Section 1.4.1.

“T-duality” (or “target-space duality”) is a term originating in string theory.
T-duality means that there is an equivalence of sigma-models with target a circle
of radius r and target a circle of radius 2/r.

Property (790) means in particular that if we think of the scalar field with target
R as a limit of the scalar field with target S1 of radius r, as r →∞, we are seeing
explicitly how the partition function diverges (as the volume of the target). This
gives us a better understanding of the claim made in the very beginning of Section
6.1 that the genus one partition function of the R-valued free scalar theory diverges.

Proof. Item (a) is proven by Poisson summation in e,m. add the detailed
computation?For the item (b), we notice that the exponents in (786) satisfy

(791) he,m(r) = hm,e(2/r), h̄e,m(r) = h̄m,e(2/r)

where we indicate explicitly the dependence of the exponents (conformal weights
of the pseudovacuum |e,m〉) on r. From this observation, the equality (789) is
obvious. (Interestingly, the inversion of the target radius r 7→ 2/r is compensated
by the interchange of the electric and magnetic numbers (e,m) 7→ (m, e).)

For the item (c) one applies Poisson summation just in the variable e to (786):
one has

(792) Z(τ, r) =
1

η(τ)η(τ̄)

∑

(p,m)∈Z2

r√
Im(τ)

e
−π2

2 r
2

(
(p+mRe(τ))2

Im(τ)
+m2

)
,

where we denoted p the dual variable to e (w.r.t. Poisson summation). In the sum
(792), the asymptotics as r → ∞ is given by the term p = m = 0 (and it is the
r.h.s. of (790)), while the sum of all other terms is exponentially suppressed – it

behaves as O(re−Ar
2

) with some constant A > 0.
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�

6.1.7. Path integral approach to the torus partition of the free scalar field with values
in S1. In this part we follow K. Gawedzki [14], we refer the reader to this source
for more details.

In the path integral approach, the partition function of the torus Σ = Tτ is
represented by the integral over smooth maps φ : Σ→ S1

target:

(793) ZPI(Σ) =

∫

Map(Σ,S1)

Dφ e−S(φ)

with S(φ) the classical (Euclidean) action of the model,

(794) S(φ) =
1

8π

∫

Σ

dφ ∧ ∗dφ =
1

8π

∫

Σ

dtdσ((∂tφ)2 + (∂σφ)2).

Note that we have π0Map(Σ, S1
target) ' Z2. More specifically, maps φ fall into

classes of homotopy equivalent maps, according to the pair of winding numbers
(n1, n2) ∈ Z2 of φ around two closed curves γ1,2 ⊂ Σ – the generators of π1(Σ).

σ

t

γ1

γ2

2π

2πIm(τ)
2πRe(τ)

Figure 32. Torus with modular parameter τ with two generators
of π1.

Thus, the mapping space breaks into connected components

(795) Map(Σ, S1
target) =

⊔

(n1,n2)∈Z2

Mapn1,n2
(Σ, S1

target)

where Mapn1,n2
consists of maps with prescribed winding numbers n1, n2. There-

fore, we can rewrite (793) as

(796) ZPI(Σ) =
∑

(n1,n2)∈Z2

∫

Mapn1,n2
(Σ,S1)

Dφ e−S(φ)

Notice that for each pair (n1, n2) ∈ Z there exists a unique (up to a constant shift)
solution of the Euler-Lagrange equation ∆φ = 0 with winding numbers (n1, n2).
Explicitly it can be represented by the function

(797) φcl
n1,n2

(σ, t) = r ·
(
n1σ +

n2 − n1Re(τ)

Im(τ)
t

)
.

Note that it is a linear function in coordinates σ, t on the torus. The classical action
evaluated on the classical solution (797) is

(798) S(φcl
n1,n2

) =
πr2

2

|n2 − τn1|2
Im(τ)
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A general smooth map φ ∈ Mapn1,n2
(Σ, S1

target) can be uniquely decomposed as

(799) φ = φ0 + φcl
n1,n2

+ φ̃,

where

• φ0 is a constant function valued in S1
target (the constant shift of a classical

solution),
• φcl

n1,n2
is the “standard” classical solution with given winding numbers

(797),

• the “fluctuation” φ̃ is a smooth function with no winding (i.e. lifting to a
function Σ→ R) and satisfying the condition

(800)

∫

Σ

dt dσ φ̃ = 0

(this condition is imposed to have uniqueness of the decomposition (799)).
We denote the space of maps φ : Σ→ R satisfying (800) by Map′(Σ,R) (it
is the orthogonal complement of constant maps).

Note that the first two terms in (799) together give the general classical solution
with given winding numbers. Substituting the decomposition (799) into the action
(794), we obtain

(801) S(φ) = S(φcl
n1,n2

) + S(φ̃).

Thus, the path integral (796) is

(802) ZPI(Σ) =
∑

(n1,n2)∈Z2

∮

S1
target

dφ0

︸ ︷︷ ︸
2πr

∫

Map′(Σ,R)

Dφ̃ e−S(φ̃)

︸ ︷︷ ︸
(det′∆Σ)−

1
2

·e−S(φcl
n1,n2

)

The integral over φ0 ∈ S1
target here is the integral over the space of classical solu-

tions. The Gaussian functional integral in the middle is formally evaluated to the
determinant-prime (i.e. excluding the zero eigenvalue) of the Laplacian on Σ raised
to the power − 1

2 , cf. Section 4.5.3. This determinant can be calculated explicitly
in the sense of zeta-function regularization (this is a rather nontrivial computation
for which we refer the reader again to Gawedzki [14]), yielding

(803) det′∆Σ = (2π)2Im(τ) |η(τ)|4,
where the Dedekind eta-function makes an appearance. Thus, continuing (802), we
have

(804) ZPI(Σ) =
∑

(n1,n2)∈Z2

��2πr
1

��2π
√

Im(τ)|η(τ)|2
e−

πr2

2
|n2−τn1|

2

Im(τ)

This expression coincides with result of the operator formalism in the form (792)!
To see this coincidence, we identify n1 with m (which is not surprising, since m

was the winding number along the fixed-time circle) and n2 with p (i.e., the second
winding number gets identified with the Poisson-dual variable to e – the zero-mode
momentum).

Ultimately, we obtained a check that the operator formalism of CFT (relying on
the study of the space of states) and the path integral formalism yield the same
answer for the genus one partition function.
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We remark that in the path integral formalism, the modular invariance of the
torus partition function is manifest (unlike the operator formalism where it is a
nontrivial consequence of Poisson summation). Indeed, the values of the action
evaluated on classical solutions (798) on the tori Σ = Tτ and Σ′ = T−1/τ are the
same (if one identifies the winding numbers as (n1, n2) ↔ (n2,−n1)). Likewise,
the eigenvalue spectra of Laplacians on on Σ,Σ′ are the same, and hence the de-
terminants are the same. Put another way, in the path integral formalism modular
invariance is manifest, because the classical (Lagrangian) theory is conformally
invariant.110Lecture 30,

11/7/2022
6.2. Aside: conformal blocks. In a general CFT on a surface Σ (e.g. Σ = C
or CP1), for a collection of fields Φ1, . . . ,Φn ∈ V one is interested in writing the
correlator as a sum of products of holomorphic and antiholomorphic functions

(805) 〈Φ1(z1) · · ·Φn(zn)〉 =
∑

ρ∈I(Φ1,...,Φn)

Fρ(z1, . . . , zn)F ′ρ(z̄1, . . . , z̄n).

Here

• The correlator in the l.h.s. is a smooth single-valued function on the open
configuration space Cn(Σ).
• In the r.h.s. the index ρ ranges over some set I(Φ1, . . . ,Φn) depending on

the input fields (in nice cases it is a finite set, but generally does not have
to be).
• Fρ, F ′ρ are respectively holomorphic and antiholomorphic (possibly multi-

valued111) functions on Cn(Σ); they are called the “conformal blocks” for
the correlator in the l.h.s. of (805).

Similarly, the genus one partition function can be written as

(806) Z(τ) =
∑

ρ∈I1,0

χρ(τ)χ′ρ(τ̄)

with χρ, χ
′
ρ – the “conformal blocks for the torus partition function” – respectively

holomorphic and antiholomorphic multivalued functions on the moduli spaceM1,0.

6.2.1. Chiral (holomorphic) free boson with values in S1. Consider the version of
the compactified free boson theory where one only considers one copy of the Heisen-
berg algebra (generated by ân, but not ân), and the space of states is the sum of
Verma modules for this single Heisenberg algebra:
(807)

Hchiral =
⊕

(e,m)∈Z2

VHeis
e,m = Span

{
â−kr · · · â−k1

|e,m〉
∣∣∣ (e,m) ∈ Z2, 1 ≤ k1 ≤ · · · ≤ kr

}

In this model, one can consider the chiral vertex operator

(808) V̂ chiral
e,m (z) =: eiαe,mχ̂(z) :,

110In this form this argument is a bit formal and implicitly assumes conformal invariance of
the path integral measure.

111In particular, Fρ, F ′ρ are allowed to have monodromy as one puncture goes around another

one. Put another way, Fρ, F ′ρ are single-valued holomorphic/antiholomorphic functions on some

covering space of Cn(Σ).
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with χ̂(z) as in (761) – the “holomorphic part” of the field operator φ̂(z). The
expression (808) should be thought of as the “holomorphic half” of the vertex
operator (762) of the full (non-chiral) theory.

From Wick’s lemma one obtains correlators

(809) 〈
n∏

i=1

V chiral
ei,mi (zi)〉 =

{ ∏
1≤i<j≤n(zi − zj)αeimi

αejmj , if
∑

ei =
∑

mi = 0,

0, otherwise

This expression is holomorphic and multivalued (has monodromies) on Cn(C). If
the radius of the target circle satisfies r2 ∈ Q, then the monodromies are rational
and the correlator lifts to as a single-valued function on a finite-degree covering
space of Cn(C).

We remark that multivaluedness of correlators is linked to the fact that the
conformal weights of chiral vertex operators (h, h̄) = ( 1

2α
2
e,m, 0) fail the assump-

tion (652). In the chiral theory the antiholomorphic stress-energy tensor vanishes
identically T = 0 and any field has h̄ = 0, so V and H are graded just by the
holomorphic conformal weight h.

The correlator (768) of vertex operators in the full compactified free boson theory
factorizes as the correlator of holomorphic chiral vertex operators (809) times the
correlator of (analogous) antiholomorphic chiral vertex operators:112

(810) 〈
n∏

i=1

V non−chiral
ei,mi (zi)〉 = 〈

n∏

i=1

V chiral
ei,mi (zi)〉 · 〈

n∏

i=1

V
chiral

ei,mi (z̄i)〉

Comparing with (805), we can say that correlators of holomorphic/antiholmorphic
chiral vertex operators in the respective chiral compactified free boson theories yield
the conformal blocks for the correlator of vertex operators in the full (non-chiral)
compactified free boson theory. In particular, in this example the indexing set I of
(805) is a single-element set.

The genus one partition function (786) of the compactified free boson admits the
representation (806) with I1,0 a finite set if and only if the target radius satisfies
r2 ∈ Q.

For example, for r =
√

2 (the so-called self-dual radius, since it is a stationary
point of T-duality (789)), one has

(811) Z(τ) =
( 1

η(τ)

∑

k∈Z

qk
2
)( 1

η(τ̄)

∑

l∈Z

q̄l
2
)

+
( 1

η(τ)

∑

k∈Z+ 1
2

qk
2
)( 1

η(τ̄)

∑

l∈Z+ 1
2

q̄l
2
)

I.e., here I1,0 is a 2-element set: one has two holomorphic and two antiholomorphic
conformal blocks.

6.3. Free fermion.

6.3.1. Classical Lagrangian theory on a surface. As a Lagrangian field theory, 2d
free fermion on a Riemannian surface Σ is defined by the classical action

(812) S =
i

4π

∫

Σ

ψ∂̄ψ − ψ̄∂ψ̄ =
1

2π

∫

Σ

d2z(ψ∂̄ψ + ψ̄∂ψ̄)

112In the antiholomorphic chiral theory, one only retains the creation/annihilation operators

ân, all fields have conformal weight of the form (0, h̄) and T = 0. Correlators are antiholomorphic
and multivalued.
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Here ∂ = dz ∂, ∂̄ = d̄z ∂̄ are the holomorphic/antiholomorphic Dolbeault differ-
entials, z, z̄ refers to a local complex coordinate on Σ and d2z = i

2dz ∧ dz̄ is the

coordinate area element. The fields of the model are fermions (spinors)113

(813) ψ = ψ(dz)1/2 ∈ Γ(Σ,K⊗
1
2 ), ψ̄ = ψ̄(dz̄)1/2 ∈ Γ(Σ,K

⊗ 1
2 ).

Here K,K are the line bundles (T 1,0)∗Σ, (T 0,1)∗Σ. Two important points:

• To define the square root of these line bundles, one needs to choose the sign
of the root of the transition function. This choice of sign is known as the
spin structure on Σ.114

• One treats the values of the fields ψ, ψ̄ as anticommuting (or “odd” or
“Grassmann”) variables.

Thus, the space of fields of the model is (purely odd) vector superspace

(814) FieldsΣ =
⊕

s

Γ(Σ,ΠK
⊗ 1

2
s ⊕ΠK

⊗ 1
2

s ))

where the sum is over the spin structures s on Σ;115 Π is the parity reversal symbol,refer to Cimasoni-
Reshetikhin? implying that FieldsΣ is the space of sections of a supervector bundle with purely

odd fiber.
The Euler-Lagrange equation for the action reads

(815) ∂̄ψ = 0, ∂ψ̄ = 0,

or equivalently, in a local complex coordinate,

(816) ∂̄ψ = 0, ∂ψ̄ = 0.

Remark 6.3. The system described by the action functional (812), with fields ψ, ψ̄
is called the free Majorana fermion.116 One can also consider the system with
only field ψ (or only ψ̄), with the action Schiral = 1

2π

∫
Σ
d2z ψ∂̄ψ (respectively,

1
2π

∫
Σ
d2z ψ̄∂ψ̄) – it is called the chiral or Weyl fermion. When one wants to dis-

tinguish between the chiral fermion ψ and the chiral fermion ψ̄, they are called
respectively left- and right-chiral fermions.

6.3.2. Hamiltonian picture. As a Hamiltonian theory on a cylinder, the model has
phase space – the purely odd vector superspace

(817) Φ =
⊔

s∈{P,A}

C∞s (S1)⊗ C0|2

where C0|2 is another notation for the odd two-dimensional complex space ΠC2;
s ∈ {P,A} is a choice of spin structure on the cylinder – a choice of either periodic
(P) or antiperiodic (A) boundary conditon. Elements of Φ are pairs (ψ, ψ̄) of
functions on S1 satisfying simultaneously either P or A condition,

(818) ψ(σ + 2π) = εψ(σ), ψ̄(σ + 2π) = εψ̄(σ)

113One understands ψ, ψ̄ as two independent fields.
114Put another way, it is a choice of a consistent set of periodicity/antiperiodicity conditions

for the fermion field ψ, ψ̄, as one traverses a closed curve γ on Σ.
115Generally, spin structures form a torsor over H1(Σ,Z2), thus there are 2B1 spin structures

on a surface with first Betti number B1.
116Majorana fermion is “uncharged” as opposed to Dirac fermion, which is “charged” – pos-

sesses an extra U(1)-symmetry ψ → eiθψ. Majorana and Dirac fermions are also referred to as

“real” and “complex” fermions, respectively.
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with ε = +1 is s = P and ε = −1 if s = A.
One has the symplectic form on the phase space,

(819) ω =
i

4π

∮

S1

dσ
(
δψ ∧ δψ + δψ̄ ∧ δψ̄

)
∈ Ω2(Φ).

The corresponding Poisson (anti-)brackets117 are
(820)
{ψ(σ), ψ(σ′)} = 2πiδ(σ − σ′), {ψ̄(σ), ψ̄(σ′)} = 2πiδ(σ − σ′), {ψ(σ), ψ̄(σ′)} = 0.

The Hamiltonian of the model is

(821) H =
i

4π

∮

S1

dσ (ψ∂σψ − ψ̄∂σψ̄).

It is obtained by writing the action functional on the Minkowski cylinder

(822) SMink =

∫
dt

i

4π

∮
dσ(ψ∂tψ − ψ∂σψ + ψ̄∂tψ̄ + ψ̄∂σψ̄)

︸ ︷︷ ︸
L

and performing the Legendre transform. Since the Lagrangian L is linear in veloci-
ties ψ̇(σ), the corresponding momenta π(σ) = δ

δψ̇(σ)
L = − i

4πψ(σ) are not indepen-

dent and drop out of the Legendre transform.
One can expand the fields in Fourier modes,

(823) ψ(σ) =
∑

n

e−inσbn, ψ̄(σ) =
∑

n

e−inσ b̄n

where n ranges over integers if s = P and over half-integers (n ∈ Z + 1
2 ) if s = A.

Poisson brackets (820) imply to following Poisson brackets for the Fourier modes:

(824) {bn, bm} = iδn,−m, {b̄n, b̄m} = iδn,−m, {bn, b̄m} = 0.

6.3.3. Canonical quantization. Proceeding to canonical quantization, one replaces

coordinates bn, b̄n on the phase space with operators b̂n,
̂̄bn acting on some space

of states H (to be described), subject to the following anticommutation relations Expand on canoni-
cal quantization pre-
scription?

(obtained from (824) by the canonical quantization prescription):

(825) [̂bn, b̂m]+ = δn,−m1̂, [̂b̄n,
̂̄bm]+ = δn,−m1̂, [̂bn,

̂̄bm]+ = 0,

where [A,B]+ : = AB +BA is the anticommutator.

Remark 6.4. Generally, given a vector space W with an inner product g, one can
form the Clifford algebra Cl(W, g) – the associative unital algebra generated by the
elements of W subject to the relation

(826) uv + vu = g(u, v)1

for any u, v ∈W . Then, the algebra spanned by the operators b̂n above (with n ∈ Z
for s = P and n ∈ Z + 1

2 for s = A) is the Clifford algebra for the vector space

W = C∞s (S1) with inner product g(u, v) =
∮
dσu(σ)v(σ).118 Thus, the Clifford

algebra for W plays a similar role in the free fermion theory to the role of the Weyl

117Instead of being skew-symmetric, they are symmetric

118Or, more invariantly, one should set W = Γ(S1, (T ∗S1)
⊗ 1

2
s ) – the space of half-densities

on S1 with periodicity condition s ∈ {P,A}. Then one has g(u, v) =
∮
uv for u,v ∈ W two

half-densities.
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algebra in the free boson theory. We will denote these two Clifford algebras Cls
with s ∈ {P,A}:

(827)
ClP = C〈. . . , b̂−1, b̂0, b̂1, . . .〉

/
(̂bnb̂m + b̂mb̂n = δn,−m1̂),

ClA = C〈. . . , b̂−3/2, b̂−1/2, b̂1/2, b̂3/2 . . .〉
/

(̂bnb̂m + b̂mb̂n = δn,−m1̂)

The Heisenberg field operator on the cylinder is

(828) ψ̂(ζ) =
∑

n∈Zs

e−nζ b̂n,
̂̄ψ(ζ) =

∑

n∈Zs

e−nζ̄̂̄bn,

where ζ = t + iσ, with t the Euclidean time, and where we denoted ZP : =
Z, ZA : = Z + 1

2 .
Mapping from the cylinder to the punctured plane by exp: C/2πiZ → C\{0},

ζ 7→ z = eζ , we have ψplane(z)(dz)
1
2 = ψcyl(ζ)(dζ)

1
2 and thus

(829) ψplane(z) = z−
1
2︸︷︷︸

( dzdζ )
− 1

2

ψcyl(ζ)

where the power of derivative is minus the power of K in (813), cf. also (659).
Similarly, one has

(830) ψ̄plane(z) = z̄−
1
2 ψ̄cyl(ζ).

By this reasoning, Heisenberg field operators on the cylinder (828) mapped to
the punctured plane become

(831) ψ̂(z) =
∑

n∈Zs

b̂nz
−n− 1

2 , ̂̄ψ(z) =
∑

n∈Zs

̂̄bnz̄−n−
1
2

where the − 1
2 shift in the exponent comes from (829), (830).

Periodic boundary condition (P) on the cylinder (ψcyl(σ + 2π) = ψcyl(σ)) maps
to the antiperiodic condition on the plane,

(832) ψplane(e2πiz) = e−
1
2 2πiψplane(z) = −ψplane(z),

i.e., when travelling along a closed simple contour around zero, the field ψplane(z)
changes sign. This spin structure on C\{0} (or “sector” of the phase space/space

of states) is called “Ramond sector.” Thus, in P or Ramond sector one has ψ̂(z) =∑
n∈Z b̂nz

−n− 1
2 and similarly for ̂̄ψ(z).

Similarly, antiperiodic condition (A) on the cylinder becomes periodic condi-
tion on the plane, ψplane(e2πiz) = +ψplane(z). This is the so-called “Neveu-
Schwarz spin structure/sector.” Thus, in A or Neveu-Schwarz sector one has

ψ̂(z) =
∑
n∈Z+ 1

2
b̂nz
−n− 1

2 and similarly for ̂̄ψ(z).Lecture 31,
11/9/2022

6.3.4. Space of states for the chiral fermion. Let us restrict our attention to the
chiral fermion ψ, cf. Remark 6.3.

The space of states splits into P- and A-sectors:

(833) H = HP ⊕HA
with HP a highest weight ClP -module (cf. (827)) generated by the highest vec-

tor |vacP 〉 satisfying b̂>0|vacP 〉 = 0. Similarly, HA a highest weight ClA-module
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generated by the highest vector |vacA〉 satisfying b̂>0|vacA〉 = 0. Thus, one has

(834) HP = Span
{
· · · b̂p2

−2b̂
p1

−1b̂
p0

0 |vacP 〉
∣∣∣ p0, p1, p2, . . . ∈ {0, 1},

finitely many pn are nonzero

}

Fermionic occupation numbers p0, p1, . . . are in {0, 1} since from the anticommu-

tation relations (825) one has (̂bn)2 = 0 for n 6= 0 and (̂b0)2 = 1
2 1̂. Similarly, one

has

(835) HA = Span
{
· · · b̂p5/2

−5/2b̂
p3/2

−3/2b̂
p1/2

1/2 |vacA〉
∣∣∣ p1/2, p3/2, p5/2, . . . ∈ {0, 1},

finitely many pn are nonzero

}

6.3.5. 2-point function 〈ψψ〉. Tu understand which of the Clifford highest vectors
|vacP 〉, |vacA〉 is the true vacuum of the system, let us calculate the correlation
function 〈ψ(w)ψ(z)〉 in the operator formalism. Assume for simplicity |w| > |z| > 0.

In the P-sector we have

(836)

〈ψ(w)ψ(z)〉P : = 〈vacP |ψ̂(w)ψ̂(z)|vacP 〉 =
∑

n,m∈Z
〈vacP |̂bnb̂m|vacP 〉w−n−

1
2 z−m−

1
2

From the fact that b̂>0|vacP 〉 = 0, 〈vacP |̂b<0 = 0 and from the anticommutation
relation (825) we see that the only surviving terms are n = m = 0 and n = −m > 0,
i.e., one has

(837)

〈ψ(w)ψ(z)〉P = 〈vacP |̂b0b̂0|vacP 〉︸ ︷︷ ︸
1
2

w−
1
2 z−

1
2 +

∞∑

n=1

〈vacP |̂bnb̂−n|vacP 〉︸ ︷︷ ︸
1

w−n−
1
2 zn−

1
2 =

= (wz)−
1
2 (

1

2
+

∞∑

n=1

( z
w

)n
) =

1

2

(
w
z

) 1
2 +

(
z
w

) 1
2

w − z

By a similar computation, in the A-sector we have

(838) 〈ψ(w)ψ(z)〉A =
∑

n∈Z+ 1
2 , n>0

〈vacA |̂bnb̂−n|vacA〉︸ ︷︷ ︸
1

w−n−
1
2 zn−

1
2 =

=
1

w
+

z

w2
+
z2

w3
+ · · · = 1

w − z

Note that the expression (838) is translation-invariant as expected of a 2-point
correlator in any CFT (cf. Lemma 5.26), while (837) is not translation-invariant.
This suggests that we should identify |vac〉 : = |vacA〉 as the true vacuum vector
in H, while |vacP 〉 is a pseudovacuum (similar to the states |π0〉 with π0 6= 0 in the
scalar field theory). In particular, (838) should be understood as the actual 2-point
correlator

(839) 〈ψ(w)ψ(z)〉 =
1

w − z
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On the other hand, the computation (837) should be understood as a 4-point cor-
relator on CP1,119

(840) 〈σ(∞)ψ(w)ψ(z)σ(0)〉CP1 ,

with a certain field σ (so-called “twist field,” to be discussed later), corresponding
by field-state correspondence to |vacP 〉, inserted at the points 0 and ∞. This
explains why we don’t see translation invariance in (837) – because “secretly” it
is a 4-point function and a translation would displace the field σ away from the
origin.

In the free fermion model, the space of states H and the space of fields V are
Z2-graded and we understand that when the radial ordering is applied, we have a
sign when we have to permute field operators:

(841) RΦ̂1(w)Φ̂2(z) =

{
Φ̂1(w)Φ̂2(z), if |w| ≥ |z|

(−1)|Φ1|·|Φ2|Φ̂2(z)Φ̂2(w), if |z| ≥ |w|
Here |Φ| ∈ Z2 is the parity of the field. With this prescription, for instance, the
computation (838) extends to the case |w| ≤ |z|, yielding the same formula:

(842) 〈φ(w)ψ(z)〉 : = 〈vacA|Rψ̂(w)ψ̂(z)|vacA〉 =
1

w − z .

with any w 6= z ∈ C\{0}.
Note that the 2-point function (842) satisfies

(843) 〈ψ(w)ψ(z)〉 = −〈ψ(z)ψ(w)〉
– the correlation function is antisymmetric under swapping the positions of fermions
(as expected in Fermi statistics).

6.3.6. Stress-energy tensor. Classically, the stress-energy tensor (computed as a
variation of the action w.r.t. metric) for the chiral fermion is

(844) T (z) = −1

2
ψ(z)∂ψ(z)

for the holomorphic component and T (z) = 0 for the antiholomorphic component.
For the corresponding quantum object – an operator onH, we consider separately

T̂ (z) as an operator on HA and on HP .
A-sector. Set

(845) T̂ (z) : = −1

2
: ψ̂(z)∂ψ̂(z) :

where the normal ordering puts fermion annihilation operators b̂>0 to the right and

fermion creation operators b̂<0 to the left; we understand that when we interchange

two b̂’s, the sign of the expression is flipped.
From Wick’s lemma (or rather its obvious adaptation to the Clifford algebra) we

find the standard OPE

(846) RT̂ (w)T̂ (z) =
c
2 1̂

(w − z)4
+

2T̂ (z)

(w − z)2
+
∂T̂ (z)

w − z + reg.

119The field σ(∞) here is with respect to the coordinate chart at ∞ ∈ CP1. Writing this
correlator in terms of C, and using the result from further along this section that σ has conformal

weight ( 1
16
, 0), one should write limy→∞ y

1
8 〈σ(y)ψ(w)ψ(z)σ(0)〉C.
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(cf. (601)) with holomorphic central charge c = 1
2 . Since T = 0, the TT and TT

OPEs are satisfied trivially, with antiholomorphic central charge c̄ = 0.
P-sector. Set

(847) T̂ naive(z) : = −1

2
: ψ̂(z)∂ψ̂(z) :

with the same definition of normal ordering as above. Interestingly, it does not
satisfy the expected OPE (601), thus it fails a basic axiom of a CFT (in particular
its modes do not satisfy the Virasoro algebra relations). It turns out that a good
definition is as follows:

(848) T̂ (z) : = lim
w→z

(
−1

2
Rψ̂(w)∂ψ̂(z) +

1

2

1̂
(w − z)2

)

– we split the two points in the definition of the stress-energy tensor (844) and sub-
tract the (translation-invariant) singular part of OPE,− 1

2ψ(w)∂ψ(z)−[− 1
2ψ(w)∂ψ(z)]sing.

Then one has120

(849) T̂ (z) = T̂ naive(z) +
1̂

16z2

– with this 1̂
16z2 shift included, T̂ does satisfy the desired OPE (846), again with

c = 1
2 .

In particular, we have nonzero expectation value of the stress-energy tensor in
P-sector

(850) 〈T (z)〉P : = 〈vacP |T̂ (z)|vacP 〉 =
1

16z2
.

We remark that in A-sector, prescription (848) is compatible with the construc-
tion via normal ordering (845). Thus, (848) can be taken as a universal recipe for
the fermion stress-energy tensor (applies to both A- and P-sector).

Virasoro generators. Virasoro generators can be obtained from the stress-energy

tensor T̂ (z) =
∑
n∈Z z

−n−2L̂n. Thus, from (845) and (849) one obtains:

(851)

A-sector: L̂n =
∑

m∈Z+ 1
2

(
m

2
+

1

4

)
: b̂n−mb̂m :,

P-sector: L̂n =
∑

m∈Z

(
m

2
+

1

4

)
: b̂n−mb̂m : +δn,0

1̂
16
.

All operators Ln vanish identically.
In particular, one has

(852) L̂0|vacA〉 = 0, L̂0|vacP 〉 =
1

16
|vacP 〉

In particular, the true vacuum |vacA〉 has zero energy and total momentum, while
|vacP 〉 has both energy and total momentum 1

16 .

120Indeed, repeating the computation (836), (837), without pairing to |vacP 〉, we have

Rψ̂(w)ψ̂(z)− : ψ̂(w)ψ̂(z) := 1
2

(wz )
1
2 +( zw )

1
2

w−z 1̂ = ( 1
w−z + 1

8z2 (w − z) + O((w − z)2))1̂. Hence,

− 1
2
Rψ̂(w)∂ψ̂(z) = − 1

2
: ψ̂(w)∂ψ̂(z) : +(− 1

2
1

(w−z)2 + 1
16z2 + O(w − z))1̂, or equivalently

− 1
2
Rψ̂(w)∂ψ̂(z) + 1

2
1̂

(w−z)2 = − 1
2

: ψ̂(w)∂ψ̂(z) : + 1̂
16z2 +O(w − z). Taking the limit w → z, we

obtain (849).
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One also has

(853) [L̂0, b̂−n] = nb̂n

in both A- and P-sectors. I.e., applying b̂−n, one increases the L̂0-eigenvalue (con-
formal weight) by n.

6.3.7. Back to the space of states. Let us list the states in A- and P-sectors with

small conformal weights h (i.e., L̂0-eigenvalues).
h state
0 |vacA〉
1
2 b̂− 1

2
|vacA〉

1 ∅
3
2 b̂− 3

2
|vacA〉

2 b̂− 3
2
b̂− 1

2
|vacA〉

5
2 b̂− 5

2
|vacA〉

3 b̂− 5
2
b̂− 1

2
|vacA〉

· · · · · ·

h state
1
16 |vacP 〉, b̂0|vacP 〉

1 + 1
16 b̂−1|vacP 〉, b̂−1b̂0|vacP 〉

2 + 1
16 b̂−2|vacP 〉, b̂−2b̂0|vacP 〉

3 + 1
16 b̂−3|vacP 〉, b̂−3b̂0|vacP 〉,

b̂−2b̂−1|vacP 〉, b̂−2b̂−1b̂0|vacP 〉
· · · · · ·

Here we have states in A-sector on the left and states in P-sector on the right.
States

(854) |vacA〉, b̂− 1
2
|vacA〉, |vacP 〉, b̂0|vacP 〉

are Virasoro-primary (annihilated by L̂>0) – and they are the only Virasoro-primary
states in H. We will also denote these four states according to their conformal
weight by |0〉, | 12 〉, | 1

16 〉+, | 1
16 〉−. Their Z2-grading is, respectively, even, odd, even,

odd.121

Thus, the space of states of the chiral fermion splits into four conformal families
(irreducible representations of Virasoro algebra):

(855) H = M0 ⊕ΠM 1
2︸ ︷︷ ︸

HA

⊕M 1
16
⊕ΠM 1

16︸ ︷︷ ︸
HP

where Mh is the irreducible Virasoro highest weight module with central charge 1
2

and highest weight h; Π is the parity reversal symbol (i.e. Mh is an even vector
space and ΠMh is an odd (super)vector space).

By the field-state correspondence, the four primary states (854) correspond to
four primary fields

(856) 1, ψ(z), σ(z), µ(z)

with conformal weight h being 0, 1
2 ,

1
16 ,

1
16 , respectively (and h̄ = 0 for all fields in

the chiral theory). Fields σ, µ are the so-called “twist fields.” One has for instance
the OPE

(857) ψ(w)σ(z) ∼ (w − z)− 1
2µ(z) + reg.

In particular, the insertion of the twist field σ(z) creates a monodromy −1 aroundIs it phrased ok?
z for the fermion ψ(w).Lecture 32,

11/11/2022
121The logic with Z2 grading is that vectors |vacA〉, |vacP 〉 are even, while action by any single

Clifford generator b̂ changes the parity of the vector.
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6.3.8. Non-chiral (Majorana) fermion. We pair the left- and right- (or holomor-
phic/antiholomorphic) chiral fermion CFTs, with the following conventions:

• We require that the P/A boundary condition is the same for ψ and ψ̄.

• We impose b̂0 = ̂̄b0 (cf. (474)).

The space of states splits as a sum of irreducible highest weight modules of
Vir⊕Vir with central charge c = c̄ = 1

2 :

(858) Hnon−chiral = M0,0 ⊕ΠM 1
2 ,0
⊕ΠM0, 12

⊕M 1
2 ,

1
2
⊕M 1

16 ,
1
16
⊕ΠM 1

16 ,
1
16

whre the two indices of M are the highest weight (conformal weight) (h, h̄) of
the highest vector. The highest weight vectors themselves and the corresponding
primary fields are, respectively:

highest vector |vacA〉 b̂− 1
2
|vacA〉 ̂̄b− 1

2
|vacA〉 b̂− 1

2

̂̄b− 1
2
|vacA〉 |vacP 〉 b̂0|vacP 〉

primary field 1 ψ(z) ψ̄(z) ε(z) = ψ(z)ψ̄(z) �(z) �(z)
(h, h̄) (0, 0) ( 1

2 , 0) (0, 1
2 ) ( 1

2 ,
1
2 ) ( 1

16 ) ( 1
16 ,

1
16 )

Z2-parity even odd odd even even odd

Remark 6.5. Free Majorana fermion is the CFT model corresponding to the Ising
model at critical temperature, see [6] and [8] for a detailed discussion. In particular,
correlation functions of the spin field in Ising model can be recovered as correlation
functions of the field � in the free fermion CFT.

6.3.9. Examples of correlators. From the computation (838) we know the 2-point
correlator

(859) 〈ψ(w)ψ(z)〉 =
1

w − z .

The correlator of any number of fields ψ, ψ̄ can be computed by Wick’s lemma, as
a sum over perfect matchings (where one needs to be careful with signs incurred

when moving ψ̂ over other ψ̂’s.) For the correlator of several ψ fields, this sum over
perfect matchings can written as a Pfaffian formula

(860) 〈ψ(z1) · · ·ψ(zn)〉 =

{
Pf
(

1
zi−zj

)
if n is even,

0 if n is odd

For example, for n = 4 one has

(861) 〈ψ(z1)ψ(z2)ψ(z3)ψ(z4)〉 =
1

z12z34
− 1

z13z24
+

1

z14z23
,

where zij = zi − zj .
The 2-point correlator 〈�(w)�(z)〉 cannot be found from Wick’s lemma (we don’t

have an explicit description of the field � in terms of Clifford generators b̂n,
̂̄bn at

our disposal), however we have an ansatz for it from global conformal symmetry,
cf. Lemma 5.26:

(862) 〈�(w)�(z)〉 = C
1

(w − z) 1
16 + 1

16

· 1

(w̄ − z̄) 1
16 + 1

16

= C
1

|w − z| 14
with C some constant. By choosing a convenient normalization for the field σ, we
can assume C = 1.122

122This normalization agrees with the convention that the state corresponding to �, |vacP 〉,
has unit norm 〈vacP |vacP 〉 = 1, cf. (699).
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The exponent 1
4 in (862) is exactly the one appearing in the spin-spin correlator

in Ising model at critical temperature (as known from the explicit solution of 2d
Ising model), thus corroborating the free fermion-Ising correspondence.

4-point correlator of � fields. As the next example, consider the 4-point function
of � fields. From global conformal invariance (cf. Lemma 5.31) one has

(863) 〈�(z1)�(z2)�(z3)�(z4)〉 =

∣∣∣∣
z13z24

z12z23z34z41

∣∣∣∣
1
4

F (λ),

where F (λ) is some smooth function of the cross-ratio λ = z12z34

z13z24
∈ CP1\{0, 1,∞}.

To fix the function F , we need some other idea than just global conformal invariance.
In the free fermion theory one has a vanishing descendant of the state |vacP 〉 at

level 2:

(864) (L̂−2 −
4

3
L̂2
−1)|vacP 〉 = 0

– this can be verified by using the expressions (851) for Virasoro generators in
terms of Clifford generators.123 Thus, the corresponding primary field also has a
vanishing descendant:

(865) (L−2 −
4

3
L2
−1)�(z) = 0.

Thus, by Ward identity (cf. Example 5.22) one has

(866) 0 = 〈(L−2 −
4

3
L2
−1)�(z1) �(z2)�(z3)�(z4)〉 = D〈�(z1)�(z2)�(z3)�(z4)〉

with D some differential operator in zi’s. Substituting the ansatz (863), we obtain
a differential equation on the function F (λ) – the hypergeometric equation

(867)

(
λ(1− λ)

∂2

∂λ2
+ (

1

2
− λ)

∂

∂λ
+

1

16

)
F (λ) = 0.

This equation has two independent solutions

(868) f1,2(λ) = (1±
√

1− λ)
1
2

and the general solution has the form f1(λ)g1(λ̄) + f2(λ)g2(λ̄) with g1,2 some anti-
holomorphic functions. Using the conditions that F should be a real, single valued
function, fixes the solution to the form

(869) F (λ) = a(f1(λ)f1(λ̄) + f2(λ)f2(λ̄))

with a a constant. Using additionally the OPE �(w)�(z) ∼ 1

|w−z|
1
4

+ · · · (where

the normalization follows from C = 1 in (862)), one obtains a = 1
2 . Thus, putting

everything together, one has

(870) 〈�(z1)�(z2)�(z3)�(z4)〉 =
1

2

∣∣∣∣
z13z24

z12z23z34z41

∣∣∣∣
1
4

(|1 +
√

1− λ|+ |1−
√

1− λ|).

123In fact, it is true generally that in the Verma module Vc,h for the Virasoro algebra at central
charge c with highest weight h one has a singular vector at level 2 (cf. Remark 5.16), of the form

|χ〉 = (L−2 + αL2
−1)|h〉, if and only if one has

∣∣∣∣ 3 4h+ 2
c
2

+ 4h 6h

∣∣∣∣ = 0 and then |χ〉 is a singular

vector if α = − 3
4h+2

. In particular, the pair c = 1
2

, h = 1
16

satisfies the determinant condition

and gives α = − 4
3

, i.e., (L−2− 4
3
L2
−1)| 1

16
〉 is a singular vector in the Verma module. Thus, in the

irreducible Virasoro module it has to be set to zero.
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6.4. bc system. The bc system (or “reparametrization ghost system”) is a CFT
classically defined on a Riemannian surface Σ by the action functional signs? normaliza-

tion?

(871) Sbc =
i

2π

∫

Σ

b∂̄c + b̄∂c̄ =
1

π

∫

Σ

d2z (b∂̄c+ b̄∂c̄),

where the fields are a (1, 0)-vector field and a quadratic differential

(872) c = c∂z ∈ Γ(Σ,K−1
︸︷︷︸
T 1,0

), b = b(dz)2 ∈ Γ(Σ,K⊗2)

and their antiholomorphic counterparts

(873) c̄ = c̄∂z̄ ∈ Γ(Σ,K
−1

︸︷︷︸
T 0,1

), b̄ = b̄(dz̄)2 ∈ Γ(Σ,K
⊗2

).

Fields b, c, b̄, c̄ are understood as odd (anticommuting). Since no fractional pow-
ers of K appear in the definition of the fields, there is no choice of a spin struc-
ture/boundary condition involved.

It is easier to analyze the model in the path integral formalism. One finds the
2-point function

(874) 〈b(w)c(z)〉 =
1

w − z
as the Green’s function for the operator 1

π ∂̄. Similarly, by the method of Section
4.5.3 one finds the OPE

(875) b(w)c(z) ∼ 1
w − z + reg.

The stress-energy tensor is

(876) T (z) =: 2∂c(z) b(z) + c(z)∂b(z) : .

and similarly for T . The normal ordering here means that inside a correlator Wick
contractions of fields inside : · · · : are prohibited. Using Wick’s lemma as in Section
4.5.3, one computes the OPEs of b(z), c(z), T (z) with T (w) or T (w) and finds that:

• c is a primary field of conformal weight (−1, 0) (similarly, c̄ is (0,−1)-
primary),
• b is a primary field of conformal weight (2, 0) (similarly, b̄ is (0, 2)-primary),
• one has the standard OPE of the stress-energy with itself (601), (603), (602)

with central charge

(877) c = c̄ = −26.

Remark 6.6. One can consider a modified ghost system, with fields as above and
with modified stress-energy tensor

(878) T (z) =: ∂c(z)b(z) + j∂
(
c(z)b(z)

)
:

with j ∈ R a parameter of the system (the case of reparametrization ghosts corre-
sponds to j = 1). Then one obtains by similar computations to the above that c is
(−j, 0)-primary, b is (j+1, 0)-primary and the central charge is c = −12j2−12j−2.
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6.4.1. Correlators on CP1, soaking field, ghost number anomaly. Note that the
correlator (874) seems to contradict Lemma 5.26 (b): we have a nonvanishing
correlator of two primary fields of different conformal weight (2 and −1). The
answer to this seeming paradox is that the field c on CP1 has zero-modes: there
is a 3-dimensional space of holomorphic vector fields on CP1. When we wrote the
Green’s function (874), we implicitly imposed the condition that the vector field
c(z)∂z vanishes together with its first and second derivatives at the point∞ ∈ CP1.
This is tantamount to inserting a certain field s (“zero-mode soaking field”) of
conformal weight (h, h̄) = (0, 0) at z = ∞. So, the correlator (874) is “secretly” a
3-point function

(879) 〈s(∞)b(w)c(z)〉CP1 .

From this standpoint, there is no contradiction in the fact that the correlator is
nonzero. For three arbitrary points on CP1, the correlator (879) becomes a Möbius-
invariant expression

(880) 〈b(z1)(dz1)2 c(z2)∂z2 s(z3)〉 = ν12ν
3
13ν
−3
23 ,

where

(881) νij : =
d

1
2 zid

1
2 zj

zi − zj
is (the square root of) the Szegö kernel (708). The soaking field s can be written
as

(882) s =
1

4
(c ∂c ∂2c)(c̄ ∂̄c̄ ∂̄2c̄).

We refer to [43, Section 10] and [29, Section 2.4] for details on soaking fields.
The presence of zero-modes also means that for instance one has

(883) 〈1〉CP1 = 〈vac|vac〉 = 0

(which means that the theory does not satisfy the usual BPZ axiomatics). On the
other hand,

(884) 〈s(∞)〉CP1 = 〈s|vac〉 = 1.

One can assign the “left ghost number” +1 to the field c and −1 to b and
likewise “right ghost number” +1 to c̄ and −1 to b̄. Then for a correlator on CP1

of some collection of differential monomials inserted at points z1, . . . , zn ∈ CP1 to
be possibly nonzero, one needs the following selection rule to hold: the total left
ghost number and the total right ghost number (of the entire expression under the
correlator) should both be +3:

(885) #c−#b = 3, #c̄−#b̄ = 3

This phenomenon is known as the “ghost number anomaly.” For example, one has

(886) 〈c(z1)c(z2)c(z3)〉chiral
CP1 = z12z13z23

Here for brevity we wrote the correlator in the chiral bc system (ignoring the fields
b̄, c̄). Taking the limit limz2→z1

1
z12

(· · · ) in (886), replacing c(z2) with its Taylor
expansion around z1, we have

(887) 〈(c ∂c)(z1)c(z3)〉chiral
CP1 = −z2

13.
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Taking here the limit limz3→z1
1
z2
13
· · · , replacing c(z3) with its expansion around

z1, we obtain

(888) 〈(1

2
c ∂c ∂2c)(z1)〉chiral

CP1 = 1,

which is the chiral counterpart of (884).
For a surface Σ of genus g, the ghost number anomaly (885) is given by Riemann-

Roch theorem, as the dimension of the space of holomorphic vector fields minus the
dimension of the space of holomorphic quadratic differentials:

(889) dimH0
∂̄(Σ,K−1)− dimH0

∂̄(Σ,K⊗2) = 3− 3g.

6.4.2. Operator formalism for the bc system. One can develop the canonical quan-
tization picture for the bc system, similarly to how we did it for the other free field
models before. Then one obtains the Heisenberg fields on C\{0},
(890) ĉ(z) =

∑

n∈Z
ĉnz
−n+1, b̂(z) =

∑

n∈Z
b̂nz
−n−2

with operators ĉn, b̂n subject to the anticommutation relations

(891) [̂bn, ĉm]+ = δn,−m1̂, [̂bn, b̂m]+ = 0, [ĉn, ĉm]+ = 0.

One has similar mode expansions and anticommutation relations for b̄, c̄. Here the
the splitting of the mode operators into creation and annihilation operators is as
follows:

(892) . . . , ĉ−1, ĉ0, ĉ1︸ ︷︷ ︸
creation

, ĉ2, ĉ3, . . .︸ ︷︷ ︸
annihilation

, . . . , b̂−3, b̂−2︸ ︷︷ ︸
creation

, b̂−1, b̂0, b̂1, . . .︸ ︷︷ ︸
annihilation

and similarly for ̂̄bn, ̂̄cn.124 The vacuum vector |vac〉 is killed by annihilation opera-
tors, while creation operators produce nonzero vectors out of |vac〉. The hermitian

conjugates are (̂bn)+ = b̂−n, (ĉn)+ = ĉ−n. The special vector |s〉 corresponding to
the soaking field (882) is

(893) |s〉 = ĉ−1ĉ0ĉ1̂̄c−1̂̄c0̂̄c0|vac〉.
The space of states H is generated freely by acting on the vector |vac〉 repeatedly

with creation operators (i.e., H is a Verma module for the Clifford algebra (891),
tensored with the conjugate one).

Reproducing the 2-point correlation function (874) in the language of operator
quantization, we have (assuming |w| > |z| for simplicity):

(894) 〈b(w)c(z)〉 = 〈s|̂b(w)ĉ(z)|vac〉 =
∑

m,n∈Z
〈s|̂bnĉm|vac〉w−n−2z−m+1.

Here we notice that the expression 〈s|̂bnĉm|vac〉 has the following properties:

• Vanishes for ĉm an annihilation operator (since then ĉn|vac〉 = 0), i.e., for
m ≥ 2.
• Vanishes for n 6= −m and b̂n an annihilation operator (since b̂n commutes

past ĉm and acts on |vac〉), i.e., for n 6= −m, n ≥ −1.

• Vanishes for b̂n a creation operator (in this case 〈s|̂bn = 0), i.e., for n ≤ −2.

124This nontrivial splitting of modes into creation and annihilation operators is forced by the

field-state correspondence: one wants limits limz→0 Φ̂(z)|vac〉 to be well-defined and nonzero for
Φ = b, c, b̄, c̄.
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• Vanishes for ĉm a creation operator if n 6= −m (in this case, ĉm commutes

to the left past b̂n and annihilates 〈h|), i.e., for n 6= −m, m ≤ 1.

Thus, the only surviving terms in (894) are n = −m ≥ −1, i.e., we have

(895) 〈b(w)c(z)〉 =
∑

n≥−1

〈s| b̂nĉ−n︸ ︷︷ ︸
1̂−ĉ−nb̂n

|vac〉w−n−2zn+1 =
∑

n≥−1

w−n−2zn+1 =

=
1

w

(
1 +

z

w
+
( z
w

)2

+ · · ·
)

=
1

w − z

6.5. Bosonic string. We start with outlining the heuristic idea of bosonic string
theory. One wants to integrate over maps φ of a smooth surface Σ (worldsheet) to
the target RD (for some dimension D ≥ 1):

(896) Zstring(Σ,RD) =

∫

Met(Σ)

Dg
∫

Map(Σ,RD)

Dφ e−SPolyakov(g,φ)

where

(897) SPolyakov(g, φ) =

D∑

k=1

1

2

∫

Σ

dvolgdφ
k ∧ ∗dφk

is the action for D non-interacting free bosons φ1, . . . , φD on Σ; the action depends
on a choice of Riemannian metric g on the surface, and this choice is averaged over
in (896). The integrand in (896) is invariant under diffeomorphisms of Σ, and one
wants to switch to integration over the quotient Met(Σ)×Map(Σ,RD)/Diff(Σ).125

Next, one writes the metric as

(898) g = e2σg0

where g0 is the canonical “uniformization” metric of constant scalar curvature
K ∈ {0,±1} representing the conformal class of g – the metric arising from uni-
formization theorem; Ω = e2σ with σ ∈ C∞(Σ) is the Weyl factor, transforming g0

into g; one calls σ the Liouville field. With this in mind, the path integral (896)
becomes the integral over

(899)

{conformal structures on Σ} × {Weyl factors Ω = e2σ} ×Map(Σ,RD)/Diff(Σ) '

' {conformal structures on Σ}
Diff(Σ)

×{Weyl factors Ω = e2σ}×Map(Σ,RD)/Diff(Σ)

where in the first factor on the r.h.s. we recognize the moduli space of conformal
structuresMΣ. For the integral over the quotient by diffeomorphisms, one employs
the Faddeev-Popov gauge-fixing mechanism, which results in the path integral
(900)∫

MΣ

Dξ
∫

C∞(Σ)

Dσ
∫

ΠX(Σ)×ΠΓ(Σ,K⊗2⊕K⊗2
)

DcDc̄DbDb̄e−Sbc
∫

Map(Σ,RD)

e−SPolyakov

125Heuristically, transitioning to integration over the quotient rescales the result by an “infinite
constant” – the volume of Diff(Σ).
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where the auxiliary fields c∂z+ c̄∂z̄ (an odd vector field) and b(dz)2 + b̄(dz̄)2 (an odd
quadratic differential) appear as Faddeev-Popov ghosts corresponding to the quo-
tient by diffeomorphisms (or “reparametrizations,” hence the name “reparametriza-
tion ghosts”); the action Sbc is as in (871). The Gaussian integral over ghosts is an
integral representation of a Jacobian, canceling the dependence of the integral over
a section of the quotient {conf. structures}/Diff(Σ) on the choice of the section.

Exploiting the result (32), we have that the bosonic string path integral is

(901)

∫

MΣ

Dξ
∫

C∞(Σ)

Dσ ZCFT

(
D free bosons
+bc system

, ξ

)
eicSLiouville(σ)

where

(902) c = D − 26

is the central charge of the CFT comprised of D free bosons and a single bc system.
The case D = 26 is special and corresponds to the so-called “critical” bosonic string
– in this case the central charge vanishes and the integrand is independent of the
Liouville field σ.

In summary, bosonic string is the conformal field theory comprised of D free
bosons and a bc system, with classical action fix normalizations

(903) Sstring =
1

π

∫

Σ

d2z
( D∑

k=1

∂φk∂̄φk

︸ ︷︷ ︸
D free bosons

+ b∂̄c+ b̄∂c̄︸ ︷︷ ︸
bc system

)

where to get the full string path integral one needs to integrate the CFT partition
function (or correlator) over the moduli space MΣ (and if D 6= 26, also factor in
the Liouville path integral).126 Lecture 33,

11/14/2022
6.5.1. The BRST differential Q in bosonic string. Fix D = 26. Consider the fields

(904)

J = : cTbosons +
1

2
cTbc +

3

2
∂2c : = :

D∑

k=1

−1

2
c∂φk∂φk + c ∂c b+

3

2
∂2c :,

J̄ = : c̄T bosons +
1

2
c̄T bc +

3

2
∂̄2c̄ : = :

D∑

k=1

−1

2
c̄∂̄φk∂̄φk + c̄ ∂̄c̄ b̄+

3

2
∂̄2c̄ :

They satisfy the following properties.

• J is a holomorphic (1, 0)-primary field, J̄ is an antiholomorphic (0, 1)-
primary field.
• The OPE J(w)J(z) does not contain a first-order pole127 (but contains

second and third-order poles) and similarly for J̄(w)J̄(z). The mixed OPE
J(w)J̄(z) is regular.

126In a jargon, one couples the CFT (903) on Σ with “2d gravity on Σ.”
127This property relies on D = 26. More explicitly, if one defines Jα =: cTbosons + 1

2
cTbc +

α∂2c :, then one has the OPE

Jα(w)Jα(z) ∼
(3− D

2
+ 4α) c∂c

(w − z)3
+

( 3
2

)− D
4

+ 2α) c∂2c

(w − z)2
+

( 2
3
− D

12
+ α)c∂3c+ (− 3

2
+ α)∂c∂2c

w − z +reg.

Here all fields on the right are at the point z. In particular, for D = 26 and α = 3
2

one has

J(w)J(z) ∼ − 4c∂c
(w−z)3 −

2c∂2c
(w−z)2 + reg.
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• One can introduce an operator Q : Vz → Vz given by

(905) Q : Φ(z) 7→ 1

2πi

∮

γz

(dwJ(w) + dw̄J̄(w))Φ(z),

with γz a contour around z. This operator satisfies

(906) Q2 = 0,

as a consequence of (905) (proven by the contour integration technique of
Section 5.2.2). One can equip V with Z-grading by (total) ghost number,
by prescribing the ghost numbers to elementary fields as follows:

field c b c̄ b̄ φk

ghost number 1 −1 1 −1 0

– This is the sum of the left and right ghost numbers of Section 6.4.1.
According to this Z-grading, V is a cochain complex, with differential Q
(known as the “BRST operator”), increasing the ghost number by +1.
• The stress-energy tensor satisfies

(907) T = Q(b), T = Q(b̄)

– the stress-energy tensor is Q-exact.

Remark 6.7. If one omits the 3
2∂

2c term in J and likewise in J̄ then the residue of
the first-order pole in JJ OPE will be nonzero, but it will be exact, so the operator
Q would not change. Also, with this modification J, J̄ would not be primary.

Remark 6.8. Fields J, J̄ are also Q-exact:

(908) J = Q(: bc :), J̄ = Q(: b̄c̄ :).

We also note that in the computation of the r.h.s. it is the double Wick contractions
that result in 3

2∂
2c term in J in the l.h.s.; in this sense, the term 3

2∂
2c should be

regarded as a quantum (“1-loop” in the language of Feynman diagrams) correction
to J .128

6.6. Topological conformal field theories.

Definition 6.9. A CFT is called topological (or TCFT) is the space of fields V
(and the space of states H) is endowed with the structure a cochain complex with
differential Q of degree +1, such that the stress-energy tensor is Q-exact,

(909) T = Q(G), T = Q(G),

with G,G some fields of cohomological degree −1, such that

(a) One has regular OPEs

(910) G(w)G(z), G(w)G(z), G(w)G(z).

(b) G is a holomorphic (2, 0)-primary field, G is an antiholomorphic (0, 2)-primary
field.

128In a bit more detail: in the classical field theory defined by the action functional (903) one

has an odd symmetry Qcl ∈ X(FieldsΣ) acting on the space of classical fields and squaring to zero.

For this symmetry one has an associated Noether current dzJcl + dz̄J̄cl, where Jcl, J̄cl are given
by the formulae (904) without the 3

2
∂2c, 3

2
∂̄2c̄ terms and without normal ordering. Thus, the

quantum fields (904) are the “naive” quantization of Jcl, J̄cl (replacing a differential polynomial

in free classical fields by a normally ordered expression), plus a “quantum correction” 3
2
∂2c, 3

2
∂̄2c̄.
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(c) There exist fields J, J̄ ∈ V of degree +1 and conformal weights (1, 0) for J and
(0, 1) for J̄ , such that:
• The 1-form-valued field J(z) = dz J + dz̄ J̄ ∈ Vz ⊗ T ∗z Σ is d-closed under

the correlator (or equivalently ∂̄J − ∂J̄ = 0).129

• The differential Q is given by sign?

(911) QΦ(z) =
1

2πi

∮

γz

J(w)Φ(z).

• J satisfies

(912)

∮

γz

J(w)J(z) = 0.

This property implies Q2 = 0. Do we need an ax-
iom that 1 is not Q-
exact? Do we need
to ask that J is pri-
mary?

In particular, bosonic string with D = 26 is an example of a TCFT.
One can introduce mode operators for G,G, defined similarly to (638):

(913)

GnΦ(z) =
1

2πi

∮

γz

dw (w−z)n+1G(w)Φ(z), GnΦ(z) =
1

2πi

∮

γz

dw̄(w̄−z̄)n+1G(w)Φ(z)

Then the property (909) implies that one has130

(914) Ln = [Q,Gn], Ln = [Q,Gn]

for n ∈ Z, i.e., Virasoro generators are Q-exact. In turn this implies that the central
charge of the CFT must vanish (because the coefficient of the fourth-order pole in
TT OPE must be Q-exact; since it is proportional to identity, it must vanish131):

(915) c = c̄ = 0.

Property (910) implies

(916) [Gn, Gm] = 0, [Gn, Gm] = 0, [Gn, Gm] = 0.

From the OPEs between T, T and G,G, which are encoded in the axiom (b)
above:

(917)

T (w)G(z) ∼ 2G(z)

(w − z)2
+
∂G(z)

w − z + reg.,

T (w)G(z) ∼ 2G(z)

(w̄ − z̄)2
+
∂̄ G(z)

w̄ − z̄ + reg.,

T (w)G(z) ∼ reg., T (w)G(z) ∼ reg.,

one has the commutation relations
(918)
[Ln, Gm] = (n−m)Gn+m, [Ln, Gm] = (n−m)Gn+m, [Ln, Gm] = [Ln, Gm] = 0.

129In some TCFTs one has that ∂̄J and ∂J̄ vanish separately. This means that Q splits into

two commuting differentials Q = QL +QR which square to zero separately. This extra symmetry
is present, e.g., in bosonic string theory, but fails in some other examples, see e.g. [29].

130We write [A,B] = AB− (−1)|A|·|B|BA for the supercommutator of two operators A,B. It

is the usual commutator if either A or B (or both) are even and it is the anticommutator if A and
B are odd.

131An equivalent argument: the commutator [Ln, Lm] = [Q, [Gn, [Q,Gm]]] has the form [Q,−],
so it cannot contain a nonzero term proportional to identity/central element (with is not of the

form [Q,−]).
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Lemma 6.10. In a TCFT, assume that Φ1, . . . ,Φn ∈ V are Q-closed elements.
Then:

(i) The correlator on CP1

(919) 〈Φ1(z1) · · ·Φn(zn)〉
is a constant function on the configuration space Cn(CP1).

(ii) For any Ψ ∈ V , one has

(920) 〈QΨ(z0) Φ1(z1) · · ·Φn(zn)〉 = 0

– the correlator of a Q-exact field with several Q-closed fields vanishes.

Proof. For, (i) consider the derivative of the correlator (919) in zi, i = 1, . . . , n. We
have

(921) ∂zi〈Φ1(z1) · · ·Φn(zn)〉 = 〈Φ1(z1) · · · L−1Φi︸ ︷︷ ︸
QG−1Φi

(zi) · · ·Φn(zn)〉 =

= ± 1

2πi

∮

γzi

〈J(w)Φ1(z1) · · ·G−1Φi(zi) · · ·Φn(zn)〉

where γzi is a contour going around zi and not enclosing any other zj ’s. One then
deforms γzi into a collection of contours going around zj ’s for j 6= i: γzi ∼ ti6=j−γzj
(cf. Section 5.6). Thus, one has

(922) ∂zi〈Φ1(z1) · · ·Φn(zn)〉 =
∑

j 6=i

〈Φ1(z1) · · ·QΦj︸︷︷︸
=0

(zj) · · ·G−1Φi · · ·Φn(zn)〉 = 0.

So, we obtain that all holomorphic derivatives of the correlator vanish; by a similar
argument, the antiholomorphic derivatives vanish too. Hence, the correlator is
constant.

The proof of (ii) is similar: one represents Q acting on Ψ by a contour integral
around z0 and then deform the contour to a collection of contours going around zj ,
j 6= 0; those give correlators containing QΦj = 0. �

edit? (or maybe it’s
ok already..) Remark 6.11. The statement and proof of Lemma 6.10 actually extends to corre-

lators on Riemannian surfaces Σ of any genus g, since on any Σ the 1-cycle γzi
is homologous (though not homotopic for g > 0) to ti 6=j − γzj . Since one has
dJ = 0 (under a correlator, away from the punctures zj), this homology statement
is sufficient to justify the switch of contours in (921).

Lemma 6.12. If a field Φ ∈ V is Q-closed and has conformal weight h 6= 0, then
Φ is Q-exact.

Proof. Since Φ has conformal weight h, we have

(923) hΦ = L0Φ = (QG0 +��
�G0Q)Φ = QG0Φ.

Thus, we have

(924) Φ = Q(
1

h
G0Φ).

�
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Similarly, one shows that if a Q-closed field has h̄ 6= 0, then it is Q-exact. There-
fore, a nontrivial Q-cocycle (homogeneous w.r.t. grading by conformal weight) must
have (h, h̄) = 0. By “nontrivial” we mean “not Q-exact” or equivalently defining a
nonzero element in the cohomology of Q, HQ(V ).

Example 6.13. Here is an example of a Q-cocycle in bosonic string: fix a unit
“momentum” vector p ∈ (RD)∗, ||p|| = 1. Then the field

(925) Φ =: cc̄ ei
√

2
∑D
k=1 pkφ

k

:

is a nontrivial Q-cocycle. (In string theory, in Lorentzian signature on RD it is
called the “tachyon field.”) Note that the condition ||p|| = 1 guarantees that Φ has
confromal weight (0, 0).

Example 6.14. In any TCFT one has QJ = QJ̄ = 0, as a consequence of (912).
Thus, using homotopy (924) one has

(926) J = Q(G0(J)), J̄ = Q(G0(J̄)),

i.e., fields J, J̄ are always Q-exact. This generalizes the observation (908) in bosonic
string theory.

6.6.1. Witten’s descent equation. Witten’s descent equation is a sequence of equa-
tions on a tower of p-form valued fields Φ(0), Φ(1), Φ(2), where132

(927) Φ(p)(z) ∈ V (p)
z = Vz ⊗ ∧pT ∗z Σ

(we denoted V
(p)
z the space of p-form-valued fields at z). Descent equation reads

(928) dΦ(p−1) = QΦ(p), p = 0, 1, 2.

Here we understand that Φ(−1) : = 0. Thus, explicitly, the equations are:

QΦ(0) = 0(929)

QΦ(1) = dΦ(0)(930)

QΦ(2) = dΦ(1)(931)

One can think of this sequence as follows: one fixed a Q-cocycle Φ(0) – a “0-
observable,” then one wants to solve (930) for the “1-observable” Φ(1) and subse-
quently solve (931) for the 2-observable Φ(2).

Remark 6.15. Descent equations (928) are meaningful not just in dimension 2 (then
p goes up to the dimension of the manifold). Originally, they appeared in the work
of Witten on 4-dimensional Donaldson theory [39].

From Lemma 6.10, correlators of Q-closed 0-observables 〈Φ(0)
1 (z1) · · ·Φ(0)

n (zn)〉
are constant functions of positions z1, . . . , zn (as long as points are distinct).

Equation (930) implies that one can construct an “extended observable” (local-
ized on a 1-cycle rather than at a point)

(932)

∮

γ

Φ(1)

132Recall that we already encountered a situation where it is convenient to consider form-
valued observables, – transformation of primary fields and Ward identity for primary fields, cf.

(662), (691).
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with γ some closed contour. Then (930) implies by Stokes’ theorem that (932) is
Q-closed:133

(933) Q

∮

γ

Φ(1) = 0

By repeating the argument of Lemma 6.10, we have that, givenQ-cocycles Φ(0),Φ
(0)
1 , . . . ,Φ

(0)
n ,

the correlator

(934) 〈
∮

γ

Φ(1) Φ
(0)
1 (z1) · · ·Φ(n)

n (zn)〉

does not change when one moves points zi or deforms the contour γ (as long as the
points and the contour keep disjoint), however it can change when some point zi
crosses γ.

The correlator (934) is an example of a “topological correlator” – one invariant
under small deformations insertion points of fields (and the contour over which the
1-observable is integrated).Edit, think through

more A 2-observable Φ(2) gives rise to a Q-closed extended observable

(935)

∫

Σ

Φ(2)

and can be understood as defining an infinitesimal deformation of a TCFT, deform-
ing the correlators as

(936) 〈Φ1(z1) · · ·Φn(zn)〉 7→

7→ 〈Φ1(z1) · · ·Φn(zn)〉+ ε
〈(∫

Σ−tni=1Di

Φ(2)

)
Φ1(z1) · · ·Φn(zn)

〉

Here Di is a small disk centered at zi; ε is the infinitesimal deformation parameter.
This deformation should be accompanied by a deformation of the rest of TCFT?
data, Q,J, G,G, T, T , so that the relations of TCFT hold (up to O(ε2)) for the
deformed package.

The deformation (936) in the path integral language can be interpreted as the
deformation of the action functional,

(937) S 7→ S − ε
∫

Σ

Φ(2).

6.6.2. Canonical solution of descent equations using the G-field. In a TCFT, one
can find a canonical solution of the equation (928) starting from any Q-cocycle
Φ(0).

Consider the operator

(938) Γ = −dz G−1 − dz̄ G−1 : V (p)
z → V (p+1)

z ,

where G−1, G−1 are particular mode operators of the fields G,G, cf. (913). Note
that the commutator of Γ with Q is the de Rham operator:

(939) [Q,Γ] = dz[Q,G−1] + dz̄[Q,G−1] = dzL−1 + dz̄L−1 = dz∂z + dz̄∂z̄ = d.

133We understand (932) as an element of V – in that sense it is clear what acting by Q means.

Equivalently, the action of Q on (932) can be understood as 1
2πi

∫
∂Uγ3w J(w)

∮
γ3z Φ(1)(z), with

the integral being over the boundary of a thickening Uγ of the contour γ.
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Note also that one has

(940) [d,Γ] = 0,

since operators L−1, L−1 commute with G−1, G−1, cf. (918).

Lemma 6.16. Given a Q-cocycle Φ(0), the sequence

(941) Φ(0), Φ(1) : = ΓΦ(0), Φ(2) : =
1

2
Γ2Φ(0)

solves the descent equation (928).

Proof. The equation (929) is given, since Φ(0) is a Q-cocycle. For (930) we have

(942) QΓΦ(1) =
(939)

(d+ ΓQ)Φ(0) = dΦ(0).

For (931) we have

(943) Q
1

2
ΓΓΦ(0) =

1

2
(d+ ΓQ)Φ(1) =

(930)

1

2
(dΦ(1) + ΓdΦ(0)) =

=
(940)

1

2
(dΦ(1) + dΓΦ(0)) = dΦ(1).

�

Example 6.17. In bosonic string, starting with the Q-cocycle (925) and applying
the canonical descent construction (941), we obtain the descent sequence

(944) Φ(0) =: cc̄Vp :, Φ(1) =: (−dz c̄+ dz c)Vp :, Φ(2) =: dz dz̄Vp :,

where we denoted Vp = ei
√

2
∑
k pkφ

k

, with the momentum satisfying ||p|| = 1.

For Φ = Φ(0) a Q-cocycle, one can assemble the descendants into the field valued
in nonhomogeneous forms

(945) Φ̃ : = eΓΦ = Φ + ΓΦ +
1

2
Γ2Φ

– the “total descendant.” Then the descent equation (928) can be written as

(946) (d−Q)Φ̃ = 0.

More generally, for Φ not necessarily Q-closed, one has an easily proven identity

(947) (d−Q)eΓΦ = −eΓ(QΦ).

Remark 6.18. Given a collection of Q-cocycles Φ
(0)
1 , . . . ,Φ

(0)
n , the correlator of their

total descendants (945) is a closed form on the open configuration space:

(948) 〈Φ̃1(z1) · · · Φ̃n(zn)〉 ∈ Ωclosed(Cn(CP1)),

since one has

(949) d〈Φ̃1(z1) · · · Φ̃n(zn)〉 =

n∑

j=1

〈Φ̃1(z1) · · · (d−Q)Φ̃j(zj)︸ ︷︷ ︸
0

· · · Φ̃n(zn)〉 = 0.

In fact, the form (948) is PSL2(C)-basic and thus descends to a closed form on the
moduli space M0,n ' Cn(CP1)/PSL2(C).
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In the example of bosonic string theory the degree of the form (948) is

(950)

n∑

j=1

gh(Φ
(0)
j )− 6

– the sum of the ghost numbers of the fields Φ
(0)
j minus the total (left plus right)

ghost number anomaly.
By Remark 6.11, the correlator (948) can be considered on a surface Σ of any

genus, yielding again a closed form on the configuration space.

6.6.3. BV algebra structure on Q-cohomology.

Definition 6.19. A Batalin-Vilkovisky algebra (or “BV algebra”) is a Z-graded
supercommutative unital algebra (W, ·,1) equipped additionally with:

• A degree −1 Poisson bracket134 (or “BV bracket,” or “antibracket”)

(951) (, ) : W ⊗W →W

which is a derivation in both slots and satisfies (graded) Jacobi identity.
• A degree −1 operator ∆: W → W (the “BV Laplacian”) satisfying the

Leibniz identity for a second-order differential operator

(952) ∆(xyz)±∆(xy)z ±∆(xz)y ±∆(yz)x± xy∆(z)± xz∆(y)± yz∆(x) = 0

and the properties

∆(1) = 0,(953)

∆(xy) = ∆(x)y + (−1)|x|x∆(y) + (−1)|x|(x, y).(954)

In particular, the BV bracket arises as the defect of the first order Leibniz
identity for ∆.

In the setting of TCFT, we consider the graded vector space W = HQ(V ) – the
cohomology of Q (with grading by the “ghost number”), the unit element is 1 –
the cohomology class of the identity field.

The supercommutative product on W is given by OPEs. Notice that if Φ1,Φ2

are two nontrivial Q-cocycles, the OPE has the form

(955) Φ1(w)Φ2(z) ∼
∑

Φ

(w − z)h(Φ)(w̄ − z̄)h̄(Φ)Φ(z)

where we used that Φ1,2 must have conformal weight (0, 0) and used Lemma 5.24.
Terms in the right hand side of the OPE must also be Q-closed, and the ones con-
taining nontrivial Q-cocycles Φ have to contribute with exponents h(Φ) = h̄(Φ) = 0.
Therefore, for Φ1,Φ2 two Q-cocycles one has an OPE of the form

(956) Φ1(w)Φ2(z) ∼ (Φ1 · Φ2)(z) modulo Q-exact terms.

with Φ1 ·Φ2 some Q-cocycle. Thus, in Q-cohomology OPE, is always constant and
induces a supercommutative product.

134The grading convention that we use here, with (, ) and ∆ of degree −1, is adapted to BV

algebras arising from 2d TCFT. In the setting where BV algebras originally appeared – Batalin-

Vilkovisky quantization of gauge theories – the natural convention is to assign degree +1 to (, )
and ∆ (the same degree as the operator Q, whereas in TCFT the degrees are opposite to the

degree of Q).
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The BV bracket is given by the following construction: for Φ1 = Φ
(0)
1 , Φ2 = Φ

(0)
2

two Q-cocycles, we set

(957) (Φ1,Φ2)(z) =
1

2πi

∮

γz

Φ
(1)
1 (w)Φ

(0)
2 (z),

where γz is a contour around z and Φ
(1)
1 = ΓΦ

(0)
1 is the first descent of Φ1.

The BV Laplacian is constructed as the operator

(958) ∆: = G0 −G0,

also denoted G0,−, where G0, G0 are particular mode operators of G, cf. (913).
We refer to [28] for an example of a TCFT with explicitly computed BV algebra

structure on Q-cohomology.

6.6.4. Action of the operad of framed little disks on V . The BV algebra structure
on Q-cohomology HQ(V ) has a “lift” to the full space of fields V , as an “algebra
over the operad of framed little 2-disks.”

Definition 6.20. The operad of framed little 2-disks Efr
2 is a sequence of manifolds

(Efr
2 )n, where (Efr

2 )n is the space of configurations of n ≥ 0 disjoint disks inside a
unit disk in R2 ' C, each disk is equipped with a “framing” – a marked point on
the boundary circle.135 The marked point on the unit circle is fixed at (1, 0).

One has composition maps

(959) ◦i : (Efr
2 )n × (Efr

2 )m → (Efr
2 )n+m−1

for i = 1, . . . , n, defined as follows. A configuration of disks o2 ∈ (Efr
2 )m is scaled

and rotated so that its outer disk fits with i-th disk in the configuration o1 ∈ (Efr
2 )n

(and the marked points should coincide). Then the new configuration o1 ◦i o2

consists of the rescaled/rotated configuration o2 and all disks of o1 except the i-th
disk.

It is convenient to think of a configuration of disks as “holes” in the unit disk.
Then the composition map fits one m-holed inside the i-th hole of another n-holed
disk.

2

1

◦1 =

Figure 33. Composition in the operad of framed little 2-disks.

135In particular, (Efr
2 )n is a manifold of real dimension 4n, parameterized by positions of

centers of the n disks, n radii and n angles (of the marked point).
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Given a TCFT, one can construct a sequence of differential forms ωn on (Efr
2 )n

valued in Hom(V ⊗n, V ), for n ≥ 1, defined by

(960) ωn(Φ1, . . . ,Φn) =

n∏

k=1

eζkL0+ζ̄kL0+dζkG0+dζ̄kG0eΓΦk(zk).

Here zk are positions of the centers of disks, ζk = log rk + iθk, with rk the radii
and θk the angles; Γ is the descent operator (938). The expression in the r.h.s. of
(960) is to be understood under a correlator with an arbitrary collection of test
fields inserted outside the unit disk. Thus, the r.h.s. of (960) is a “multi-OPE.”

One has the property

(961) (d− adQ)ωn = 0

where adQ means the sum of terms where Q on an input or the output field of ωn.
More explicitly,

(962) (d− adQ)ωn(Φ1, . . . ,Φn) : =

= dωn(Φ1, . . . ,Φn)−Qωn(Φ1, . . . ,Φn) +

n∑

k=1

±ωn(Φ1, . . . , QΦk, . . . ,Φn) = 0

This property is a consequence of (947).
The property (961) implies that one has a map of cochain complexes, from

singular chains of the framed little disk operad to multilinear operators on V :

(963)
C−•((E

fr
2 )n) → Hom(V ⊗n, V )

chain 7→
(

Φ1 ⊗ · · · ⊗ Φn 7→
∫

chain
ωn(Φ1, . . . ,Φn)

)

Note that we put the reverse grading on chains, so that singular chains are seen as
a cochain complex. This map is a representation of the operad, i.e., is compatible
with compositions.

In particular, passing to cohomology, we obtain a map from homology of (Efr
2 )n

to Hom(W⊗n,W ), where W = HQ(V ).What is the original
reference? Here is a known fact (see [16]): homology of the operad Efr

2 is the operad of
BV algebras, with generators 1, ·, (, ),∆ (subject to the relations as in Definition
6.19).136

More explicitly, the homology of Efr
2 is generated (using compositions ◦i) by four

homology classes:

(i) The tautological 0-class in H0((Efr
2 )0).

(ii) The 0-class in H0((Efr
2 )2), represented by any configuration of two disjoint

disks in the unit disk.
(iii) The 1-class in H1((Efr

2 )2), represented by one disk moving a full circle around
the other disk.

(iv) The 1-class in H1((Efr
2 )1), represented by rotating the disk (or equivalently

rotating the marked point on the boundary) a full circle.

136We think of the unit as an operation of “arity zero,” 1 ∈ Hom(V ⊗0, V ) ' V .
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BV Laplacianunit product BV bracket

Figure 34. Generators of homology of Efr
2 .

These classes correspond to the elements 1, ·, (, ),∆ of the BV operad and are
represented on W by the corresponding operations: cohomology class of the unit
field, (956), (957), (958), and one can see that those formulae follow from integrating
the form (960) over the respective cycles. Thus, indeed, the BV algebra structure on
Q-cohomology that we constructed in Section 6.6.3 is induced from the Efr

2 -algebra
structure on V via passing to cohomology.

For details on the operadic viewpoint on TCFTs, we refer the reader to [16]. For
an explicit example, we refer to [28]. Lecture 34,

11/16/2022
7. Bits of representation theory of Virasoro algebra

7.1. Verma modules of Virasoro algebra, null vectors. Let Vc,h be the Verma
module137 of Virasoro algebra with central charge c ∈ C and highest weight h ∈ C,
i.e., it is generated by the highest weight vector which we denote |h〉 which satisfies

(964) L>0|h〉 = 0, L0|h〉 = h|h〉
– is killed by the positive part of the Virasoro algebra and is an eigenvector for L0

with eigenvalue h. The Verma module is then

(965) Vc,h = SpanC{L−nr · · ·L−n1 |h〉 | 1 ≤ n1 ≤ · · · ≤ nr, r ≥ 0}
The descendant

(966) L−nr · · ·L−n1 |h〉
has conformal weight (L0-eigenvalue) h + N where N = n1 + · · · + nr. One says
that (966) is a “level-N” vector in Vc,h. One has a splitting of Vc,h by level:

(967) Vc,h =
⊕

N≥0

V Nc,h,

where V Nc,h is the subspace of the Verma module spanned by level-N vectors (i.e.,

it is the (h+N)-eigenspace of L0). Note that the dimension of V Nc,h is

(968) dimV Nc,h = P (N)

– the number of partitions of N (cf. Section 6.1.6).
There is a unique sesquilinear form 〈, 〉 on Vc,h characterized by the properties

〈h|h〉 = 1(969)

137 Given any Z-graded Lie algebra A = A•, one defines the Verma module as follows. Let

W be a module over A≥0 where A>0 acts by zero. Then the Verma module is the U(A)-module

induced from W , i.e., U(A)⊗U(A≥0) W , where U(· · · ) is the enveloping algebra.
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(Ln)+ = L−n, n ∈ Z(970)

Generally, 〈, 〉 is not positive-definite and may be degenerate.

Definition 7.1. A vector |χ〉 6= |h〉 in Vc,h is called a “singular vector” or “null
vector” if it satisfies

(971) L>0|χ〉 = 0.

Note that a null vector is automatically orthogonal to the entire Vc,h, since one
has

(972)
〈
L−nr · · ·L−n1

|h〉, |χ〉
〉

= 〈h|Ln1
· · · Lnr |χ〉︸ ︷︷ ︸

=0 since nr>0

= 0.

In particular, a null vector has zero norm:

(973) 〈χ|χ〉 = 0.

Assume that there exists a null vector |χ〉 at level N in Vc,h. Then Virasoro
descendants of |χ〉 form a submodule of Vc,h isomorphic to the Verma module
Vc,h+N :

(974) Span{L−nr · · ·L−n1 |χ〉}︸ ︷︷ ︸
'Vc,h+N

⊂ Vc,h

In fact, this entire submodule is orthogonal to Vc,h, by an argument similar to (972).
Let us consider when null vectors can appear at small levels N (the full answer

for general N is given by Kac determinant formula in Section 7.2 below).

Example 7.2. Assume that Vc,h contains a null vector at level N = 1. That
means |χ〉 = L−1|h〉 (ignoring a possible normalization factor). Note that L≥2|χ〉
is a vector at level −1, so it automatically vanishes. The only case of (971) that
needs checking is L1|χ〉 :

(975) L1|χ〉 = L1L−1|h〉 = (2L0 − L−1 L1)|h〉︸ ︷︷ ︸
0

= 2h|h〉.

Thus, |χ〉 = L−1|h〉 is a null vector if and only if h = 0.

Example 7.3. Assume that Vc,h contains a null vector at level N = 2. This means

(976) |χ〉 = (αL−2 + βL2
−1)|h〉

with α, β ∈ C not simultaneously zero. By the same argument as above, L≥3|χ〉
vanishes automatically, so we only need to check L1|χ〉 and L2|χ〉. We have

(977)

L1(αL−2 + βL2
−1)|h〉 = (α3(L−1 + L−2L1) + β(2L0L−1 + L−1L1L−1))|h〉 =

= (α3L−1 + β(2L−1 + 2L−1L0 + 2L−1L0 + L2
−1L1))|h〉 = (3α+ (4h+ 2)β)|h〉,

(978)

L2(αL−2 + βL2
−1)|h〉 = (α(4L0 +

c

2
+ L−2L2) + β(3L1L−1 + L−1L2L−1))|h〉 =

= (α(4h+
c

2
)+β(6L0 +3L−1L1 +3L−1L1 +L2

−1L2))|h〉 = ((4h+
c

2
)α+6hβ)|h〉.
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So, the equations on a null vector L1|χ〉 = 0, L2|χ〉 are equivalent to a homogeneous
system of two linear equations on two coefficients α, β,

(979) 3α+ (4h+ 2)β = 0, (4h+
c

2
)α+ 6hβ = 0,

which has a nonzero solution if and only if the determinant of the coefficient matrix
vanishes,

(980)

∣∣∣∣
3 4h+ 2

c
2 + 4h 6h

∣∣∣∣ = 0.

This is a nontrivial quadratic relation on c and h, and as we just showed, Vc,h
contains a null vector at level N = 2 if and only if this relation is satisfied.

For instance, this relation is satisfied for c = 1
2 , h = 1

16 , which is what allowed
us to find a hypergeometric equation on the four-point correlator of fields � in the
free fermion CFT in Section 6.3.9.

7.2. Kac determinant formula. Consider the “Gram matrix” – the matrix of
inner products of level-N descendants of the highest vector |h〉 in Vc,h:

(981) M (N) = (〈i|j〉)i,j
where i, j run over the basis of vectors (966) in Vc,h. In particular, M (N) is a matrix
of size P (N)× P (N).

Theorem 7.4 (Kac [20], Feigin-Fuchs [12]). The determinant of the Gram matrix
(981) is

(982) detM (N) = αN
∏

p, q ≥ 1 s.t.
pq ≤ N

(h− hp,q(c))P (N−pq).

Here

(983) αN =
∏

p, q ≥ 1 s.t.
pq ≤ N

((2p)qq!)P (N−pq)−P (N−p(q+1))

is a numerical factor and

(984) hp,q(c) =
((m+ 1)p−mq)2 − 1

4m(m+ 1)
,

where m is related to the central charge c by

(985) m = −1

2
±
√

25− c
1− c

or equivalently

(986) c = 1− 6

m(m+ 1)
.

The importance of Kac determinant formula (982) is that says for which c, h the
Gram matrix at level N vanishes, which means that Vc,h contains a null vector at
level ≤ N . More precisely, Kac formula implies the following:

Corollary 7.5. If h = hp,q (as defined by (984)) for some integers p, q ≥ 1 then
Vc,h contains a null vector at level N = pq.
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In fact, null, vectors at other levels may also appear (i.e. this is not an “if and
only if” statement), however every null vector in Vc,h is either covered by Corollary
7.5 or is a descendant of one.

Example 7.6. For any c from (984) we have h1,1 = 0. This corresponds to the
fact that Vc,0 has a null vector at level N = 1 for any c, cf. Example 7.2.

Example 7.7. Consider the case of central charge c = 1. By (985), (986) it
corresponds to the limiting case m→∞. In this limit, (984) becomes

(987) hp,q =
(p− q)2

4
.

This implies that for c = 1, h = n2

4 , with n = 0, 1, 2, 3, . . ., the Verma module
V1,h contains an infinite sequence of null vectors at levels N = p (n+ p)︸ ︷︷ ︸

q

, with

p = 1, 2, 3, . . ., since h = n2

4 equals hp,q for an infinite sequence of pairs (p, q) of the
form (p, n+ p).

The following is (a part of) a theorem of Feigin-Fuchs [12].

Theorem 7.8 (Feigin-Fuchs). • Vc,h is irreducible if and only if it contains
no null vectors and is reducible if and only if h = hp,q for some integers
p, q ≥ 1.
• Proper submodules of Vc,h are generated by null vectors.
• The irreducible highest weight module Mc,h for Virasoro algebra at central

charge c and with highest weight h has the form

(988) Mc,h = Vc,h/N

where N ⊂ Vc,h is the maximal proper submodule. It can also be realized as
the kernel of the sesquilinear form 〈, 〉 on Vc,h or equivalently the orthogonal
complement of Vc,h:

(989) N = ker〈, 〉 = V ⊥c,h.

In Section 7.3 we recall the second part of Feigin-Fuchs theorem giving the full
classification of maps (inclusions) between Verma modules at a given c, which in
particular yields formulae for characters of Mc,h and therefore formulae for torus
partition functions in a CFT, see Section 7.3.1 and (1019).I am being redun-

dant here, this was
discussed before.. Example 7.9. For c = 1, V1,h is reducible iff h = n2

4 for some n = 0, 1, 2, . . .. In

particular, for h 6= n2

4 , one has M1,h = V1,h. Reducible Verma modules for c = 1
arrange into two sequences connected by inclusions of modules:

(990)
V1,0 ← V1,1 ← V1,4 ← V1,9 ← · · ·

V1, 14
← V1, 94

← V1, 25
4
← V1, 49

4
← · · ·

Irreducible modules for these values of h are obtained by taking the corresponding
Verma module and quotienting out the module mapping into it. E.g., M1,0 =
V1,0/V1,1. Null vectors in V1,h are images of highest vectors of Verma modules to
the right in the respective sequence, i.e., mapping into V1,h, possibly via a sequence
of inclusions.
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Example 7.10. Consider the case c = 1
2 , which corresponds to m = 3. One has

(991) hp,q =
(4p− 3q)2 − 1

48
.

The values of hp,q for small p, q are the following.

hp,q p = 1 p = 2
q = 1 0 1

2
q = 2 1

16
1
16

q = 3 1
2 0

We recognize these numbers h1,1 = 0, h2,1 = 1
2 , h1,2 = 1

16 as precisely the
conformal weights h of primary field 1, ψ, σ in the free fermion CFT. Thus, the
corresponding conformal families M 1

2 ,h
are the ones coming from Verma modules

V 1
2 ,h

containing a null vector, which allows one to write differential equations on

correlators of the corresponding primary fields, as we did in Section 6.3.9.

7.3. Maps between Verma modules. In this section we follow Feigin-Fuchs [12].
Fix the central charge c, h ∈ R. Equation hp,q = h with hp,q defined by (984)

determines two parallel lines on the (p, q)-plane related to one another by reflection
(p, q) ↔ (−p,−q). Pick one of those lines and denote it lc,h. The slope of lp,q is
m+1
m , in particular:

• If c ≤ 1, the line is real, with positive slope. For c = 1 the slope is 1.
• If c ≥ 25, the line is real, with negative slope. For c = 25, the slope is −1.
• If 1 < c < 25, the slope (and the line) is complex.

One is interested in integer points on lp,q. The relevant cases (with nomenclature
taken from [12]) is:

I lc,h has no integer points.
II lc,h has a single integer point (a′, a′′) ∈ Z2. One distinguishes the following

subcases:
II+ a′a′′ > 0,
II0 a′a′′ = 0,
II− a′a′′ < 0.

III lc,h contains infinitely many integer points. In this case m ∈ Q and one
has either c ≤ 1 (subcase III−) or c ≥ 25 (subcase III+). We further
distinguish between the subcases according to whether lp,q intersects the
coordinate axes at integer points.

III0,0
± lc,h intersects both coordinate axes q = 0 and p = 0 at integer points.

Denote P the middle point of the interval connecting these two inter-
section points. Enumerate the integer points of the upper half of lc,h
(above P ) as

(992) . . . , (a′−1, a
′′
−1), (a′0, a

′′
0), (a′1, a

′′
1), . . .

in such order that one has

(993) · · · < a′−1a
′′
−1 < a′0a

′′
0 = 0 < a′1a

′′
1 < · · ·

In particular, in the case III0,0
− , the sequence (992) is finite on the left

and infinite on the right, and vice versa in the case III0,0
+ .
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III0
± lc,h intersects one of the coordinate axes at an integer point. Then we

enumerate all integer points of lc,h (not just half) as in (992), so that
(993) holds.

III± lc,h intersects both coordinate axes at non-integer points. Then we
enumerate all integer points of lc,h as in (992), so that

(994) · · · < a′−1a
′′
−1 < 0 < a′0a

′′
0 < a′1a

′′
1 < · · ·

We also draw a second line l′c,h through the point (−a′0, a′′0) parallel to
lc,h and enumerate its integer points as

(995) . . . , (b′−1, b
′′
−1), (b′0, b

′′
0) = (−a′0, a′′0), (b′1, b

′′
1), . . .

so that one has

(996) · · · < b′−1b
′′
−1 < b′0b

′′
0 = −a′0a′′0 < 0 < b′1b

′′
1 < · · ·

Theorem 7.11 (Feigin-Fuchs). Fix c, h ∈ R and a line lc,h as above. Then:

• In cases I, II0: Vc,h is irreducible and not a proper submodule of any Verma
module.

• In the case II+, Vc,h has a single Verma submodule isomorphic to Vc,a′a′′

(which is irreducible) and generated a by a null vector at level a′a′′; Vc,h is
not a proper submodule of any Verma module.

• In the case II−, Vc,h is irreducible but can be embedded into Vc,h+a′a′′ and
is generated there by a null vector at level −a′a′′. Vc,h cannot be embedded
into any other Verma module.

• In the cases III0,0
± , III0

±, there is a sequence of embeddings

(997) · · · → Vc,h+a′1a
′′
1
→ Vc,h → Vc,h+a′−1a

′′
−1
→ · · ·

Modules in this sequence are not related by morphisms with any Verma
modules not from this sequence.

• In the cases III± there is a commutative diagram of embeddings of Verma
modules

(998)

...
Vc,h+a′−1a

′′
−1

...
Vc,h+a′−2a

′′
−2

Vc,h

OO 77

Vc,h+b′−1b
′′
−1+a′0a

′′
0

OOgg

Vc,h+a′1a
′′
1

OO 66

Vc,h+a′0a
′′
0

OO
hh

Vc,h+b′2b
′′
2 +a′0a

′′
0

...

OO 77

Vc,h+b′1b
′′
1 +a′0a

′′
0

...

OOgg
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Modules in this diagram are not connected by homomorphisms with any
other Verma modules. In each piece of the form

(999) A

B

OO

C

``

D

OO >>

E

`` OO

the images of B and C in A do not contain each other and their intersection
is generated by images of D and E in A.

Example 7.12. The case c = 1, h = 0 corresponds is III0,0
− in Feigin-Fuchs clas-

sification and c = 1, h = n2

4 with n = 1, 2, . . . is III0
−. In these cases the sequence

(997) is one of the two sequences (990).

Example 7.13. For c = 1
2 , h = 0 we have the line l 1

2 ,0
= {(p, q) | 4p − 3q = 1}

corresponding to the case III−. The integer points on l 1
2 ,0

are (1 + 3k, 1 + 4k) with

k ∈ Z; arranged in the order (994) they are:

(1000)
n 0 1 2 3 4 · · ·

(a′n, a
′′
n) (1, 1) (−2,−3) (4, 5) (−5,−7) (7, 9) · · ·

The parallel line l′1
2 ,0

= {(p, q) | 4p−3q = −7}, it has integer points (−1+3k, 1+4k),

k ∈ Z; arranged in the order (996) they are:

(1001)
n 0 1 2 3 4 · · ·

(b′n, b
′′
n) (−1, 1) (2, 5) (−4,−3) (5, 9) (−7,−7) · · ·

The diagram of embeddings (998) becomes

(1002) V 1
2 ,0

V 1
2 ,6

OO

V 1
2 ,1

bb

V 1
2 ,11

...

OO ??

V 1
2 ,9

...

OO__

One has similar diagrams for h = 1
2 and for h = 1

16 (all with c = 1
2 ).

7.3.1. Characters of highest weight modules of Virasoro algebra. Given a module
W of Virasoro algebra with central charge c is defined as

(1003) χW (q) = trW qL0− c
24 ,

with q a complex parameter with |q| < 1. For a Verma module Vc,h, one has

(1004) χVc,h(q) =
∑

N≥0

P (N)qh+N− c
24 =

qh+ 1−c
24

η(τ)
,
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where P (N) is the number of partitions and η(τ) is the Dedekind eta-function; q
is related to τ ∈ Π+ by

(1005) q = e2πiτ .

Characters of irreducible highest weight modules Mc,h can be obtained using
Theorem 7.11.

Example 7.14. The character of the irreducible module M 1
2 ,0

can be obtained

from the diagram (1002):

(1006) χM 1
2
,0

(q) = χV 1
2
,0

(q)− χV 1
2
,1

(q)− χV 1
2
,6

(q) + χV 1
2
,9

(q) + χV 1
2
,11

(q)− · · · =

=
q

1
48

η(τ)
(1−q−q6 +q9 +q11−· · · ) =

q
1
48

η(τ)

∑

k∈Z

(
q1+(−1+3k)(1+4k) − q(1+3k)(1+4k)

)

Characters of irreducible modules Mc,h are the conformal blocks for the torus
partition function in a CFT. If the space of fields of a CFT with central charge
c, c̄ contains primary fields Φi with i ∈ I (the indexing set for primary fields), with
conformal weights (hi, h̄i), then the space of states (or space of fields) is

(1007) H =
⊕

i∈I
Mc,hi ⊗Mc̄,h̄i

and the torus partition function is

(1008) Z(τ) = trHq
L0− c

24 q̄L0− c̄
24 =

∑

i∈I
χMc,hi

(q)χMc̄,h̄i
(q̄)

7.4. Minimal models of CFT.

7.4.1. Unitary minimal models. The following theorem is due to Friedan-Qiu-Shenker
(1984) and Goddard Kent-Olive (1986).

Theorem 7.15. The irreducible highest weight Virasoro module Mc,h is unitary
(i.e. the sesquilinear form 〈, 〉 is positive definite) if

(a) either c ≥ 1, h ≥ 0,
(b) or c = 1 − 6

m(m+1) with m = 2, 3, 4, . . . and h = hp,q with 1 ≤ p ≤ m − 1,

1 ≤ q ≤ m.

Note that for c as in (b) above, one has a symmetry in the table of admissible
hp,q’s:

(1009) hp,q = hm−p,m+1−q.
Lecture 35,
11/18/2022 Fix m = 2, 3, 4, . . . The “minimal model” M(m,m + 1) is defined138 as a CFT

with central charge

(1010) c = c̄ = 1− 6

m(m+ 1)

138We say “defined” a bit sloppily here. To have a CFT, the definition of the space of states

as a Vir ⊕ Vir-module needs to be supplemented with extra data: OPEs of primary fields, or
equivalently, structure coefficients of 3-point correlators of primary fields, which then allows to
determine all correlators.
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and space of states (or space of fields)

(1011) H =
⊕

1≤p≤m−1, 1≤q≤m /Z2

Mc,hp,q ⊗M c,hp,q .

Here the sum is over pairs (p, q) where the pairs (p, q) and (m − p,m + 1 − q)
are understood as equivalent; notation “/Z2” above means that we should take
one representative for each equivalence class. Each term in the sum in (1011) is a
representation of left and right Virasoro algebra, Vir⊕Vir, given as a tensor product
of two copies of the same irreducible Virasoro module Mc,hp,q ; bar over the second
copy of M indicates that we see it as a module over the right (antiholomorphic)
copy of Virasoro algebra.

Example 7.16. For m = 3, the minimal model M(3, 4) is the CFT with central
charge 1

2 and three species of primary fields:

• Φ1,1 of conformal weight h = h̄ = h1,1 = 0,
• Φ2,1 of conformal weight h = h̄ = h2,1 = 1

2 ,

• Φ1,2 of conformal weight h = h̄ = h1,2 = 1
16 .

Comparing this to (858), we see that the space of states for M(3, 4) is the even
part of the space of states of the free Majorana fermion, and we can identify the
fields as

(1012) Φ1,1 = 1, Φ2,1 = ε, Φ1,2 = �

– the identity, “energy” and “spin” fields.
In particular, the CFT minimal model M(3, 4) corresponds to the Ising model

at critical temperature (at the point of second-order phase transition), and in par-
ticular correlators of � reproduce the correlators of spins in critical Ising model.

The selection rules (so-called “fusion rules”) for OPEs are given by the following
table

(1013)

× [1] [ε] [�]
[1] [1] [ε] [�]
[ε] [ε] [1] [�]
[�] [�] [�] [1] + [ε]

Here for Φ a primary field [Φ] stands for its conformal family (the span of all descen-
dants, or equivalently, the corresponding term in the sum (1011)). For instance,
the fusion rule [�]× [�] = [1] + [ε] means that in the r.h.s. of the r.h.s of the OPE
of any two descendants of � one can find only descendants of 1 and of ε. We’ll
comment later on where these selection rules for OPEs come from. link

Example 7.17. Case m = 2 is the “trivial CFT” with c = 0 and a single conformal
family with h = h̄ = h1,1 = 0:

(1014) H = M0,0 ⊗M0,0.

In fact the irreducible Virasoro module M0,0 consists of just the highest vector |vac〉
(or 1) and all its descendants are zero.

7.4.2. General minimal models. Let c = 1− 6
m(m+1) with m ∈ Q (rational but not

necessarily integer). Assume that

(1015)
m+ 1

m
=
Q

P
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with Q,P ≥ 1 coprime integers.
As a consequence of Theorem 7.11, one has that for such c, the maximal139

reducible highest weight Verma modules are Vc,hp,q with 0 ≤ p ≤ P , 0 ≤ q ≤ Q.
The minimal model M(P,Q) is defined as a CFT with the space of states (or

space of fields)

(1016) H =
⊕

1≤p≤P−1, 1≤q≤ Q−1 /Z2

Mc,hp,q ⊗M c,hp,q ,

where /Z2 again means that from each equivalence class (p, q) ∼ (P − p,Q− q) we
need to pick one representative.

The minimal modelsM(P,Q) are not unitary (the sesquilinear product on H is
not positive-definite), unless one has (P,Q) = (m,m+ 1) for m = 2, 3, . . ..

Example 7.18. The minimal model M(2, 5) corresponds to c = −22/5 (and m =
2
3 ) and has two primary fields:

• Φ1,1 = 1 of conformal weight h = h̄ = h1,1 = 0,
• Φ1,2 of conformal weight h = h̄ = h1,2 = − 1

5 .140

In particular, it is clear that the model cannot be unitary, since c < 0 and there
is a field with negative conformal weight (each of these observations separately
contradicts unitarity).

Example 7.19. The minimal model M(4, 5) is unitary. It has c = 7/10 and the
array141 of conformal weights hp,q for admissible p, q is

(1017)

p = 1 p = 2 p = 3
q = 1 0 7/16 3/2
q = 2 1/10 3/80 3/5
q = 3 3/5 3/80 1/10
q = 4 3/2 7/16 0

In particular, the model has 6 = 3 × 4/2 conformal families/species of primary
fields.

Each minimal modelM(P,Q) has a collection of primary field Φp,q of conformal
weight (hp,q, hp,q), with p, q as in the r.h.s. of (1016); Φ1,1 = 1 has conformal weight
(0, 0) and is identified with the identity field.

Some of the fusion rules are:

(1018)

[Φ1,1]× [Φp,q] = [Φp,q],

[Φ1,2]× [Φp,q] = [Φp,q−1] + [Φp,q+1],

[Φ2,1]× [Φp,q] = [Φp−1,q] + [Φp+1,q].

Minimal models of CFT describe different 2d systems of statistical mechan-
ics at the point of second-order phase transition (put another way, they describe
universality classes of 2d critical phenomena). For instance, one has the following
correspondences were identified between 2d systems at the point of phase-transition
and minimal models of CFT:

139“Maximal” means that they cannot be embedded as proper submodules into any other
Verma module

140Note that the negative conformal weight means that the correlator of two such fields in-

creases as the fields get farther apart: 〈Φ1,2(w)Φ1,2(z)〉 = |w − z| 45 (cf. Lemma 5.26).
141Such arrays for minimal models are called “Kac tables”
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CFT minimal model phase transition
M(3, 4) Ising model at critical temperature
M(2, 5) Yang-Lee edge singularity
M(4, 5) tricritical Ising model
M(5, 6) 3-state Potts model
M(6, 7) tricritical 3-state Potts model

Remark 7.20. All primary fields in a minimal modelM(P,Q) are highest vectors of
reducible Virasoro modules (always corresponding to the case III− in Feigin-Fuchs
classification, Theorem 7.11) and thus have vanishing descendants. Therefore any 4-
point correlation function of primary fields inM(P,Q) can be reduced to a function
F (λ) of the cross-ratio λ satisfying certain ODE (e.g. a hypergeometric equation
in the case of fields Φ1,2,Φ2,1), as in the case of the correlator 〈����〉 in Section
6.3.9.

Definition 7.21. One calls a CFT with finitely many primary fields (or equiv-
alently finitely many conformal families – irreducible summands in the space of
states/ space of fields) a rational CFT, or RCFT.

Thus, minimal models are the prime examples of rational CFT. On the other
hand, free boson (with values in R or S1) is not rational: it contains infinitely many
primary fields.

To define a CFT, one needs to present two pieces of data:

• The space of states H or equivalently the space of fields V as a Vir⊕ Vir-
module (with come central charge c, c̄) – in particular, splitting it into
irreducible summands, one has conformal families generated by highest
weight vectors/primary fields.
• The coefficients in 3-point correlation functions of primary fields (705).

This data allows one to recover all correlation functions of all fields but there are
two constraints that the data above must satisfy:

(i) “Crossing symmetry” – a certain quadratic constraint on the coefficients of
3-point functions of primary fields, see Section 7.5.1.

(ii) Modular invariance of genus one partition function.

Remark 7.22. If one defines the space of states to be just the single conformal
family generated by the identity field 1, then the corresponding “CFT” will have
correlators and OPEs on the plane but will fail the modular invariance property
(unless c = 0 which is the case of the trivial CFT M(2, 3)).

More explicitly, one computes the torus partition function in M(P,Q) using
(1008) and evaluating the characters as in Example 7.14, resulting in the formula

(1019) Z(τ) =

=
|q| 1−c12

|η(τ)|2
∑

1≤p≤P−1, 1≤q≤ Q−1 /Z2

∣∣∣∣∣q
hp,q

∑

k∈Z

(
qpq+(−p+Pk)(q+Qk) − q(p+Pk)(q+Qk)

)∣∣∣∣∣

2

.

This expression is modular invariant (which can be proved by Poisson summation).
However, restricting to only the (p, q) = (1, 1) term in the sum one obtains a non-
modular invariant expression.
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7.5. Correlators and OPEs of primary fields in a general RCFT. Consider
a general CFT. Fix {Φp}p∈I an orthonormal basis of primary fields, with I an
indexing set.

Lemma 7.23. For Φ1,Φ2 primary fields, the OPE has the form
(1020)

Φ1(w)Φ2(z) ∼
∑

p∈I

∑

~k,~̄k

C
~k,~̄k
12p(w − z)−h1−h2+hp+|~k|(w̄ − z̄)−h̄1−h̄2+h̄p+|~̄k|Φ

~k,~̄k
p (z),

where:

• The first sum is over species primary fields.
• The second sum over pairs of nondecreasing sequences 1 ≤ k1 ≤ · · · ≤ kr

(which we denote ~k) and 1 ≤ k̄1 ≤ · · · ≤ k̄s (denoted ~̄k), with r, s ≥ 0; we

also denoted |~k| = k1 + · · ·+ kr and similarly for ~̄k; Φ
~k,~̄k
p is the descendant

(1021) Φ
~k,~̄k
p = L−kr · · ·L−k1L−k̄s · · ·L−k̄1

Φp

• The coefficients on the right are

(1022) C
~k,~̄k
12p = C12pβ

~k
12pβ̄

~̄k
12p

where C12p are certain coefficients depending on the triple of primary fields

Φ1,Φ2,Φp and β
~k
12p a certain family of universal142 rational functions of

c, h1, h2, hp parametrized by the sequence ~k; β̄ is the same family where
c̄, h̄1, h̄2, h̄p are used instead.

One can always assume the normalization β∅
12p = 1.

Remark 7.24. (a) “Structure constants” C12p in the r.h.s. of (1022) are the same
as the constants appearing in the r.h.s. of the 3-point function (705) of primary
fields

(1023) 〈Φ1(w)Φ2(z)Φp(x)〉.
Expressed another way, it is the matrix element

(1024) 〈Φp|Φ̂1(1)|Φ2〉.
It is symmetric under permutations of species 1, 2, p (as obvious from the pre-
vious interpretation).

(b) Remark that as a consequence of Lemma 7.23, a descendant field Φ
~k,~̄k
p can

appear in the OPE Φ1(w)Φ2(z) only if the primary field Φp itself appears in
that OPE.

(c) From the ansatz (7.23) it is clear that only finitely many descendants of each
primary field Φp contribute to the singular part of the OPE.

Sketch of proof of Lemma 7.23. The exponents in the ansatz (1020) follow imme-
diately from Lemma 5.24. The only thing to check is (1022).

The idea is to consider 3-point correlation functions

(1025) 〈Φ1(w)Φ2(z)Φ
~l,~̄l
p (x)〉.

142I.e. not depending on any details of the CFT.
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for various nondecreasing sequences ~l,~̄l with |~l| = |~k|, |~̄l| = |~̄k|. On one hand one can
find these correlators explicitly by reducing them to a differential operator acting
on 〈Φ1(w)Φ2(z)Φp(x)〉 (cf. Example 5.22), resulting expressions of the form

(1026) 〈Φ~l,~̄lp |Φ1(w)|Φ2〉 = C12pγ
~l
12pγ̄

~̄l
12p

with γ
~l
12p some universal rational functions of c, h1, h2, hp depending on the sequence

~l, and similarly for γ̄; for convenience we set z = 0, x→∞ in the correlator (1025).
On the other hand one can replace Φ1(w)Φ2(z) in (1025) with the r.h.s. of (1020)
and evaluate the remaining 2-point functions of descendants in terms of elements
of the Gram matrix (981):

(1027) 〈Φ~l,~̄lp |Φ1(w)|Φ2〉 =
∑

~k,~̄k

C
~k,~̄k
12pG

p
~k,~l
G
p
~̄k,~̄l
,

where Gp~k,~l
are the matrix elements of the Gram matrix. Here we again set z =

0, x→∞. Comparing the two sides, we obtain the claimed ansatz (1022) with

(1028) β
~k
12p =

∑

~l

((Gp)−1)~k,~lγ
~l
12p.

�

Example 7.25. The first coefficients β
~k
12p appearing in (1022) are:

β∅
12p = 1,

β
{1}
12p =

h1 − h2 + hp
2hp

,

(
β
{2}
12p

β
{1,1}
12p

)
=

(
4hp + c

2 6hp
6hp 2hp(4hp + 2)

)−1(
2h1 − h2 + hp

(−h1 − h2 + hp)(3h1 − h2 + hp + 1) + 6h2
1

)
.

Remark 7.26. Assume that the primary field Φ1 has a vanishing descendant al level
N (corresponding to a null vector in the corresponding Verma module). Then by the
argument of Example 5.22 there is a degree ≤ N differential operator annihilating
the 3-point function of primary fields (1023). Combining with the expression (705)
for the 3-point function this implies an algebraic equation of degree ≤ N . Thus,
there is an algebraic equation of degree ≤ N on the conformal weight hp of a
primary field which (and whose descendant) can appear in the r.h.s. of the OPE
(1020).

This is exactly the case in minimal modelsM(P,Q) and this is how one obtains
“fusions rules” (1018) and, more generally, obtains the result that fields Φp,q of the
minimal model form a closed algebra under OPEs: no fields with other conformal
weights can appear.

7.5.1. 4-point correlator of primary fields. The correlator of four primary fields in
a general CFT is bound by global conformal symmetry to be of the form (712):
(1029)

〈Φ1(z1)Φ2(z2)Φ3(z3)Φ4(z4)〉 =
( ∏

1≤i<j≤4

z
1
3

∑4
k=1 hk−hi−hj

ij z̄
1
3

∑4
k=1 h̄k−h̄i−h̄j

ij

)
f(λ)

with f a smooth function of the cross-ratio λ = z13z24

z14z23
∈ CP1\{0, 1,∞}. We can

use Möbius symmetry to fix points z2, z3, z4 at 1, 0,∞, then z1 becomes λ. Thus,
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we have

(1030) 〈Φ4|Φ̂2(1)Φ̂1(λ)|Φ3〉 = f(λ)

Applying the OPE (1020) to the expression Φ̂1(λ)|Φ3〉 above, we obtain

(1031) f(λ) =
∑

p∈I

∑

~k,~̄k

C13pβ
~k
13pβ̄

~̄k
13pλ

−h1−h3+hp+|~k|λ̄h̄1−h̄3+h̄p+|~̄k|〈Φ4|Φ̂2(1)|Φ~k,~̄kp 〉

=
∑

p∈I
C42pC13pF24

13 (p|λ)F24

13(p|λ̄)

where

(1032) F24
13 (p|λ) : = λ−h1−h3+hp

∞∑

K=0

λK
∑

~k,~l with |~k|=|~l|=K

β
~k
13pG

p
~k,~l
β
~l
24p,

and similarly for F . Here Gp~k,~l
is a matrix element of the Gram matrix (981).

The r.h.s. of (1032) is a holomorphic function of λ (possibly with monodromy
at λ = 0), the sum over K is absolutely convergent in the unit disk |λ| < 1. Thus
the function f(λ) determining the 4-point correlation function is a sum over I (i.e.
a finite sum for a rational CFT) of products of certain universal holomorphic and
antiholomorphic functions, with coefficients given in terms of coefficients of 3-point
functions. This begins to justify the claim that coefficients of 3-point functions
determine all correlators in a CFT.

Function (1032) is called the conformal block of the 4-point function, cf. (805).
Computation (1031) can be thought of in terms of Segal’s axioms, as cutting a

4-punctured sphere CP1 by a circle S1
r of radius |λ| < r < 1 centered at the origin

and evaluating the corresponding composition as a sum over the basis in the space
of states for the circle S1

r :

(1033) 〈Φ4|Φ̂2(1)Φ̂1(λ)|Φ3〉 =
∑

p∈I

∑

~k,~̄k

〈Φ4|Φ̂2(1)|Φ~k,~̄kp 〉〈Φ
~k,~̄k
p |Φ̂1(λ)|Φ3〉.

S1
r

Φ4

∞

Φ3

0

Φ1

λ

Φ2

1

Φ
~k,~̄k
p

Figure 35. Cutting the 4-point correlator on CP1.

Crossing symmetry. Starting from the 4-point function (1029) and switching the
roles of fields Φ2(z2) and Φ3(z3), one obtains another expression for the 4-point
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function:

(1034) f(λ) =
∑

p∈I
C43pC12pF34

12 (p|1− λ)F34

12(p|1− λ̄).

Expressions (1031) and (1034) must agree in the region where r.h.s. in both cases
is defined, i.e., in the region {λ ∈ C | |λ| < 1, |1 − λ| < 1}. This is the so-
called “crossing symmetry.” In particular it implies nontrivial quadratic relations
(a version of associativity constraint) on the coefficients of 3-point functions of
primary fields.

In terms of Segal’s axioms, crossing symmetry is just the statement that cutting
a 4-punctured sphere in two ways yields the same partition function.

=

Φ4

Φ3

Φ1

Φ2

Φ4

Φ3

Φ1

Φ2

Figure 36. Crossing symmetry = cutting the 4-point correlator
on CP1 in two ways.

Replacing punctures by finite circles, the same picture can be regarded as cutting
a sphere with four holes into two pairs of pants in two different ways.

=

Φ1 Φ3

Φ2 Φ4

Φ1 Φ3

Φ2 Φ4

Figure 37. Another visualization of crossing symmetry.

Lecture 36,
11/21/2022

8. Wess-Zumino-Witten model

8.1. Affine Lie algebras. For details on affine Lie algebras we refer to [20], [25],
[8].

Fix a compact simple Lie group G, denote its Lie algebra g and the complexifi-
cation of the latter gC = C⊗ g.
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Definition 8.1. The loop group LG = Map(S1, G) is the group of G-valued smooth
functions on a circle with pointwise multiplication. Its complexified Lie algebra
Lg = Map(S1, gC) – the Lie algebra of gC-valued functions on S1 with pointwise
Lie bracket is called the loop Lie algebra.

One can identify loop Lie algebra with the algebra of gC-valued Laurent polyno-
mials

(1035) Lg = gC ⊗ C[t, t−1]

where t is the complex coordinate on the unit circle S1 = {t ∈ C | |t| = 1}.143 The
Lie bracket in Lg is

(1036) [X ⊗ f, Y ⊗ g] = [X,Y ]⊗ fg
for X,Y ∈ gC, f, g ∈ C[t, t−1].

Definition 8.2. The affine Lie algebra ĝ associated with g is defined as the unique
(up to normalization) central extension ĝ = Lg ⊕ C · K of the loop Lie algebra,
equipped with Lie bracket

(1037) [X ⊗ f, Y ⊗ g]ĝ = [X,Y ]⊗ fg + K〈X,Y 〉grest=0(df · g).

Here K is the central element, 〈, 〉g is the Killing form144 on g and the residue
rest=0(· · · ) returns the coefficient of t−1dt in the 1-form (· · · ).

One can write the Lie bracket (1037) more explicitly:

(1038) [X ⊗ tn, Y ⊗ tm] = [X,Y ]⊗ tn+m + K〈X,Y 〉gnδn,−m.
We will be using a shorthand notation Xn : = X ⊗ tn.

Remark 8.3. The statement that (1037) is the unique up to normalization central
extension of the loop Lie algebra is tantamount to a statement about Lie algebra
cohomology:

(1039) H2
Lie(Lg,C) = C,

where the nontrivial 2-cocycle is given by the rightmost term in (1037).
The result (1039) uses the fact that g is simple. For g semisimple with n simple

summands g = g1 ⊕ · · · ⊕ gn, the r.h.s. of (1039) is Cn – there are n independent
2-cocycles corresponding to Killing forms on gi.

Remark 8.4. If we set g = R and 〈X,Y 〉g = XY for X,Y ∈ R,145 then (1037)
becomes the Lie bracket of the Heisenberg Lie algebra (476), (477), so in this case
one has ĝ = Heis.

143One can choose different completions of the algebra of Laurent polynomials in (1035) corre-

sponding to different regularity assumptions on the allowed maps from S1 to gC, cf. the discussion

of models of Witt algebra in Section 2.5.1. We will not dwell on this point.
144We assume the normalization of the Killing form 〈X,Y 〉g = tr(XY ) – the trace of the

product in the fundamental representation of g (e.g. in the 2-dimensional representation for
g = su(2)).

145This example is somewhat outside the setup of this section: R is not the Lie algebra of a

compact simple group and this choice of 〈, 〉g is not the Killing form (the Killing form for g = R
is zero).
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Similarly to the loop Lie algebra Lg, the loop group LG also has a family of

central extensions L̂G
k
,

(1040) 1→ C∗ → L̂G
k → LG→ 1,

with the “level” parameter k = 1, 2, 3, . . .; here L̂G
k

is a principal C∗-bundle over
LG with first Chern class c1 = k ∈ H2(LG,Z) ' Z.

At the level of Lie algebra, the central extension L̂G
k

corresponds to the affine
Lie algebra ĝ where K is identified with k · Id – an integer multiple of identity (in

particular, an L̂G
k
-module is automatically a ĝ-module, with K acting by k · Id).

8.1.1. Highest weight modules over ĝ. Fix a decomposition

(1041) gC = g+ ⊕ h⊕ g−

with h the Cartan subalgebra, g+ the span of positive roots {eα}α>0 of g and g−
the span of negative roots {eα}α<0.

Consider the following decomposition of the affine Lie algebra ĝ:

(1042) ĝ = (g⊗ tC[t]⊕ g+)︸ ︷︷ ︸
N+

⊕ (C · K⊕ h)︸ ︷︷ ︸
N0

⊕ (g⊗ t−1C[t−1]⊕ g−)︸ ︷︷ ︸
N−

.

A Verma module over ĝ is defined (cf. footnote 137) as

(1043) V ĝ
k,λ = U(ĝ)⊗U(N0⊕N+) Ck,λ.

Here:

• k ∈ C is the level146 and λ = (λ1, . . . , λr) is a highest weight of g, with
r = dim h the rank of g. We assume that a basis τ1, . . . , τ r in h is fixed.
• Ck,λ is a 1-dimensional module over N0 ⊕ N+ where N+ acts by zero, K

acts by multiplication by the level k and elements of the Cartan τ i ∈ h act
by multiplication by λi.
• U(· · · ) is the universal enveloping algebra.

Let us denote by v the highest weight vector in (1043) – the generator of Ck,λ.

As in Virasoro case, in V ĝ
k,λ one can have null vectors – vectors (distinct from

the highest weight vector v) annihilated by N+.
The irreducible highest weight module (of level k, with highest weight λ) is

(1044) M ĝ
k,λ = V ĝ

k,λ/ν

– the quotient of the Verma module by the maximal proper submodule. As in the
Virasoro case, ν can also be described as

• the submodule generated by the null-vectors,

• or equivalently as the kernel of the sesquilinear form on V ĝ
k,λ characterized

by the properties 〈v, v〉 = 1, (X ⊗ tn)+ = X+ ⊗ t−n.

Remark 8.5. It is convenient to adjoin to ĝ an extra generator (“grading operator”
or “Euler vector field”) δ = −t ddt satisfying the commutation relations

(1045) [δ,X ⊗ tj ] = −jX ⊗ tj , [δ,K] = 0.

146In the context of Verma modules over ĝ, the level does not have to be an integer and λ ∈ Cr

can be any vector. However, more detailed structure of the Verma module (e.g. null vectors) is

sensitive to integrality of k and to λ belonging to the weight lattice of g.
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The algebra ĝ⊕ C · δ is called the affine Kac-Moody algebra.

In a highest weight module W , if we set δ(v) = 0, the module becomes Z≥0-
graded by eigenvalues nδ of δ:

(1046) W =

∞⊕

nδ=0

W (nδ).

We will call nδ “depth.”147

Note that each term W (nδ) in the r.h.s. of (1046) carries a representation of
g (without the hat). In particular, for W the Verma module and nδ = 0 one

has that V ĝ
k,λ(0) is the Verma module V g

λ of g with highest weight λ obtained by

acting on v by elements of g−. Similarly, for the irreducible ĝ-module one has that

M ĝ
k,λ(0) = Mg

λ is the irreducible representation of g with highest weight λ.
Integrable highest weight modules. There is a distinguished set of irreducible

highest weight modules over ĝ – “integrable highest weight modules” for positive
integer level k = 1, 2, 3, . . . Their equivalent characterizations are:

(i) The module M ĝ
k,λ is integrable if the action of ĝ on it integrates to the action

of the group L̂G
k
.

(ii) (Purely Lie algebraic definition.) The module M ĝ
k,λ is integrable if it satisfies

the “local nilpotency condition”: for any u ∈ M ĝ
k,λ, any j ∈ Z and any root

eα of g there exists N such that

(1047) (eα ⊗ tj)Nu = 0.

If the irreducible module M ĝ
k,λ is integrable, we will also denote it Hk,λ.

Theorem 8.6 (see Kac [20]). There are finitely many integrable highest weight
ĝ-modules for any given positive integer level k = 1, 2, 3, . . ..

Example 8.7. Consider the case G = SU(2). In the complexified Lie algebra
gC = C⊗ su(2) = sl(2,C) one can consider the standard basis

(1048) E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)

satisfying the commutation relations

(1049) [H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

We consider H as the basis vector for the Cartan subalgebra h, E as the positive
root and F the negative root, i.e., the decomposition (1041) is

(1050) sl(2,C) = C · E︸ ︷︷ ︸
g+

⊕C ·H︸ ︷︷ ︸
h

⊕C · F︸ ︷︷ ︸
g−

147It is not a standard term; we use it because the word “level” already has another meaning
in the context of affine Lie algebras.
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H0,KF0 E0

H1 E1F1

F−1 H−1 E−1

F−2 H−2 E−2

F2 H2 E2

λ

nδ

−2 0 2

0

1

2

−1

−2

Figure 38. Root diagram of ŝu(2). Positive roots (basis of N+, cf.
(1042)) are indicated by dashed arrows and negative roots (basis
of N−) – by solid arrows. The encircled part corresponds to the
Cartan subalgebra N0. The diagram extends infinitely vertically.

Fix the level k = 1, 2, 3, . . .. Then the irreducible highest weight module M
ŝu(2)
k,λ

is integrable if and only if the highest weight λ is an integer in the range 0 ≤ λ ≤ k.
We denote this integrable module Hk,λ; it can be realized as the quotient of the

Verma module V
ŝu(2)
k,λ by the submodule ν generated by two null vectors148

(1051) χ = (E−1)k−λ+1v, ψ = (F0)λ+1v.

At depth nδ = 0, Hk,λ is the standard irreducible representation of sl(2,C) of

dimension λ+ 1 (or the “representation of spin λ
2 ”).

As an illustration, consider the case k = 1, λ = 0. Here are the dimensions of
first weight spaces (joint eigenspaces of H and δ), a.k.a. multiplicities of weights,

148In fact, V
ŝu(2)
k,λ contains other null vectors, but they are contained in ν.
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in the Verma module V
ŝu(2)
1,0 :149

(1052)

nδ \H−e.v. −10 −8 −6 −4 −2 0 2 4 6 8 10

0 1 1 1 1 1 1
1 3 3 3 3 3 2 1
2 9 9 9 9 8 6 3 1
3 22 22 22 21 19 14 8 3 1
4 51 51 50 48 42 32 19 9 3 1

Here an empty cell means that the corresponding weight space is zero; we are
indicating H-eigenvalue horizontally and δ-eigenvalue vertically. The boxed entry
corresponds to the highest vector v. The cell at position (2i, i) corresponds to the
weight space C · (E−1)iv; the cell at position (−2i, 0) corresponds to the weight
space C · (F0)iv.

The similar table of multiplicities for the integrable module H1,0 is the follow-
ing:150

(1053)

nδ \H−e.v. −6 −4 −2 0 2 4 6

0 1
1 1 1 1
2 1 2 1
3 2 3 2
4 1 3 5 3 1

This table illustrates e.g. that at the representation of sl(2,C) arising at a fixed
depth nδ > 0 is finite-dimensional but generally not irreducible.

For the second integrable module arising at level k = 1, H1,1, the table of
multiplicities is

(1054)

nδ \H−e.v. −5 −3 −1 1 3 5

0 1 1
1 1 1
2 1 2 2 1
3 1 3 3 1

8.1.2. Sugawara construction. Sugawara construction is a realization of Virasoro
algebra (with some particular value of of central charge) in terms of quadratic
expressions in generators of the affine Lie algebra ĝ. Put another way, it is an
embedding Vir ↪→ U(ĝ) of Virasoro into (the degree two part of) the enveloping
algebra of ĝ.

149The generating function for the numbers in this table is

(1− α2τ)−1
∞∏
n=0

((1− α2τ2+n)(1− τ1+n)(1− α−2τn))−1.

The coefficient of α2kτ l in this function is the dimension of the weight space with H eigen-
value 2k and nδ = l. This generating function counts the “nondecreasing” words made
out of the ordered alphabet E−1;F0, H−1, E−2;F−1, H−2, E−3;F−2, H−3, E−4, . . . (ordered by

nδ − 1
2

(H−eigenvalue)) – such words give a Poincaré-Birkhoff-Witt basis in U(N−) and hence in

the Verma module.
150See Figure 14.4 and Table 15.1 in [8]. For (1054) see Table 15.2 in [8].
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Let {T a} be an orthonormal basis in g with respect to the Killing form. The
quadratic Casimir element

(1055) Cas: =
∑

a

T aT a ∈ U(g)

acts on the irreducible g-module with highest weight λ by multiplication by a con-
stant Cλ,

(1056) Cas = Cλ · Id on Mg
λ .

We also denote the normalized trace of the Casimir element in the adjoint rep-
resentation of g by

(1057) h∨ : =
trgad(Cas)

2 dim g

– it is the so-called dual Coxeter number of g.

Theorem 8.8 (Sugawara, [36]). Let W be a highest weight ĝ-module on which K
acts by multiplication by a number k ∈ C, k 6= −h∨. Consider the elements

(1058) Ln =
1/2

k + h∨

∑

j∈Z

dim g∑

a=1

: T aj T
a
n−j : ∈ End(W ),

where T ai = T a ⊗ ti and the normal ordering symbol : · · · : puts T a>0 to the right of
T 0
<0.151 Then:

(a) The operators Ln satisfy Virasoro commutation relations with central charge

(1059) c =
k · dim g

k + h∨
.

(b) The commutation relation between operators (1058) and the generators of ĝ is

(1060) [Ln, Xj ] = −jXn+j

for any X ∈ g.
(c) If W = Hk,λ is an integrable ĝ-module and v is the highest weight vector, then

one has

(1061) L0v =
1
2Cλ

k + h∨
v,

with Cλ the value of the quadratic Casimir in the representation Mg
λ , as in

(1056).

For the proof see e.g. Theorem 10.1 and Proposition 10.1 in [21].
Comparing (1060), (1061) and (1045) we note that in the decomposition of the

integrable module by depth

(1062) Hk,λ =
⊕

nδ≥0

Hk,λ(nδ),

the term Hk,λ(nδ) in the r.h.s. is the eigenspace of L0 with eigenvalue

(1063) ∆ + nδ,

151Note that the normal ordering only affects the expression for L0, as Taj and Tan−j commute

for n 6= 0.
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where

(1064) ∆ =
1
2Cλ

k + h∨

is the constant in (1061). Put another way, one has

(1065) L0 = ∆ · Id + δ

as an equality of operators on Hk,λ.
Also note that all elements of Hk,λ(0) are annihilated by L>0, i.e. they are

all Virasoro-highest weight (or “Virasoro-primary”) vectors with L0-eigenvalue ∆.They are also ĝ-
primary There may also be other Virasoro-primary vectors in Hk,λ emerging at depths

nδ > 0.

Example 8.9. For g = su(2), one has h∨ = 2 (more generally, for g = su(N), one
has h∨ = N), thus (1058) becomes

(1066) Ln =
1/2

k + 2

∑

j∈Z

3∑

a=1

: T aj T
a
n−j : .

For the orthonormal basis {T a} in su(2), one can choose the appropriately normal-
ized Pauli matrices,

(1067) T 1 =
1√
2

(
0 1
1 0

)
, T 2 =

1√
2

(
0 −i
i 0

)
, T 3 =

1√
2

(
1 0
0 −1

)
.

The operators (1066) satisfy Virasoro commutation relations with central charge

(1068) c =
3k

k + 2
.

For W = Hk,λ an integrable ŝu(2)-module, the highest vector satisfies

(1069) L0v =
1
4λ(λ+ 2)

k + 2
v,

since for g = su(2) the value of the quadratic Casimir in an irreducible representa-
tion is

(1070) Cλ =
1

2
λ(λ+ 2).

Lecture 37,
11/28/2022 8.2. Wess-Zumino-Witten model as a classical field theory. Let G be a

compact simple, simply connected matrix group (keeping in mind G = SU(2) in
the fundamental representation as the main example).

Consider the following 3-form on G:

(1071) σ =
1

24π2
tr
(
(X−1dX) ∧ (X−1dX) ∧ (X−1dX)

)
∈ Ω3(G)

It is known as the Cartan 3-form on G; it is left- and right-invariant under G-action
and represents the image of the generator of H3(G,Z) ' Z in de Rham cohomology
H3(G,R). In particular, the form σ has integer periods.

Example 8.10. For G = SU(2) the group manifold is the 3-sphere and σ is a
volume form of unit total volume,

∫
G
σ = 1. The funny normalization factor in

(1071) is tuned so as to have this property.
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Remark 8.11. The form σ is constructed out of the Maurer-Cartan 1-form

(1072) µ = X−1dX ∈ Ω1(G, g)

– the unique left-invariant g-valued 1-form form on the group G such that its value
at the group unit µ|e : TeG︸︷︷︸

g

→ g is identity. In terms of µ, the Cartan 3-form is

(1073) σ =
1

48π2
〈µ ∧, [µ ∧, µ]〉g.

The action functional. Let Σ be a closed Riemannian surface. Fields of the model
are smooth maps

(1074) g : Σ→ G

and the action functional is152

(1075) SΣ(g) : = − i

4π

∫

Σ

tr
(
g−1∂g ∧ g−1∂̄g

)
+ WZ(g)

where the last term is the so-called “Wess-Zumino term.” It is defined as

(1076) WZ(g) : = − i

12π

∫

B

tr
(
g̃−1dg̃

)∧3
= −2πi

∫

B

g̃∗σ

where B is any compact oriented 3-manifold with boundary ∂B = Σ (e.g. one can
choose B to be a handlebody)153 and g̃ : B → G any smooth extension of the map
g : Σ→ G into B (“extension” means that g̃ must satisfy g̃|∂B = g).

Lemma 8.12. For a fixed map g : Σ→ G, the Wess-Zumino term WZ(g) modulo
2πiZ does not depend on the choice of 3-manifold B cobounding Σ and on the choice
of extension g̃.

Sketch of proof. Denote by WZB,g̃(g) the r.h.s. of (1076). Let B,B′ be two 3-
manifolds cobounding Σ and g̃, g̃′ some extensions of g from Σ into B and into B′,
respectively. One has

(1077) WZB,g̃(g)−WZB
′,g̃′(g) = −2πi

(∫

B

g̃∗σ −
∫

B′
(g̃′)∗σ

)
=

= −2πi

(∫

B

g̃∗σ +

∫

B
′
(g̃′)∗σ

)
= −2πi

∫

B̌

ǧ∗σ,

where B
′
is B′ with reversed orientation. Here in the last step we defined the closed

3-manifold B̌ as B glued to B
′

along Σ, and we defined the “glued” map ǧ : B̌ → G

as the map whose restrictions to B, B
′

are g̃ and g̃′, respectively.

152Recall that ∂ = dz ∂
∂z

, ∂̄ = dz̄ ∂
∂z̄

are the holomorphic and antiholomorphic Dolbeault

differentials.
153One says “the 3-manifold B cobounds the surface Σ.”
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g̃′

Σ

g

B

B
′

g̃

Figure 39. Closed 3-manifold B̌ glued out of B and B
′

along Σ
and the corresponding glued map to G.

Thus, one has

(1078) WZB,g̃(g)−WZB
′,g̃′(g) = −2πi〈[B̌], ǧ∗[σ]〉 ∈ 2πiZ

– the pairing (up to normalization) of the fundamental class of the closed 3-manifold
B̌ with the pullback along ǧ of the integral cohomology class [σ] ∈ H3(G,Z).154 �

In particular, this lemma implies that Wess-Zumino-Witten (WZW) action (1075)
modulo 2πiZ is well-defined (independent of choices of cobounding 3-manifold B
and the extension g̃). Thus, for k = 1, 2, 3, . . . an integer (the “level” of Wess-
Zumino-Witten model), the expression

(1079) e−kSΣ(g)

is well-defined. This expression is the integrand in the path integral for the Wess-
Zumino-Witten model,

(1080) Zk(Σ) = “

∫

Map(Σ,G)

Dg e−kSΣ(g).”

Here the level k = 1, 2, 3, . . . is a parameter of the theory playing the role of inverse
Planck constant, k = ~−1, see Remark 1.14.

Remark 8.13. (a) In the action (1075) the first term is real and the second term is
imaginary.

(b) One can write the action (1075) in terms of the Maurer-Cartan 1-form on G:

(1081) SΣ(g) = − 1

8π

∫

Σ

〈g∗µ ∧, ∗Hodgeg
∗µ〉g−

i

24π

∫

B

g̃∗〈µ ∧, [µ ∧, µ]〉g
︸ ︷︷ ︸

WZ(g)

The benefit of this rewriting is that it one can use it to define WZW action for
non-matrix Lie groups.

154By abuse of notations, here [σ] stands for the class in H3(G,Z) whose image in H3(G,R) is

the class of the Cartan 3-form in de Rham cohomology. We also remark that in the special case

G = SU(2) the r.h.s. of (1078) admits the interpretation as −2πi times the degree of the map

ǧ : B̌ → SU(2) ' S3 between oriented closed 3-manifolds.
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(c) Although the Wess-Zumino term is non-local (not an integral over Σ), its vari-
ation is local:

(1082) δWZ =
i

4π

∫

Σ

tr g−1δg(∂(g−1∂̄g) + ∂̄(g−1∂g))

(note that the integral is over Σ, not over B). Putting this together with the
variation of the first term of (1075) (let us denote it E(g)),

(1083) δE =
i

4π

∫

Σ

tr g−1δg(∂(g−1∂̄g)− ∂̄(g−1∂g)),

one obtains the variation of the full action (1075) is

(1084) δSΣ =
i

2π

∫

Σ

tr (g−1δg)∂(g−1∂̄g).

An equivalent expression is:

(1085) δSΣ = − i

2π

∫

Σ

tr(δg g−1)∂̄(∂g g−1).

Euler-Lagrange equation. For the discussion of the Euler-Lagrange equation (es-
pecially the holomorphic factorization of solutions (1087)) and symmetries it is
convenient to complexify the space of classical fields, i.e., to allow fields g to be
maps from Σ to the complexified group GC rather than the compact group G.

The Euler-Lagrange equation corresponding to the action (1075) is read off from
the fromula for the variation (1084):

(1086) ∂(g−1∂̄g) = 0.

Equivalently, the same equation can be written as ∂̄(∂g g−1) = 0.
The general solution of the Euler-Lagrange equation (1086) is:

(1087) g(z) = h1(z)h2(z),

where h1, h2 : Σ→ GC are two holomorphic maps into the complexified group.

Remark 8.14. One can consider Wess-Zumino-Witten theory for G = U(1). (This
group fails our assumptions: it is neither simple nor simply connected, but nev-
ertheless one can play with it.) Then the field g : Σ → G can be parametrized as
g = eiφ. The action (1075) is then simply the action of a free boson (with values
in S1); the Wess-Zumino term vanishes. Euler-Lagrange equation (1086) becomes
the equation of a harmonic function ∆φ = 0. The factorization (1087) simply be-
comes the statement that any harmonic function is a sum of a holomorphic and an
antiholomorphic function, φ(z) = χ1(z) + χ2(z).

Symmetry and conserved currents. The action (1075) is invariant under the fol-
lowing transformations of the field:

(1088) g(z) 7→ g′(z) = Ω1(z)g(z)Ω2(z)

where Ω1,Ω2 : Σ→ GC are two arbitrary holomorphic maps.155

155The transformations (1088) are sometimes called “gauge symmetry” in the literature. We

would argue that it is not a very good term here, since the generators of the symmetry are not local:
they are holomorphic (rather than, say, smooth) maps from Σ to the target, and for holomorphic

maps one doesn’t have partitions of unity, so one cannot have a bump function as a generator.
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The invariance under transformations (1088) corresponds by Noether theorem
to having two conserved currents

(1089)
J = ∂g · g−1 ∈ Ω1,0(Σ, g),

J = g−1∂̄g ∈ Ω0,1(Σ, g),

satisfying the conservation properties

(1090) ∂̄J ∼
EL

0, ∂J ∼
EL

0.

Remark 8.15. The action (1075) is the sum of the action of a sigma model with tar-
get a group (the natural quadratic “energy of a map”) and a seemingly complicated
nonlocal cubic term WZ(g). One might reasonably ask: why add this extra term to
the sigma model? The answer is that adding this term actually makes the model
much simpler: it creates two separately conserved holomorphic and antiholomor-
phic Noether currents J,J, leads to simpler Euler-Lagrange equation which allows
an explicit solution (1087). Ultimately, the addition of the Wess-Zumino term to
the model results in the factorization of the model into a holomorphic and an an-
tiholomorphic sector (this statement makes sense both at the classical and at the
quantum level).

Remark 8.16. One can also write down the currents (1089) without referring to the
matrix structure of the group G:

(1091) J =
1

2
(id + i∗Hodge)g∗µR, J =

1

2
(id− i∗Hodge)g∗µL,

where µL is the left-invariant Maurer-Cartan form (1072) and µR is its right-
invariant counterpart (µR = dX X−1 for a matrix group).

Polyakov-Wiegmann formula. For the next discussion it is important to know
how the action (1075) interacts with pointwise products of fields (as maps to the
group).

Theorem 8.17 (Polyakov-Wiegmann). For Σ a closed Riemannian surface and
f, g : Σ→ G two maps to the group, one has

(1092) SΣ(f · g) = SΣ(f) + SΣ(g) +
i

2π

∫

Σ

tr
(
f−1∂̄f ∧ ∂g · g−1

)

︸ ︷︷ ︸
ΓΣ(f,g)

.

Here · in the l.h.s. stands for the pointwise product of maps to G.

Thus, the action is “almost” additive w.r.t. pointwise product of fields, with the
defect given by the rightmost term in (1092) which we denoted ΓΣ(f, g).

We note that the “defect” ΓΣ in (1092) is a 2-cocycle for the group Map(Σ, G)
(with trivial coefficients), i.e., for any triple of maps f, g, h : Σ→ G it satisfies156

(1093) ΓΣ(g, h)− ΓΣ(fg, h) + ΓΣ(f, gh)− ΓΣ(f, g) = 0.

156Indeed, 0 = SΣ((fg)h) − SΣ(f(gh)) = SΣ(fg) + SΣ(h) + ΓΣ(fg, h) − SΣ(f) − SΣ(gh) −
ΓΣ(f, gh) =���SΣ(f) +���SΣ(g) + ΓΣ(f, g) +���SΣ(h) + ΓΣ(fg, h)−���SΣ(f)−���SΣ(g)−���SΣ(h)−ΓΣ(g, h)−
ΓΣ(f, gh) = −l.h.s. of (1093).
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8.2.1. Case of surfaces with boundary. Here we briefly sketch a geometric construc-
tion from [25].

It is not straightforward to generalize the action (1075) to surfaces with bound-
ary, due to the presence of a nonlocal term in the action. It turns out one can still
do it, with two caveats:

• one should consider the exponential of the action e−kSΣ instead of the action
itself (we assume that the level k = 1, 2, 3, . . . is fixed),
• instead of obtaining e−kSΣ as a function on the space of fields on a surface

with boundary, it will be a section of a certain line bundle over FieldsΣ.

Let Σ be a compact Riemannian surface with n boundary circles. Construct a
closed surface Σ′ by attaching n disks D1, . . . , Dn to the boundary of Σ (i.e. attach
a disk to each boundary circle): Σ′ = Σ ∪⊔ni=1Di.

D2

Σ

D1

Figure 40. Closed surface obtained from Σ by attaching disks
along boundary circles.

The basic idea is to define the WZW action on a surface with boundary via

(1094) e−kSΣ(g) : = e−kSΣ′ (g
′)

where g is a map Σ → G and g′ is some extension of g as a map Σ′ → G (i.e. an
extension of the map g into each disk Di is to be chosen).

The ambiguity in the choice of the extension g′ leads to the idea that the ex-
pression e−kSΣ(g) should be understood as taking values in the fiber of the complex
line bundle

(1095)

Lk � · · ·� Lk
y

LG× · · · × LG
over the point g|∂Σ ∈ Map(∂Σ, G) ' LG×n, i.e., over the boundary value of the
map g seen as a collection of loops in G.

The complex line bundle over the loop group

(1096) Lk → LG,

several copies of which appear in (1095), is constructed as follows (see [25] for
details). Consider the trivial line bundle

(1097) Map(D,G)× C→ Map(D,G)

with D the unit disk, and consider the following equivalence relation: two pairs

(1098) (fD : D → G, u ∈ C) ∼ (gD : D → G, v ∈ C)

are considered equivalent if

• fD and gD agree on the boundary circle: fD|∂D = gD|∂D,
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• one has
v = u · e−kSCP1 (h)−kΓD(fD,hD),

where h : CP1 → G is defined on D as f−1
D gD =: hD and extended by 1 to

CP1\D; ΓD is given by the same formula as in (1092) (but the integral is
over D).

Quotienting the line bundle (1097) by this equivalence relation produces a line
bundle over LG (loops in G seen as boundary values of functions fD) which we call
Lk.

By construction and as a consequence of Polyakov-Wiegmann formula, one in-
deed has that e−kSΣ(g) defined by (1094) seen as an element in the fiber of (1095)
over the boundary value of g is independent of the extension g′.157

Put another way, the exponentiated action for Σ a surface with boundary is not
a function on FieldsΣ = Map(Σ, G) but rather is a section of a line bundle,

(1099) e−kSΣ ∈ Γ(FieldsΣ, π
∗(Lk)�n)

where

(1100) π : FieldsΣ → Map(∂Σ, G)︸ ︷︷ ︸
Fields∂Σ

' LG×n

is the restriction of the map to the boundary. We will denote L∂Σ : = (Lk)�n seen
as a line bundle over Fields∂Σ.

Remark 8.18. (a) Denoting L1 =: L one has

(1101) Lk = L⊗k.
Thus, the superscript in Lk can be interpreted as the tensor power of a special
line bundle corresponding to k = 1. The first Chern class of the bundle L in
de Rham cohomology H2(LG) is represented by the 2-formMaybe write it more

cleanly as pull-push
in cohomology, not
in de Rham repre-
sentatives?

(1102) ω = p∗(ev∗σ) ∈ Ω2(LG),

where σ is the Cartan 3-form on G (1071) and p and ev are the projection and
evaluation maps in the diagram

(1103)

LG× S1 ev−−−−→ G

p

y

LG

The map ev evaluates the loop in G at a given point of S1; p∗ stands for the
fiber integral over S1.

157In a bit more detail, one chooses an extension g′ of g : Σ→ G into the disks Di and thinks

of e−kSΣ(g) as a tuple
(
{g′|Di} ∈ Map(D,G)×n, e−kSΣ′ (g

′) ∈ C
)

up to an equivalence as the one

on (1097), extended in an obvious way to n disks.
For instance, if Σ has a single boundary circle (i.e. n = 1), if g′ and g′′ are two extensions of the

map g : Σ→ G into the single attached disk D, one has g′′ = g′h with the map h : Σ′ → G (“dis-

crepancy” of the two extensions) equal to 1 on Σ and nontrivial in D, the pairs (g′h|D, e−kSΣ(g′h))

and (g′|D, e−kSΣ(g′)) are equivalent precisely because by Polyakov-Wiegmann formula one has

e−kSΣ(g′h) = e−kSΣ(g′) · e−kSΣ(h)−kΓΣ(g′,h). We note that in the r.h.s. here ΓΣ can be replaced

with ΓD and SΣ(h) can be replaced with SCP1 (h̃) where h̃ is the extension of h|D into CP1\D by
1 (the intuition here is that since h is trivial outside D, the surface Σ can be replaced by anything,

including a complementary disk).
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(b) One has a product on the total space of the line bundle Lk given by

(1104) (g1, u1e
−kSD(g1))∗(g2, u2e

−kSD(g2)) = (g1 ·g2 , u1u2e
−kSD(g1g2)−kΓD(g1,g2))

with u1,2 ∈ C and g1,2 : D → G. Here we understand that on both sides we
pass to equivalence classes under (1098). Removing the zero-section from Lk
one obtains a group which is none other than the central extension of the loop
group we mentioned in Section 8.1 (see (1040)):

(1105) Lk\{zero-section} = L̂G
k
.

Symmetry of the model on a surface with boundary. Fix Σ a surface with bound-
ary. One has a left and a right action of the group Map(Σ, G) on FieldsΣ =
Map(Σ, G) coming from multiplication in the target G from the left or from the
right. One also has left and right actions of the group Map(M,G) on the space of
sections of the line bundle L∂Σ → Fields∂Σ. write formulas for

the actionThe symmetry (1088) for Σ with boundary becomes the following statement.

Lemma 8.19. The exponentiated action

(1106) e−kSΣ ∈ Γ(FieldsΣ, π
∗L∂Σ)

is

• left-invariant under holomorphic maps Ω: Σ→ GC and
• right-invariant under antiholomorphic maps Ω∗ : Σ→ GC,

where maps act both on the fields and on the bundle L∂Σ in (1106).

For the proof see [25, Proposition 1.11].
Path integral heuristics. The path integral on a surface with boundary

(1107) Z(Σ) =

∫

g|∂Σ=g∂

Dg e−kSΣ(g) ∈ Γ(Fields∂Σ,L∂Σ)Hol(Σ,GC)×Antihol(Σ,GC)

is to be thought of as averaging the exponentiated action over fields with fixed
boundary value g∂ ∈ Fields∂ , and the value of the path integral is not a number
but an element in the line L∂Σ|g∂ . Thus, considering the path integral with all
possible boundary conditions one has a section of L∂Σ. By the invariance property
of the exponentiated action (Lemma 8.19), this section should be invariant under
holomorphic maps Σ→ GC acting from the left and antiholomorphic maps Σ→ GC

acting from the right. This invariance property of the path integral is a variant of
Ward identity. Lecture 38,

11/30/2022
8.3. Quantum Wess-Zumino-Witten model. We fix as before a compact sim-
ple simply-connected group G and a level k = 1, 2, 3, . . .. It is possible to quan-
tize the classical WZW theory – either by canonical/geometric quantization in the
hamiltonian formalism, or by path integral. Here we will just outline the resulting
(quantum) CFT.

Space of states/space of fields. The space of states of the model associated to
the circle – or equivalently the space of fields V – is

(1108) H =
⊕

λ∈Ik

Hk,λ ⊗H∗k,λ

where the sum is over integrable highest weight modules of ĝ at level k (we denote
the set of corresponding highest weights Ik); the summand is a tensor product of
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the integrable module and the dual one, seen as a module over ĝ ⊕ ̂̄g – two copies
of the affine Lie algebra.

The space Hk can be identified with the space of sections of the line bundle Lk
over the loop group (1096) via the inclusion
(1109)⊕

λ∈Ik Hk,λ ⊗H∗k,λ → Γ(LG,Lk)

φ0 ∈ End(Hk,λ) 7→
(
φ(g+g0g−) : = trMg

λ
(φ0 · ρλ(g0)) · e−kSD(g+g0g−)

)

Here g± are a holomorphic and an antiholomorphic map D → GC, taking value
1 ∈ G at a base point on the boundary circle 1 ∈ ∂D; g0 : D → GC is a constant
map; ρλ(g) is the linear operator onMg

λ representing the action of the group element

g. In (1109) both sides carry a natural action of ĝ ⊕ ̂̄g and these actions are
intertwined by the inclusion.

By Sugawara construction, Hk carries an action of two copies of Virasoro algebra
Vir⊕Vir, with central charges

(1110) c = c̄ =
k dimG

k + 2
.

Quantum currents. Let {T a} be a fixed orthonormal basis in g and let fabc be the

structure constants of g in this basis defined by [T a, T b] =
∑
c f

abcT c. Components
of Noether currents (1089) become in the quantum setting certain local quantum
fields – elements in the space of fields V :

(1111) Ja, J
a ∈ V, a = 1, . . . ,dimG,

which are holomorphic/antiholomorphic,158

(1112) ∂̄Ja = 0, ∂J
a

= 0

(as a reflection of the classical conservation laws (1090)) and satisfy the OPEs

Ja(w)Jb(z) ∼ kδab1
(w − z)2

+

∑
c f

abcJc(z)

w − z + reg.,(1113)

J
a
(w)J

b
(z) ∼ kδab1

(w̄ − z̄)2
+

∑
c f

abcJ
c
(z)

w̄ − z̄ + reg.,(1114)

Ja(w)J
b
(z) ∼ reg.(1115)

The field Ja acts on the space of states by a local field operator Ĵa(z); one can

introduce the corresponding mode operators Ĵan ∈ End(H) as

(1116) Ĵan : =
1

2πi

∮
dz zn Ĵ(z)

where the integral is over a contour going about the origin. Equivalently, we have

(1117) Ĵ(z) =
∑

n∈Z
z−n−1Ĵan .

Repeating the computation of Section 5.2.2, we obtain from the OPE (1113) the
commutation relations between the mode operators

(1118) [Ĵan , Ĵ
b
m] =

∑

c

fabcĴcn+m + knδn,−m1̂

158Under a correlator with any collection of test fields, or as local field operators.
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Note that these are exactly the commutation relations of the affine Lie algebra ĝ.

Comparing with the notations in (1038), we have the identification Ĵan = T an =

T a ⊗ tn. Likewise one introduces the mode operators Ĵan for the antiholomorphic
current Ja which again satisfy the commutation relations of ĝ and commute with

the mode operators Ĵan (due to (1115)). Therefore, the action of ĝ⊕ ̂̄g on the space
of states is realized by the mode operators generated by the currents J , J .

Similarly to the action on the space of states, we have a local action of ĝ on fields
at a point z given by local mode operators Jan ∈ End(Vz) defined by

(1119) JanΦ(z) : =
1

2πi

∮

γz

dw (w − z)nJ(w)Φ(z)

for any field Φ(z) ∈ Vz; γz is a contour going around z. Equivalently, the mode
operators yield the coefficients in the OPE of a field at z with the current:

(1120) Ja(w)Φ(z) ∼
∑

n∈Z
(w − z)−n−1JanΦ(z).

One has a similar local action of ̂̄g on Vz generated by local mode operators of J .
The ĝ-primary multiplet. Fix λ a weight of an integrable ĝ-module Hk,λ. Let ep

be a basis in the irreducible g-module Mg
λ (which is also the depth-zero component

Hk,λ(0) of the corresponding integrable ĝ-module). We have a collection (“multi-

plet”) of ĝ⊕ ̂̄g-primary fields φpp̄λ (primary here means “annihilated by Ja>0, J
a

>0”)
corresponding to coordinates of a vector in

(1121) Mg
λ ⊗ (Mg

λ)∗ = Hk,λ(0)⊗Hk,λ(0)∗ ⊂ V
By (1120) and the primary property, we have

(1122) Ja(w)φpp̄λ (z) ∼
∑
q(T

a
λ )pqφ

qp̄
λ (z)

w − z + reg.

where T aλ is the matrix representing T a ∈ g as an operator on Mg
λ .

Stress-energy tensor. The quantum stress-energy tensor of the model is the field

(1123) T (z) =
1/2

k + h∨

∑

a

: Ja(z)Ja(z) :

it satisfies the standard TT OPE (601) with central charge (1110); the expression
for T is similar (replacing J with J).

Normal ordering in (1123) refers to the following definition: for local fields Φ1,Φ2

their normally ordered product : Φ1(z)Φ2(z) : is defined as the constant term in
the OPE Φ1(w)Φ2(z) or equivalently
(1124)

: Φ1(z)Φ2(z) := lim
w→z

(Φ1(w)Φ2(z)− [Φ1(w)Φ2(z)]sing) =
1

2πi

∮

γz

Φ1(w)Φ2(z),

where [· · · ]sing is the singular part of the OPE and γz is the contour around z.

Remark 8.20. The classical Hilbert stress-energy tensor in Wess-Zumino-Witten
theory, obtained as a variation w.r.t. the metric, is given by the formula (1123)
without the normal ordering and without the h∨ shift in the denominator. In this
regard, the shift by h∨ should be understood as a quantum correction: it must be
incroporated in the quantum picture, otherwise T would not satisfy the OPE of the
standard form (601).



218 PAVEL MNEV

Remark 8.21. Note that substituting the mode expansion of the current (1117) into
the stress-energy tensor (1123) we obtain the Sugawara formula (1058) expressing
Virasoro generators in terms of generators of ĝ:

(1125) L̂n =
1/2

k + h∨

∑

a

: ĴamĴ
a
n−m : .

In this sense, the construction of the stress-energy tensor (1123) is a restatement
of Sugawara construction.

Remark 8.22. The counterpart of the formula (1123) in the abelian case g = R is
the formula (612) for the free boson. Note that in that case there is no h∨ shift.

Fields Ja are Virasoro-primary, of conformal weight (1, 0). Similarly,fields J
a

are Virasoro-primary, of conformal weight (0, 1).

8.3.1. Ward identity for ĝ-symmetry. Knizhnik-Zamolodchikov equations. As a
consequence of Lemma 5.37, one has the Ward identity generated by the holo-
morphic field Ja as in (725): for a collection of points z1, . . . , zn ∈ C, α a g-valued
meromorphic function with poles at z1, . . . , zn allowed , Φ1, . . . ,Φn ∈ V a collection
of fields, one has

(1126) α ◦ 〈Φ1(z1) · · ·Φn(zn)〉 : =

n∑

j=1

〈Φ1(z1) · · · ρ(zj)
J (α) ◦ Φj(zj) · · ·Φn(zn)〉 = 0,

where

(1127) ρ
(z)
J (α) ◦ Φ(z) : =

1

2πi

∮

γz

dw αa(w)Ja(w)Φ(z).

One has a similar Ward identity corresponding to the action on a correlator by an
antimeromorphic function using the second current J .

Remark 8.23. One can think of the Ward identity (1126) as corresponding to the
expected invariance property of the WZW path integral (1107) where:

• Boundary circles are shrunk to punctures zi.
• We consider the infinitesimal action of the Lie algebra of g-valued functions,

holomorphic in the complement of the punctures, instead of the group of
holomorphic maps to the group GC,

Specializing (1126) to the case α(w) = 1
w−z and the collection of fields being the

identity field at z and ĝ-primary fields at z1, . . . , zn, we have the identity
(1128)

〈Ja(z)φp1p̄1

λ1
(z1) · · ·φpnp̄nλn

(zn)〉 =

n∑

j=1

∑

qj

(T aλj )
pj
qj

z − zj
〈φp1p̄1

λ1
(z1) · · ·φqj p̄jλj

(zj) · · ·φpnp̄nλn
(zn)〉

Here we have fixed some weights λ1, . . . , λn of g corresponding to integrable ĝ-
modules.

One can also obtain this identity by realizing that due to (1122), the l.h.s. has
to be a meromorphic function in z with first-order poles at z = z1, . . . , zn, with
residues controlled by the r.h.s. of (1122). Such a function (decaying as z →∞) is
unique and given by the r.h.s. of (1128).
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One can also write the identity (1128) in slightly more pleasing notations:

(1129) 〈Ja(z)φλ1
(z1) · · ·φλn(zn)〉 =

n∑

j=1

T aλj
z − zj

〈φλ1
(z1) · · ·φλn(zn)〉

where

• We denote

(1130) φλ : =
∑

p,p̄

φpp̄λ ep ⊗ ēp̄ ∈ V ⊗ (Mg
λ)∗ ⊗Mg

λ .

where {ep} is the basis in (Mg
λ)∗ dual to the basis {ep} in Mg

λ . (1130) is a
vector-valued field – the “full” ĝ-primary multiplet with weight λ.
• Both sides of (1129) are valued in tensors

(1131)

n⊗

i=1

(Mg
λi

)∗ ⊗Mg
λi
.

• We understand that the operator T aλj is acting in the j-th factor in the

product (1131).

Knizhnik-Zamolodchikov equations.
As a special case n = −1 of the Sugawara construction (1125) one has

(1132) L−1 =
1/2

k + h∨

∑

m∈Z
: JamJ

a
−1−m :

where we think of both sides as operators acting on the space of fields Vz. In
particular, for the ĝ-primary multiplet φλ, we have

(1133) L−1φλ(z) =
1

k + h∨

∑

a

Ja−1J
a
0 φλ(z) =

1

k + h∨
Ja−1T

a
λφλ(z).

Using this, we have the following:

(1134) 0 = 〈φλ1
(z1) · · ·

(
L−1 −

1

k + h∨

∑

a

Ja−1T
a
λj

)
φλj (zj)

︸ ︷︷ ︸
0

· · ·φλn(zn)〉 =

=
∂

∂zj
〈φλ1

(z1) · · ·φλn(zn)〉−
∑

a

1

k + h∨
T aλj

1

2πi

∮

γzj

dw〈J(w)φλ1
(z1) · · ·φλn(zn)〉.

Here we used that L−1Φ(z) = ∂Φ(z). Next we deform the integration contour
γzj going around zj to a collection of contours going around the punctures zi in
negative direction,

(1135) γzj ∼ ti 6=j(−γzi)
Then, using the Ward identity (1129), we obtain the following.

Theorem 8.24 (Knizhnik-Zamolodchikov [24]). Given the weights λ1, . . . , λn of g
corresponding to integrable ĝ-modules, the correlator of primary multiplets satisfies
the following the system of ODEs check the sign

(1136)


 ∂

∂zj
+

1

k + h∨

∑

i6=j

∑

a

T aλiT
a
λj

zi − zj




︸ ︷︷ ︸
∇KZ
j

〈φλ1(z1) · · ·φλn(zn)〉 = 0,
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for any j = 1, . . . , n.

One can interpret the result as follows: one has a flat connection

(1137) ∇KZ : =
∑

j

dzj∇KZj + dz̄j∇
KZ

j

on the the trivial vector bundle over the open configuration space Cn(C) withC or CP1?
fiber (1131); here ∇KZ

j are the differential operators appearing in the equation

(1136). The correlator of ĝ-primary multiplets 〈φλ1
(z1) · · ·φλn(zn)〉 is a section of

this bundle horizontal w.r.t. ∇KZ.
The flat connection (1137) is known as the Knizhnik-Zamolodchikov (KZ) con-

nection.
For future reference we will introduce a notation for the holomorphic part of the

KZ connection

(1138) ∇hol
KZ =

∑

j

dzj∇KZ
j + dz̄j

∂

∂z̄j

as a connection on the vector bundle on Cn(C) with the fiber
⊗n

i=1(Mg
λi

)∗ (i.e.

taking only the first factor in each term in (1131)).

8.3.2. Space of conformal blocks. Chiral WZW model. For z1, . . . , zn distinct points
in CP1, let us denote by g(z1, . . . , zn) the Lie algebra of g-valued meromorphic
functions on CP1 with poles allowed only at z1, . . . , zn.

Fix weights λ1, . . . , λn of g corresponding to integrable modules of ĝ at level k.
Then the Lie algebra g(z1, . . . , zn) acts on the tensor product of integrable modules

(1139) Hk,λ1
⊗ · · · ⊗Hk,λn

by

(1140) α ◦ (ψ1 ⊗ · · · ⊗ ψn) : =

n∑

j=1

ψ1 ⊗ · · · ⊗ ρ(Laurentzj (α)) ◦ ψj ⊗ · · · ⊗ ψn

where Laurentzj (α) =
∑∞
m=−N

∑
a α

a
m(T a ⊗ tmj ) is the Laurent expansion of α at

zj , in powers of tj = z − zj ; this Laurent expansion acts on Hk,λj (this action is
denoted by ρ above) via the tautological embedding

(1141) g⊗ C[t−1
j , tj ]] ↪→ ĝ.

Definition 8.25. For λ1, . . . , λn a collection of weights of g corresponding to inte-
grable modules of ĝ and a collection of distinct points z1, . . . , zn ∈ CP1, the space
of Wess-Zumino-Witten conformal blocks is defined as the complex vector space

(1142) B(z1, . . . , zn;λ1, . . . , λn) : = Homg(z1,...,zn)(Hk,λ1
⊗ · · · ⊗Hk,λn ,C)

– the space of g(z1, . . . , zn)-equivariant maps between two g(z1, . . . , zn)-modules,
Hk,λ1

⊗ · · · ⊗Hk,λn with module structure (1140) and C as the trivial module.

One can think of elements of (1142) as correlators

(1143) 〈ψ1(z1) · · ·ψn(zn)〉chiral

in the chiral WZW model, where the correlators are (possibly multivalued) holo-
morphic functions on the open configuration space Cn(CP1) and only a single copy
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of ĝ (and a single copy of Virasoro) acts on the space of states/space of fields. Thus,
in the chiral theory one has

(1144) V chiral ' Hchiral =
⊕

λ

Hk,λ.

One can say that the chiral WZW is obtained from usual WZW by setting the
antiholomorphic current to zero, J = 0 (and consequently T = 0).

The fact that in (1142) the maps are required to be g(z1, . . . , zn)-equivariant is
exactly the statement of Ward identity (1126) for chiral correlators.

Somewhat surprisingly, the space of conformal blocks is finite-dimensional (with
dimension depending on the level and the weights). In fact, the inclusion

(1145) ι : Mg
λ1
⊗ · · · ⊗Mg

λn
↪→ Hk,λ1

⊗ · · · ⊗Hk,λn

of depth-zero subspaces in each integrable module induces an injective map

(1146) i = ι∗ : B(z1, . . . , zn;λ1, . . . , λn) ↪→ Homg(Mg
λ1
⊗ · · · ⊗Mg

λn
,C).

This map corresponds to considering only correlators of ĝ-primary chiral fields. The
fact that the map i is injective reflects the fact that using the Ward identity one can
reduce a correlator of ĝ-descendants to the correlator of ĝ-primary fields (similarly
to Virasoro case, cf. Example 5.22). From (1146) is is obvious that the space of
conformal blocks must be finite-dimensional.

Example 8.26. Consider the case G = SU(2) and fix the level k = 1, 2, 3, . . .. The
admissible weights corresponding to integrable modules are λ = 0, 1, . . . , k.

• For n = 3, the space of conformal blocks can be either 0- or 1-dimensional:
– One has B(z1, z2, z3;λ1, λ2, λ3) = C if the “fusion rules” (or “quantum

Klebsch-Gordan condition”) hold:

(1147) λ1 + λ2 + λ3 ∈ 2Z, |λ1 − λ2| ≤ λ3 ≤ λ1 + λ2, λ1 + λ2 + λ3 ≤ 2k.

– Otherwise one has B(z1, z2, z3;λ1, λ2, λ3) = 0.
• For a general n one can associate a basis in the space of conformal blocks
B(z1, . . . , zn;λ1, . . . , λn) to any trivalent tree with n leaves decorated with
λ1, . . . , λn. Basis vectors in B corresponds to ways to decorate the internal
edges e of the tree by labels λe ∈ {0, 1, . . . , k} so that fusion rules (1147)
hold at each vertex. The idea behind constructing such a basis is similar
to that of Section 7.5.1 and comes from a pair-of-pants decomposition of
the surface; edges of the graph correspond to circles we cut along and their
decorations correspond to intermediate states we sum over. write better

In the case when CP1 is replaced by a Riemannian surface Σ of genus h,
instead of a trivalent tree one should consider decorations of a connected
trivalent graph with h loops.

• One has a fascinating explicit formula due to Verlinde [37] for the dimension
of the space of n-point conformal blocks for G = SU(2), on a surface Σ of
genus h:

(1148) dimB(z1, . . . , zn;λ1, . . . , λn) =
∑

0≤λ≤k

(S0λ)2−2h−nSλ1λ · · ·Sλnλ,

where

(1149) Sλµ =

√
2

k + 2
sinπ

(λ+ 1)(µ+ 1)

k + 2
.
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The result comes from a “diagonalization” of the dimension of the space of
3-point conformal blocks:

(1150) dimB(z1, z2, z3;λ1, λ2, λ3) =

=
∑

0≤λ≤k

Sλ1λSλ2λSλ3λ

S0λ
=

{
1 if the fusion rules (1147) hold,
0 otherwise

The matrix S (1149) appearing here can be interpreted as representing the
action of the modular S-transformation τ → − 1

τ on the space of conformal

blocks with genus one and no punctures.159

The bundle of conformal blocks. Spaces of conformal blocks (1142) with fixed
weights λ1, . . . , λn and variable points z1, . . . , zn arrange into a complex vector
bundle over the open configuration space of n points,

(1151)

Eλ1···λn ←−−−− B(z1, . . . , zn;λ1, . . . , λn)
y

Cn(CP1)

This vector bundle comes equipped with a flat connection

(1152) ∇E =

n∑

j=1

dzj

(
∂

∂zj
− L(j)

−1

)
+ dz̄j

∂

∂z̄j
,

where L
(j)
−1 is (the dual of) the Sugawara operator acting on Hk,λj . Correlators of

chiral WZW model yield a horizontal multivalued section of E . Restricted to depth
zero in each integrable module (i.e. restricted to chiral correlators of ĝ-primary
fields), the holomorphic part of the connection ∇E becomes the holomorphic part
of the Knizhnik-Zamolodchikov connection ∇hol

KZ (1138).Lecture 39,
12/02/2022

8.3.3. The “holographic” correspondence between 3d Chern-Simons and 2d Wess-
Zumino-Witten theories. Here we quickly mention the remarkable relation between
a 3d topological field theory (Chern-Simons theory) on a 3-manifold M and a 2d
CFT (Wess-Zumino-Witten model) on the boundary surface Σ = ∂M . There is
a lot of literature on the subject, starting with the seminal work of Witten [40].
The correspondence between WZW and Chern-Simons is an example in the class ofedit
so-called “holographic correspondences” between (d+ 1)-dimensional gravity and a
d-dimensional conformal theory on the boundary.

Fix G a compact, simple, simply connected Lie group with Lie algebra g and fix
M an oriented compact 3-manifold with the boundary surface Σ (possibly discon-
nected); we assume that Σ is equipped with complex structure.

Consider Chern-Simons theory on M with space of fields FieldsCS
M = Ω1(M, g) =

Conn(M,G) – the space of connections in the trivial principal G-bundle over M ;
we identify connections with their 1-forms on the base. The action functional is

(1153) SbCS(A) : =
1

2π

∫

M

tr

(
1

2
A ∧ dA+

1

6
A ∧ [A ∧, A]

)
+

1

4π

∫

Σ

trA1,0 ∧A0,1

︸ ︷︷ ︸
b(A|Σ)

.

159This space is (k+ 1)-dimensional, with a natural basis given by characters of modules Hk,λ
with 0 ≤ λ ≤ k, cf. Section 7.3.1.
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The last term here is a boundary term, depending only on the restriction of A to
Σ (and the decomposition of that restriction into a (1, 0)-form and a (0, 1)-form
using the complex structure). The superscript b in the action is to emphasize the
presence of the boundary term b; b is designed to tweak the Noether 1-form induced
by the action to a convenient form: for the variation of the action one has

(1154) δSbCS = − 1

2π

∫

M

tr δA ∧ FA +
1

2π

∫

Σ

trA0,1δA1,0

︸ ︷︷ ︸
α

Here the last term is the Noether 1-form on the phase space ΦCS
Σ = Ω1(Σ, g) and

the fact that it vanishes on the (Lagrangian) fibers of the fibration

(1155) p : Ω1(Σ, gC)→ Ω1,0(Σ, g)

implies that one flat connections A are actual critical points of SbCS on the subspace
of fields with prescribed boundary condition (A|Σ)1,0. In particular, one can study
the path integral for Chern-Simons theory

(1156) ZCS(A1,0) : =

∫

Conn(M,G)3A s.t. (A|Σ)1,0=A1,0

DAeikSbCS(A)

with k = 1, 2, 3, . . . the “level” of Chern-Simons theory.
Consider gauge transformations of the connection

(1157) A 7→ Ag = g−1Ag + g−1dg

with generator g : M → G. If the generator is trivial on the boundary g|Σ = 1, one
has

(1158) SbCS(Ag) = SbCS(A) mod 2πZ,

i.e., Chern-Simons action is invariant modulo 2πZ under gauge transformations
relative to the boundary. The 2πZ-ambiguity is the reason why one wants the
normalization factor k in the exponential in the path integral (1156) to be an
integer – so that the integrand in the path integral is gauge-invariant.

Classical CS-WZW correspondence. If the generator of the gauge transformation
is nontrivial on the boundary, one has

(1159) SbCS(Ag)− SbCS(A) = iSWZW(g|Σ) +
1

2π

∫

Σ

trA1,0g−1∂g.

The first term on the r.h.s. is the Wess-Zumino-Witten action evaluated on the
boundary restriction of the generator of the gauge transformation. Thus, the defect
of gauge-invariance of Chern-Simons theory due to the presence of boundary is given
by WZW action on the boundary.

The full r.h.s. of (1159) is sometimes called the gauged WZW model. It can
also be thought of as the action of the chiral WZW model: we can regard the
field A1,0 as a Lagrange multiplier, integrating it out imposes the vanishing of the
antiholomorphic WZW current J = 0.

Formula (1159) is a manifestation of the Chern-Simons/Wess-Zumino-Witten
correspondence at the classical level. A consequence of it is the following: if M
is a 3-ball, with Σ = ∂M = CP1, any flat connection on M can be written as
A = g−1dg (gauge-equivalent to zero connection) for some g : M → G. In this case
(1159) implies

(1160) SbCS(A) = iSWZW(g).
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Quantum CS-WZW correspondence. The relation (1159) has a very nontrivial
quantum counterpart:

(1161) BWZW
Σ = HCS

Σ

– the space of states that quantum Chern-Simons theory (as an Atiyah’s TQFT)
assigns to a surface Σ is isomorphic to the space of WZW conformal blocks on the
surface.

One has a version of this statement with punctures on Σ. For that one should
consider a Wilson graph observable OΓ in the Chern-Simons theory on M . Let
Γ ⊂M be an embedded oriented graph in M , which is allowed to meet the boundary
surface transversally; we treat these boundary points of Γ as univalent vertices.
Bulk vertices are assumed to be trivalent. Assume that the edges of Γ are decorated
by weights λ of integrable representations of g160 and the trivalent vertices are
decorated by intertwiners – elements of

(
Mg
λ ⊗M

g
λ′ ⊗M

g
λ′′

)g
, where λ, λ′, λ′′ are

the weights decorating the incident edges. At the level of classical field theory, the
observable

(1162) OΓ : FieldsM → (Mg
λ1

)∗ ⊗ · · · ⊗ (Mg
λn

)∗

is a function on the space of connections A, given by the contraction of holonomies of
A along the edges of Γ, taken in corresponding representations, with the intertwiners
at the vertices. In (1162) we are assuming that Γ has n boundary vertices at points
z1, . . . , zn ∈ Σ and the incident edges are decorated by weights λ1, . . . , λn.

zn

Σ

MΓ

λ1 λn

z1

Figure 41. Wilson graph observable.

The path integral of Chern-Simons theory with the Wilson graph observable is

(1163) ZCS
M,Γ =

∫

Conn(G,Σ)3A s.t. (A|Σ)1,0=A1,0

DA eikS
b
CS(A)OΓ(A) ∈

∈
(
C∞(Ω1,0(Σ, g))⊗Hom(Mg

λ1
⊗ · · · ⊗Mg

λn
,C)
)Map(Σ,G)

︸ ︷︷ ︸
HCS,Γ

Σ

where understand that the path integral is a function of the boundary (1, 0)-form
A1,0 (the boundary condition of the path integral) and also takes values in a product
of representations due to the presence of OΓ-observable. The whole expression is
expected to be equivariant under gauge transformations, where only the boundary
value of the gauge generator matters after averaging over the fields in the bulk, since

160We understand that one can switch the orientation of any edge, switching simultaneously
the representation Mg

λ to its dual.
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the integrand is equivariant (and invariant under gauge transformations relative to
the boundary). The expected equivariance property following from (1159) is: double check con-

ventions

(1164) ZCS
M,Γ((A1,0)g) = e−kSWZW(g)+ i

2π

∫
Σ
A1,0g−1∂g

n⊗

j=1

ρ∗λj (g(zj)) ◦ ZCS
M,Γ(A1,0),

where A1,0 ∈ Ω1,0(Σ, g) is the boundary condition and g : Σ → G is the gauge
transformation on the boundary; (A1,0)g = g−1A1,0g + g−1∂g is the chiral gauge
transformation on the boundary; ρ∗λ(g) is the operator representing the group ele-
ment on the module (Mg

λ)∗.
The vector space where the path integral takes values is the space of states

assigned to the boundary Σ by Chern-Simons theory deformed by the observable
Γ. It depends on the positions z1, . . . , zn ∈ Σ of boundary vertices of Γ and the
corresponding weights λ1, . . . , λn. The statement of CS-WZW correspondence gen-
eralizing (1161) in this setting is:

(1165) BWZW
Σ (z1, . . . , zn;λ1, . . . , λn) = HCS,Γ

Σ

– the Chern-Simons space of states on Σ deformed by Γ is the space of WZW n-point
conformal blocks on Σ. We refer the reader to [15] for details on the correspondence
(1165).

Remark 8.27. The space of states HCS
Σ of Chern-Simons theory can also be ob-

tained as as a geometric quantization of the moduli space of flat connections on Σ
(as a symplectic manifold with singularities, with polarization inferred from com-
plex structure), see [2]. The choice of complex structure serves as a parameter of
quantization, and hence one obtains a vector bundle of spaces of states over the
moduli space of complex structures

(1166)

H ←−−−− GeomQ(Mflat(Σ), cx. str. on Σ)
y

MΣ

This vector bundle comes with a natural projectively flat connection – the so-called
Hitchin connection – allowing one to compare quantizations with different choices
of complex structure. This bundle in the case of Σ = CP1 with punctures (and up
to reduction by the Möbius group) is the bundle of conformal blocks (1151) with
Knizhnik-Zamolodchikov connection.

Remark 8.28. The correspondence (1165) allows one to use things known in WZW
to make statements about Chern-Simons theory. For instance, from Atiyah’s axioms
one has that for a closed 3-manifold of the form M = Σ×S1 with Σ a closed surface
of genus h, the Chern-Simons partition function is the dimension of the space of
states on Σ:

(1167) ZCS
Σ×S1 =

Atiyah
dimHCS

Σ =
holography (1161)

dimBWZW
Σ =

=
Verlinde (1148)

(
k + 2

2

)h−1 k∑

λ=0

(
sinπ

λ+ 1

k + 2

)2−2h

Here we assumed G = SU(2); k is the level.
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Likewise, consider the Chern-Simons partition function for the 3-manifold Σ×S1

with observable Γ consisting of n circles of the form {zi} × S1, with z1, . . . , zn an
n-tuple of distinct points on Σ, assuming that the circles are decorated with weights
λ1, . . . , λn. By the same logic, this partition function is again given by the Verlinde
formula,

(1168) ZCS
Σ×S1,Γ = dimBWZW

Σ (z1, . . . , zn;λ1, . . . , λn) = r.h.s. of (1148).

8.3.4. Parallel transport of the KZ connection, R-matrix and representation of the
braid group. Consider the Knizhnik-Zamolodchikov connection ∇hol

KZ on the depth-
zero part of the bundle of n-conformal blocks where all weights are the same λ1 =
· · · = λn = λ.

(1169) E0
λ···λ → Cn(C)

We also restricted the base from CP1 to C for the sake of present discussion. Recall
that the base Cn here is the space of ordered configurations of points. However,
since we chose all weights to be the same, we can quotient the bundle by the
symmetric group permuting the n points, obtaining a vector bundle

(1170) E ′0λ···λ → Cunordered
n (C)

over the unordered configuration space. The connection ∇hol
KZ descends to this

quotient.
Consider a path

(1171) γj(t) =

(
1, . . . , j − 1, j +

1− eit
2

, j +
1 + eit

2
, j + 2, . . . , n

)
, t ∈ [0, π]

in Cn(C) for j ∈ {1, . . . , n − 1} – it interchanges the points zj and zj+1 by a
smooth move, i.e., it starts at P = (1, . . . , j, j + 1, . . . , n) and finishes at Q =
(1, . . . , j + 1, j, . . . , n).

znz1 zi

zi+1

Figure 42. Path in the configuration space.

This path descends to a closed loop γ′j in Cunordered
n (C) starting and ending at the

point {1, . . . , n}. The parallel transport of ∇hol
KZ along this loop is an endomorphism

of the fiber of E ′0λ···λ of the form

(1172) id⊗ · · · ⊗ id︸ ︷︷ ︸
j−1

⊗R⊗ id⊗ · · · ⊗ id︸ ︷︷ ︸
n−j−1

∈ End((Mg
λ)⊗n)

with R a certain element

(1173) R ∈ End
(
((Mg

λ)∗)⊗2
)

– it is an example of the so-called “R-matrix.” (This particular one is the R matrix
given by the holonomy of Knizhnik-Zamolodchikov connection.) It satisfies the
Yang-Baxter equation

(1174) (R⊗ id)(id⊗R)(R⊗ id) = (id⊗R)(R⊗ id)(id⊗R)
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by construction – because both sides give the parallel transport along loops in
Cunordered
n (C) and the two sides correspond to two homotopic loops (recall that ∇hol

KZ

is a flat connection, so the parallel transport does not change under homotopy of
the loop).

The fundamental group of Cunordered(C) is also known as the braid group on n
strands. Its standard presentation is with n− 1 generators c1, . . . , cn−1 subject to
relations

(1175) cjcj+1cj = cj+1cjcj+1, cicj = cjci if |i− j| ≥ 2.

cj+1

cj=

j j + 1 j + 2 j j + 1 j + 2

cj

cj+1

cj

cj+1

Figure 43. Relation in the braid group. One can understand
this picture as being in R × C. The l.h.s. is the graph of the
concatenation of paths γj ∗ γj+1 ∗ γj , and similarly for the r.h.s.

The construction above gives a representation of the braid group on the space

(1176) ((Mg
λ)∗)⊗n,

with the generator cj represented by the element (1172) – by the R-matrix acting in
the j-th and (j+ 1)-st factors of the representation space (1176). The first relation
in (1175) holds due to the Yang-Baxter equation (1174) and the second relation is
obvious by construction (1172).

Remark 8.29. Let γ be a loop in Cunordered
n (CP1) or equivalently a braid. Gluing the

top and the bottom of the braid, we obtain a link L in the 3-manifold M = CP1×S1.
Let Ξ ∈ End(B(1, 2, . . . , n;λ, . . . , λ)) be the parallel transport of the connection
(1152) along γ. Then by the argument analogous to Remark 8.28 one has

(1177) ZCS
CP1×S1,L = trB(1,2,...,n;λ,...,λ)Ξ.

Here we think of L as a special type of Wilson graph (a disjoint union of circles),
with all components of the link decorated by the weight λ. Given a presentation
of γ seen as a braid in terms of generators cj , γ = cj1 · · · cjr , the endomorphism Ξ
can be written as a product of R-matrices,

(1178) Ξ = Rj1 · · ·Rjr ,

where the subscript j means that the R-matrix acts on the j-th and (j + 1)-st
factors. Here a remark is that although the r.h.s. of (1178) is an endomorphism of
(1176), it actually stabilizes the image of the inclusion (1146) and hence determines
an endomorphism of the space of conformal blocks.
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9. A-model

The A-model introduced by Witten in [38] is an example of a 2d topological
conformal field theory which contains a special class Q-closed observables (so-called
evaluation observables) whose correlators yield closed forms on the moduli space
Mg,n. Integrated over Mg,n, these correlators yield interesting integer numbers –
Gromov-Witten invariants – solutions of a certain class of enumerative geometric
problems. Moreover, field-theoretic origin of these numbers (ultimately, Segal’s
axioms) result in an equation on Gromov-Witten invariants – the Witten-Dijkgraaf-
Verlinde-Verlinde or WDVV equation – which allows in some cases to fully compute
the Gromov-Witten invariants, see [26].

Closed forms on the moduli space from TCFT correlators. First, recall Remark
6.18: in any TCFT given a collection of Q-cocycles Φ1, . . . ,Φn, the correlator of
their total descendants

(1179) 〈Φ̃1(z1) · · · Φ̃n(zn)〉
yields a closed form (under de Rham differential) on the moduli spaceM0,n, which
can subsequently be integrated over relevant cycles to yield interesting periods.

More generally, for a surface Σ of general genus g, givenQ-closed fields Φ1, . . . ,Φn ∈
V , one can consider the correlatorexpand? prove

closedness? (1180) 〈G(x1) · · ·G(xp)G(y1) · · ·G(yq)Φ1(z1) · · ·Φn(zn)〉.
It can be understood (via integrating the positions of G,G fields against Beltrami
differentials µ, µ̄, cf. Section 2.8.3) as a closed form of type (p, q) on Mg,n.

9.1. 2d cohomological field theories. Given a TCFT, restricting to correlators
of Q-cocycles (extended to total descent towers as in (1179)), one obtains a simpler
structure called a cohomological field theory.161

The following definition is from Kontsevich-Manin [26, section 6.1].

Definition 9.1. A 2d cohomological field theory is the following data:

• A Z-graded complex vector space W with an inner product 〈, 〉.162

• A collection of linear maps (correlators)

(1181) Ig,n : W⊗n → H•(Mg,n)

with g, n ≥ 0 satisfying

(1182) 2− 2g − n < 0

(“stability” condition). I.e., Ig,n maps an n-tuple of elements of W to a de

Rham cohomology class of the Deligne-Mumford compactificationMg,n of
the moduli spaces of complex structures.

The collection of maps Ig,n is assumed to satisfy the following factorization
axioms.

(i) Let S = {i1, . . . , in1
} ⊂ {1, . . . , n} be a subset with n1 elements and Sc =

{j1, . . . , jn2} its complement, with n2 = n− n1 elements. For g1 + g2 = g, let

(1183) ∂I
g1;SMg,n 'Mg1,n1+1 ×Mg2,n2+1

161Here we are making an implicit assumption that the correlators extend to the Deligne-

Mumford compactification of the moduli spaces Mg,n.
162In the cohomological field theory associated with a TCFT, one should think of W as the

Q-cohomology of the space of fields of the TCFT, WCohFT = HQ(VTCFT).



LECTURE NOTES ON CONFORMAL FIELD THEORY 229

be the Deligne-Mumford compactification stratum of complex codimension 1
(a.k.a. “compactification divisor”), corresponding to nodal curves where one
component has genus g1 and contains punctures from the subset S, plus the
“node” or “neck” puncture and the second component similarly has genus
g2 and contains punctures from Sc, plus the “neck” puncture.163 Then the
factorization axiom is:

(1184) Ig,n(Φ1, . . . ,Φn)
∣∣∣
∂I
g1;SMg,n

=

=
∑

k,l

Ig1,n1+1(Φi1 , . . . ,Φin1
, ek)hklIg2,n2+1(Φj1 , . . . ,Φjn2

, el)

Here Φ1, . . . ,Φn ∈ W any elements. We also introduced a basis {ek} in W
and hkl is the inverse matrix of the inner product in this basis hkl = 〈ek, el〉.

(ii) Consider the second type of Deligne-Mumford compactification stratum, cor-
responding to introducing a neck on a handle,

(1185) ∂IIMg,n 'Mg−1,n+2.

The corresponding factorization axiom is:

(1186) Ig,n(Φ1, . . . ,Φn)
∣∣∣
∂IIMg,n

=
∑

k,l

hklIg−1,n+2(Φ1, . . . ,Φn, ek, el).

elΦi1 Φin1

Φj1 Φjn2ek

el

Φ1

Φ2

Φn

ek

Figure 44. Factorization on nodal curves.

Remark 9.2. Thinking of a cohomological field theory as a reduction of a “parent”
TCFT by passing to Q-cohomology, the factorization axioms above are a conse-
quence of Segal’s sewing axiom for the parent TCFT.

9.2. Gromov-Witten cohomological field theory. Fix a compact Kähler man-
ifold X (the target). We will assume that the Kähler symplectic form ω on X has
integer periods.164

We will be constructing a cohomological field theory in the sense of Definition 9.1
with the space of fields W = H•de Rham(X). This cohomological field theory, called

163See Remark 2.65.
164In fact, the story of this section goes through under much milder assumptions: one just

needs to require X to be a symplectic manifold with compatible almost complex structure, such

that the symplectic form has integer periods. The stronger assumption that X is Kähler comes
from the field theory side, where one wants to start with a sigma-model, cf. Section 9.3 (in the

original approach [38], with N = (2, 2) supersymmetric sigma-model).
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Gromov-Witten theory, arises as a reduction by passing to Q-cohomology from a
certain TCFT – the A-model, which is a sigma-model with target X (coupled to
certain extra fields).

Let Σ be a closed Riemannian surface. For any smooth map φ : Σ → X, we
define the degree of φ as

(1187) d =

∫

Σ

φ∗ω ∈ Z.

Let us denote by Hold(Σ, X) the space of holomorphic maps φ : Σ → X of a fixed
degree d.

The space Hold(Σ, X) is finite-dimensional for any d ∈ Z;165 it vanishes for d < 0
and consists of constant maps for d = 0:

(1188) Hol0(Σ, X) = X.

Example 9.3. Let the surface be Σ = CP1 with homogeneous coordinates (z0 : z1)

and let the target be X = CPN = (CN+1\{0})/C∗ with homogeneous coordinates

(u0 : · · · : uN ). We assume that the target CPN is equipped with the symplectic
structure ω0 = ωFS the Fubini-Study 2-form normalized to have unit integral over
CP1 ⊂ CPN . We describe degree d holomorphic maps CP1 → CPN as degree d
polynomial maps

(1189) C2\{0} → CN+1\{0}
where we subsequently quotient both sides by C∗.

Thus, a degree d holomorphic map CP1 → CPN is given as

(1190) up = Ap(z0, z1), 0 ≤ p ≤ N,
where A0, . . . , Ap are homogeneous polynomials of degree d in z0, z1. Tuples of

polynomials {Ap} and {A′p} determine the same map CP1 → CPn if and only if
A′0 = cA0, . . . , A

′
n = cAn for some c ∈ C∗. Also, a tuple {Ap} determines a map

CP1 → CPN if and only if the polynomials {Ap} do not have a common nontrivial
root (z0, z1) – if they do, then there is a point of C2\{0} which is mapped to

{0} ∈ CN+1, which does not correspond to any point in CPN . Such tuples {Ap}
correspond to so-called Drinfeld’s quasimaps CP1 → CPN ; they are not however
holomorphic maps in the usual sense (in particular they cannot be evaluated at all
points of the source), so we will discard them. In summary, the space of holomorphic
maps of degree d is

(1191) Hold(CP
1,CPN ) =

= {(Ap(z0, z1) =

d∑

j=0

apjz
j
0z
d−j
1 )p=0,...,n | {Ap} do not have common roots} / C∗

= CP(d+1)(N+1)−1\D
where apj ∈ C are the coefficients of the polynomials – thus in order to specify

a holomorphic map CP1 → CPN we need to specify the (N + 1) × (d + 1) array
of coefficients apj , modulo scaling them all by a number c ∈ C∗, which yields the

projective space CP(d+1)(N+1)−1. We denoted the set of “prohibited” configurations

corresponding to quasimaps by D – it is a subvariety in CP(d+1)(N+1)−1 of positive

165For this statement, compactness of X is crucial.
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codimension and can be described as D ' CP1×CPd(N+1)−1 (the first factor in the
r.h.s. gives the point on the source where the common root occurs).

As a further simplicifation, consider the case N = 1. Then degree d holomorphic
maps CP1 → CP1 are described by

(1192) (1 : z) 7→ (1 :
A1(z)

A0(z)
)

where A0 and A1 are two degree d polynomials in the variable z without common
roots. For instance, for d = 1 the holomorphic maps are

(1193) (1 : z) 7→ (1 : a
z − b
z − c )

with parameters a, b, c ∈ C such that a 6= 0 and b 6= c (otherwise it is a quasimap).

9.2.1. Genus zero case. Let Σ = CP1. We have a diagram of maps

(1194)

Cn(Σ)×Hold(Σ, X)
ev−−−−→ X × · · · ×X︸ ︷︷ ︸

n

p

y

Cn(Σ)

Here ev is the evaluation map, evaluating the holomorphic map on an n-tuple of
points in Σ,

(1195) ev : ((z1, . . . , zn), φ) 7→ (φ(z1), . . . , φ(zn)).

The vertical map p in (1194) is the projection onto the first factor.

Remark 9.4. The two objects in the right column in (1194) admit a certain com-
pactification (we will leave it as a black box and denote it by an overline) such that
the maps ev, p extend to it.166

Fix a collection of closed forms on the target, α1, . . . , αn ∈ Ω•cl(X). Then one
can define

(1196) I0,n,d(α1, . . . , αn) =

∫

Hold(Σ,X)

ev∗(π∗1(α1)∧ · · · ∧π∗n(αn)) ∈ Ω•cl(Cn(Σ)),

where πi : X
n → X is the projection onto the i-th factor. The form (1196) has the

following properties:

(i) it is closed and its cohomology class is depends only on the cohomology classes
of forms αi – this fact follows from Stokes’ theorem for fiber integrals and relies
on the existence of compactifications, cf. Remark 9.4.

(ii) The form (1196) extends to a closed form on the Fulton-MacPherson com-
pactified configuration space Cn(Σ).

(iii) The form is also basic w.r.t. Möbius transformations (which act diagonally
in the top right corner in (1194) and in the obvious way on the configuration
space). Therefore, the I0,n,d descends to a closed from on the moduli space

M0,n:

(1197) I0,n,d(α1, . . . , αn) ∈ Ω•cl(M0,n),

166The compactification of the configuration space Cn(Σ) is due to Fulton-MacPherson. The
compactification of Cn(Σ) × Hold(Σ, X) is a special case of Kontsevich’s compactification of the

moduli space of stable maps.
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and by (i) above, the construction descends to de Rham cohomology:

(1198) I0,n,d([α1], . . . , [αn]) ∈ H•(M0,n).

This is the so-called Gromov-Witten cohomology class.

The genus zero part of the Gromov-Witten cohomological field theory is then
defined as

(1199) I0,n([α1], . . . , [αn]) : =
∑

d≥0

qdI0,n,d([α1], . . . , [αn]),

where q is a formal (infinitesimal) generating parameter.

Remark 9.5. The A-model, the “parent” TCFT for the Gromov-Witten hohomo-
logical field theory, contains a class of Q-closed observables: for each closed form α
on the target one has an “evaluation observable” Oα ∈ V , see Section 9.3.3. The
cohomology class (1199) is the cohomology class of the n-point correlator on CP1,

(1200) 〈Õα1
· · · Õαn〉,

where tilde means the full descendant, cf. (1179).
Lecture 40,
12/5/2022

9.2.2. General genus. Let Σ be a closed oriented smooth surface of any genus g and
fix d ≥ 0. One has a fiber bundle over the moduli space of complex structures on
Σ with fiber over J ∈ MΣ the space of holomorphic maps (w.r.t. to the complex
structure J on Σ) to X of degree d:

(1201)

MΣ(X, d) ←−−−− Hold(Σ, X)
y

MΣ

We have the “forgetful” map

(1202) r : MΣ,n →MΣ

from the moduli space with n marked points to the moduli space without marked
points, given by forgetting the marked points. The pullback of the bundle (1201)
along the forgetful mapMΣ,n(X, d) : = r∗MΣ(X, d)→MΣ,n fits into the diagram
similar to (1194):

(1203)

MΣ,n(X, d)
ev−−−−→ Xn

p

y

MΣ,n

where ev evaluates the holomorphic map at the n marked points. Again, there exists
a compactification of the objects in the right column of the diagram – Kontsevich’s
moduli space of stable maps at the top and Deligne-Mumford compactification of
Mg,n at the bottom – such that the maps ev, p extend to the compactifications:167check the footnote

167Very roughly, the idea is that in addition to adjoining Deligne-Mumford compactification

strata (nodal curves) coming from the compactification of the base, in the total space one needs

to blow up the configurations where a quasimap point in the space of holomorphic maps coincides
with a marked point on the surface (i.e. exactly the situations where the evaluation of a map at

a marked point becomes problematic).
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(1204)

Mg,n(X, d)
ev−−−−→ Xn

p

y

Mg,n

Here we put the genus of Σ instead of Σ as index.
Given closed forms α1, . . . , αn ∈ Ω•cl(X), we construct a form

(1205) Ig,n,d(α1, . . . , αn) =

∫

Hold(Σ,X)

ev∗(π∗1(α1) ∧ · · · ∧ π∗n(αn)) ∈ H•(Mg,n)

As in genus zero case, by Stokes’ theorem and due to the existence of compactifica-
tions, this form is closed and its cohomology class depends only on the cohomology
classes of αi; thus the construction descends to cohomology. Also, the form (1205)
extends to the compactification of the moduli space of complex structures Mg,n.

This leads to the following definition at the level of cohomology.

Definition 9.6. Genus g Gromov-Witten classes are defined via the diagram (1204)
as

(1206) Ig,n,d([α1], . . . , [αn]) = p∗ev∗(π∗1 [α1] ∧ · · ·π∗n[αn]) ∈ H•(Mg,n),

where [α1], . . . , [αn] ∈ H•(X) are any de Rham cohomology classes of the target
X.

As a generalization of (1199) to any genus, Gromov-Witten cohomological field
theory is defined by summing the classes (1206) over the degree d, weighed with
qd,

(1207) Ig,n([α1], . . . , [αn]) : =
∑

d≥0

qdIg,n,d([α1], . . . , [αn]).

Theorem 9.7. The cohomology classes Ig,n satisfy the factorization properties
(1184), (1186).

Idea of proof. Fix the numbers g, n, d ≥ 0, fix a splitting of genus g = g1 +g2 and a
splitting of the set of marked points into complementary subsets {1, . . . , n} = StSc.
Consider a compactification stratum ∂g1,SMg,n of the moduli space of complex
structures. The restriction of the bundle (1204) to it is168

(1208) p−1(∂g1,SMg,n) '
⊔

d1+d2=d

Mg1,S∪q(X, d1)×XMg2,Sc∪q∗(X, d2)

Here q, q∗ are the names of the nodal point as point seen as a marked point on either
component of the nodal curve; the fiber product in the r.h.s. is w.r.t. evaluations at
q and at q∗, respectively. The evaluation map on the r.h.s. lands in XS ×∆×XSc

where ∆ ⊂ X ×X is the diagonal.
Fix the cohomology classes [α1], . . . , [αn] ∈ H•(X). Then we have

(1209)

ev∗(

n∏

i=1

π∗i [αi])
∣∣∣
p−1(∂g1,SMg,n)

=
∑

k,l

ev∗S∪q(
∏

i∈S
π∗i [αi]·π∗qek)hklev∗Sc∪q∗(

∏

i∈Sc
π∗i [αi]·π∗q∗el)

168The intuition is that a holomorphic map φ from a nodal curve Σ = Σ′ ∪q Σ′′ to X is given
by a pair of holomorphic maps, φ′ on Σ′ and φ′′ on Σ′′ agreeing at the node q. The degree of φ

splits as the degree of φ′ plus the degree of φ′′.



234 PAVEL MNEV

where ek is a basis in H•(X) and hkl is the inverse matrix of Poincaré pairing; ev
in the l.h.s. is for holomorphic maps out of the whole nodal curve Σ and in the
r.h.s. we have maps ev for the two components of Σ. Here we used the fact that
the cohomology class of X×X Poincaré dual to the homology class of the diagonal
∆ ⊂ X ×X is

∑
k,l h

klek ⊗ el. The appearance of this class in the r.h.s. of (1209)
effectively forces q and q∗ to map to the same point in X.

Pushing forward (i.e. performing the fiber integral) the l.h.s. of (1209) to the
Deligne-Mumford stratum ∂g1,SMg,n and pushing forward the r.h.s. to the product

Mg1,S∪q×Mg2,Sc∪q∗ , and summing over the degree d (and the splittings d = d1+d2)
with weight qd, we obtain the desired factorization property (1184):
(1210)

Ig,n([α1], . . . , [αn])|∂g1,SMg,n
=
∑

k,l

Ig1,n1+1({[αi]}i∈S , ek)hklIg2,n2+1({[αi]}i∈Sc , el)

The factorization property on the second type of Deligne-Mumford strata (1186) is
proved similarly.

�

Definition 9.8. For a collection of cohomology classes [α1], . . . , [αn] ∈ H•(X).
The genus g, n-point Gromov-Witten invariant of degree d is defined as the pairing
of the Gromov-Witten class (1206) with the fundamental class of the moduli space
Mg,n:

(1211) GWg,n,d([α1], . . . , [αn]) : =

∫

Mg,n

Ig,n,d([α1], . . . , [αn]) ∈ C

9.2.3. Enumerative meaning of Gromov-Witten classes. Fix c1, . . . , cn ∈ C•(X,Z)
– a collection of cycles in X and let [δci ] ∈ H•(X) be the Poincaré dual classes to
the homology classes of ci; [δci ] can be represented in de Rham cohomology by a
(cohomologically smeared) Dirac delta-form on ci, hence the notation.

Recall that for c ⊂ X a k-cycle in a smooth N -manifold X, the delta-form δc is
the distributional (N − k)-form characterized by the property

(1212)

∫

X

δc ∧ α =

∫

c

α|c

for any α ∈ Ωk(X). A cohomologically smeared δ-form on c is a smooth form with
the same property which is only required to hold for α a closed k-form.

The Gromov-Witten invariant

(1213) GWg,n,d([δc1 ], . . . , [δcn ]) ∈ Q

is the “virtual” count of holomorphic curves in X of genus g and degree d passing
through the cycles c1, . . . , cn. This number is an integer for zero genus. Gener-
ally, for higher genus, it is a rational number: holomorphic maps φ in this virtual
count should be weighed with 1

|stab(φ)| – the inverse of the number of conformal

automorphisms Σ commuting with φ.169check the footnote
PICTURE

169A related point: compactified moduli spaces Mg,n(X) have orbifold singularities which

lead to having the “virtual” fundamental class defined over Q rather than Z.
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9.2.4. Quantum cohomology ring. Consider de Rham cohomology of X as a Z2-
graded170 vector space H•(X) equipped with an inner product 〈, 〉 given by Poincaré
pairing 〈[α1], [α2]〉 =

∫
X
α1 ∧ α2 and equipped with a bilinear map

(1214) m : H(X)⊗H(X)→ H(X)

characterized by

(1215) 〈m([α1], [α2]), [α3]〉 : =
∑

d≥0

qdGW0,3,d([α1], [α2], [α3])

with q the generating parameter as in (1199). Note that Gromov-Witten classes in
the r.h.s. here are elements of H•(M0,3), i.e., numbers (since M0,3 is a point). If
αi are integer classes then the Gromov-Witten invariant GW0,3,d is an integer.

Definition 9.9. The bilinear operation m : H(X) ⊗ H(X) → H(X) defined by
(1215) is called the “quantum product” on the cohomology H(X). Te quantum
product endows the cohomology H(X) with the structure of a Z2-graded ring called
the “quantum cohomology ring.”

Note that due to (1188) one has

(1216) GW0,3,0([α1], [α2], [α3]) =

∫

X

α1 ∧ α2 ∧ α3.

Thus, the q0 term in m is the usual cup product while q>0 terms comprise a
deformation of the cup product by the data of (genus-zero, three-point) Gromov-
Witten classes.

Implicitly present in the definition above (in the words “ring” and “product”) is
the following.

Lemma 9.10. The operation m defined by (1215) is supercommutative and asso-
ciative.

Supercommutativity is obvious from the definition of Gromov-Witten classes.
Associativity is not obvious and is a consequence of the WDVV equation (1230).

Example 9.11. Let X = CP1. The space of holomorphic maps of degree d is given
by (1191):

(1217) Hold(CP
1,CP1) = CP2d+1\D

– it is a manifold of real dimension 2(2d + 1) = 4d + 2. Thus the Gromov-Witten
invariants

(1218) GW0,3,d(α1, α2, α3) =

∫

Hold(CP1,CP1)

ev∗(π∗1α1 ∧ π∗2α2 ∧ π∗3α3).

Note that for this number to be nonzero it is necessary that the dimension of the
space over which we integrate is equal to the degree of the form we are integrating:

(1219) 4d+ 2 = |α1|+ |α2|+ |α3|,
where |α| is the de Rham degree of the form α.

The cohomology of CP1 is spanned by two classes, [1] ∈ H0(CP1) and [ω] ∈
H2(CP1) – the class of the Fubini-Study 2-form normalized to have unit volume.

170The reason for why we only consider the mod 2 projection of the natural Z-grading on
cohomology is elucidated in Example 9.11 below: Z-grading is not preserved by the deformation

of the cup product we are describing.
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Choosing α1,2,3 in (1218) to be the basis classes in H•(CP1) we observe that there
are only two possibilities (up to permutations) to satisfy (1219):

GW0,3,0([1], [1], [ω]) = 1,(1220)

GW0,3,1([ω], [ω], [ω]) = 1.(1221)

Note that (1220) corresponds to the usual cup product in cohomology ([1]∪[1] = [1],
or [1]∪ [ω] = [ω]). On the other hand, (1221) is the number of degree 1 holomorphic
maps CP1 → CP1 (i.e., Möbius transformations) mapping three marked points in
the source CP1 into three fixed points c1, c2, c3 in the target CP1 in general position
(we then think of ci as zero-cycles with [ω] the Poincaré dual cohomology class for
each ci). There is exactly one such map.

To summarize the result, the quantum product in the cohomology of CP1 is given
by the following multiplication table.

(1222) m([1], [1]) = [1], m([1], [ω]) = [ω], m([ω], [ω]) = q · [1].

Note that due to the last relation the quantum product does not preserve the de
Rham degree. In this particular example, X = CP1, one can prescribe degree −4
to q and then m preserves the Z-degree.

9.2.5. Gromov-Witten potential. Fix a basis e1, . . . , es for H•(X). The function
(1223)

Φ(t1, . . . , ts) : =
∑

n1,...,ns≥0

∑

d≥0

tn1
1 · · · tnss
n1! · · ·ns!

qd GW0,
∑
ni,d(e1, . . . , e1︸ ︷︷ ︸

n1

, . . . , es, . . . , es︸ ︷︷ ︸
ns

)

of the generating parameters t1, . . . , ts is called the Gromov-Witten potential. Here
we understand that the variable ta is even (commuting) if ea ∈ Heven(X) and ta
is odd if ea ∈ Hodd(X). Thus, Φ is a generating function for Gromov-Witten
invariants.

One can think of t1, . . . , tn as coordinates on H•(X), i.e., coordinates of the
vector β =

∑
a taea ∈ H•(X). Then one can also write Φ as

(1224) Φ(t1, . . . , ts) =
∑

n≥0

∑

d≥0

qd

n!
GW0,n,d(β, . . . , β︸ ︷︷ ︸

n

)

One can treat parameters ta as formal (i.e. treat Φ as a formal power series in ta’s),
however the sum over n is actually convergent for β in some open set U in H•(X).

“Big” quantum product. One defines the “big quantum product” as a family
parametrized by β =

∑
a taea ∈ H•(X) of supercommutative associative products

on cohomology

(1225) mβ : H(X)⊗H(X)→ H(X)

defined by

(1226) 〈mβ(α1, α2), α3〉 : =
∑

n≥0

∑

d≥0

qd

n!
GW0,n+3,d(α1, α2, α3, β, . . . , β︸ ︷︷ ︸

n

),

for any α1,2,3 ∈ H(X). Thus, it is the construction of the quantum product (1215)
deformed by the class β ∈ H(X).
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Note that the big quantum product can be written in terms of the third derivative
of the potential Φ:

(1227) 〈mβ(ea, eb), ec〉 =
∂3Φ

∂ta∂tb∂tc
,

for any a, b, c = 1, . . . , s; both sides are understood as functions of β ∈ U ⊂ H(X).
The big quantum product endows an open subset of cohomology U ⊂ H(X)

with the structure of a Frobenius manifold.
The following definition is due to Dubrovin [9, 10].

Definition 9.12. A Frobenius manifold is a manifold Y equipped with the follow-
ing data:

• Affine flat structure on Y and a compatible (flat) Riemannian metric h.
• For each β ∈ Y , the tangent space TβY is equipped with a commutative

associative product

(1228) mβ : TβY ⊗ TβY → TβY

compatible with h, in the sense that h(mβ(x, y), z) = h(x,mβ(y, z)).
• A potential Φ ∈ C∞(Y ) such that

(1229) h(m(u, v), w) = u ◦ v ◦ w ◦ Φ

for any triple of flat vector fields u, v, w on Y .

This definition has a straightforward Z2-graded generalization. To see the big
quantum product as equipping an open set in H(X) with the structure of a Frobe-
nius manifold, one should consider the ring of scalars to be formal power series in
q.

9.2.6. WDVV equation. Let hab be the inverse matrix of the Poincaré pairing in the
basis {ea} in H(X). The following theorem is due to Witten-Dijkgraaf-Verlinde-
Verlinde [41].

Theorem 9.13. Gromov-Witten potential Φ satisfies the following differential equa-
tion: index d is unfortu-

nate here, can be
confused with the
degree

(1230)
∑

c,d

∂3Φ

∂ta∂tb∂tc
hcd

∂3Φ

∂td∂te∂tf
=
∑

c,d

∂3Φ

∂te∂tb∂tc
hcd

∂3Φ

∂td∂ta∂tf

(the r.h.s. is the l.h.s. with indices a, e switched).

The equation (1230) is known as Witten-Dijkgraaf-Verlinde-Verlinde (or WDVV)
equation. It is a consequence of the factorization properties of Gromov-Witten
classes on compactification divisors in Mg,n (Theorem 9.7) and certain relations
between homology classes of these divisors – so-called Keel’s relations, see Section
9.2.10 below.

9.2.7. Example of Gromov-Witten potential: X = CP1. Consider the example X =
CP1. In this case the cohomology H(X) has a basis [1], [ω] (with ω the Fubini-Study
2-form normalized to have unit volume); let us denote the corresponding generating
parameters t0, t1. We already know the numbers GW0,3,d from (1220), (1221).
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Lemma 9.14. Gromov-Witten invariants for n ≥ 4 points are

(1231) GW0,n,d([ω], . . . , [ω]︸ ︷︷ ︸
k

, [1], . . . , [1]︸ ︷︷ ︸
l

) =

{
1 if l = 0, d = 1,
0 otherwise

here k + l = n.

Proof. If l > 0, p∗ev∗ is a class onM0,n coming as a pullback of a class fromM0,k

via the map forgetting the l points mapping to [1]. Being a pullback, it integrates
to zero on M0,n.

For the case l = 0 (and hence k = n), we have a balancing condition (degree of
the form) = (dimension of Hold)+(dimension of M0,n):

(1232) 2n = 2(2d+ 1) + 2(n− 3) ⇔ d = 1.

In the case k = n, d = 1 – the only case when we might get a nontrivial Gromov-
Witten invariant, we are counting the number of Möbius transfromations CP1 →
CP1 that take points (0, 1,∞, z4, . . . , zn) to points (u1, . . . , un) where ui are fixed
distinct points on the target and z4, . . . , zn are arbitrary (integrated over when we
integrate over M0,n in (1213)). There is exactly one such map. �

As a corollary, the Gromov-Witten potential for X = CP1 is

(1233) Φ(t0, t1) =
t20t1

2
+
∑

n≥3

q
tn1
n!

=
t20t1

2
+ q

(
et1 − 1− t1 −

t21
2

)
.

The big quantum product is given on basis elements by

(1234) mβ([1], [1]) = [1], mβ([1], [ω]) = [ω], mβ([ω], [ω]) = qet1 · [1],

where the reference point is β = t0[1] + t1[ω] ∈ H(CP1).

9.2.8. Example of Gromov-Witten potential: X = CP2. We proceed to the case
X = CP2. We refer to original paper [26] for details. One has three basis coho-
mology classes: [1], [ω], [ω2] where again ω is the Fubini-Study 2-form normalized
to have unit period on CP1 ⊂ CP2. Let us denote the corresponding generating
parameters t0, t1, t2.

Theorem 9.15 (Kontsevich-Manin [26]). (i) The Gromov-Witten potential for
X = CP2 has the form

(1235) Φ(t0, t1, t2) =
t20t2

2
+
t0t

2
1

2
− q t

2
2

2
+
∑

d≥1

N (d)

(3d− 1)!
qdt3d−1

2 edt1 ,

where N (d) is the number of rational (i.e. genus zero) holomorphic curves of
degree d in CP2 passing through 3d− 1 points in general position.

(ii) The numbers N (d) satisfy N (1) = 1 and the recurrence relation

(1236) N (d) =
∑

k+l=d

N (k)N (l)k2l

(
l

(
3d− 4
3k − 2

)
− k

(
3d− 4
3k − 1

))

for d ≥ 2. These two properties define the numbers N (d) completely. In
particular, the first numbers are:

(1237)
d 1 2 3 4 5 · · ·
N (d) 1 1 12 620 87304 · · ·
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In particular N (1) = 1 is the number of degree 1 curves (lines) in CP2 through
2 (generic) points, N (2) = 1 is the number of conics through 5 points, N (3) = 12
is the number of rational cubics through 8 points,171 etc.

The term −q t
2
2

2 in (1235) is inconsequential, it cancels a similar term with the
opposite sign present in the sum over d; it is put there so that Φ does not have
terms of degree < 3 in t’s (cf. the stability condition (1182): we only consider GW
invariants in genus zero for n ≥ 3).

Sketch of proof. (i) Consider the Gromov-Witten invariant

(1238) GW0,n,d([1], . . . , [1]︸ ︷︷ ︸
n0

, [ω], . . . , [ω]︸ ︷︷ ︸
n1

. [ω2], . . . , [ω2]︸ ︷︷ ︸
n2

)

for n ≥ 4; we understand that n = n0 + n1 + n2. The number (1238) vanishes
for n0 > 0 by the same argument as in (1231) for l > 0. The balancing condition
between the form degree and the dimension of the space over which it is integrated
is

(1239) 2n1 + 4n2︸ ︷︷ ︸
form degree

= 2(3(d+ 1)− 1)︸ ︷︷ ︸
dimR Hol

+ 2(n− 3)︸ ︷︷ ︸
dimRM0,n

⇔ n2 = 3d− 1

Denote

(1240) N (d) : = GW0,3d−1,d([ω
2], . . . , [ω2]︸ ︷︷ ︸

3d−1

)

If we insert n1 additional copies of the class [ω] (Poincaré dual to the class of a
hyperplane H ⊂ CP2 of complex codimension 1) into the Gromov-Witten invariant
(1240), the number (1240) gets multiplied by dn1 , since a curve of degree d intersects
the hyperplane H d times.

This analysis, together with the straightforward case n = 3 results in the ansatz
(1235).

(ii) The recurrence relation (1236) is an immediate consequence of the WDVV
equation (1230), from substituting the ansatz (1235) into it.

�
Lecture 41,
12/7/2022

9.2.9. Keel’s theorem. For a subset S ⊂ {1, . . . , n}, let us denote byDS ∈ H•(M0,n)
the homology class of Deligne-Mumford compactification stratum ∂0,S (1183) of

the compactified moduli space M0,n. We will denote Sc the complement of S in
{1, . . . , n}.
Theorem 9.16 (Keel [23]). Homology of the moduli space M0,n is generated by
classes DS with S subsets of {1, . . . , n} such that |S|, |Sc| ≥ 2, modulo the following
relations:

• DS = DSc .
• For i, j, k, l distinct,

(1241)
∑

i,j∈S, k,l∈Sc
DS =

∑

i,k∈S, j,l∈Sc
DS =

∑

i,l∈S, j,k∈Sc
DS

• DS ∩DT = 0 unless S ⊂ T or T ⊂ S.

171One can find a cubic through 9 points in general position, but it will (in general position)
have genus one, not zero.
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In the relation (1241) the summation in the left term is over partitions of {1, . . . , n}
into two subsets S, Sc such that S contains i, j and Sc contains Sc, and similarly
for the middle and the right terms.

Example 9.17. Consider the case n = 4. Non-compactified moduli spaceM0,4 =

C4(CP1)/PSL(2,C) can be identified with sphere with three punctures, CP1{0, 1,∞}
(fixing three of the marked points to 0, 1,∞, the modulus is the position of the
fourth point), cf. (209). Deligne-Mumford compactification fills the the three
punctures with the compactification strata ∂0,{1,4}, ∂0,{2,4}, ∂0,{3,4} (configurations
where z4 approaches z1 = 0, z2 = 1 or z3 = ∞), see Figure 15. The compactifiedconventions in Fig.

15 are a bit different. moduli space M0,4 is just a sphere CP1 and all three Deligne-Mumford strata are

in the same homology class – the class of a point in CP1. Thus, one indeed has

(1242) D{1,4} = D{2,4} = D{3,4}

which is the Keel’s relation (1241) for n = 4.

9.2.10. Explanation of WDVV equation from Keel’s theorem and factorization of
GW classes. Consider the moduli spaceM0,n+4 with marked points labeled {A,B,E, F, 1, . . . , n}.
Fix a, b, e, f ∈ {1, . . . , s} a quadruple of basis elements in H(X). Restricting the
Gromov-Witten class to Deligne-Mumford compatification strata of M0,n+4, we
obtain

(1243)
∑

S⊂{1,...,n}

∫

DS∪{A,B}

I0,n+4(ea, eb, ee, ef , β, . . . , β︸ ︷︷ ︸
n

) =
factorization (1210)

=
∑

S⊂{1,...,n}

∑

c,d

∫

M0,S∪{A,B,C}

I0,|S|+3(ea, eb, β, . . . , β︸ ︷︷ ︸
|S|

, ec) h
cd

∫

M0,Sc∪{D,E,F}

I0,|Sc|+3(ee, ef , β, . . . , β︸ ︷︷ ︸
|Sc|

, ed)

=
∑

n1+n2=n

n!

n1!n2!

∑

c,d

GW0,n1+3(ea, eb, β, . . . , β︸ ︷︷ ︸
n1

, ec)h
cdGW0,n2+3(ee, ef , β, . . . , β︸ ︷︷ ︸

n2

, ed)

In this computation we called D,E the nodal point seen as a marked point on
the two components of the curve. Note that by Keel’s relation (1241), expression
(1243) doesn’t change if we switch A↔ E and a↔ e: under this switch, both the
cohomology class in the l.h.s. and the homology class

∑
S DS∪{A,B} it is paired

with are invariant – the former trivially and the latter by Keel’s theorem.
Summing (1243) over n ≥ 0 with weight 1

n! , we obtain the l.h.s. of the WDVV
equation (1230). Switching a ↔ e (which doesn’t change the expression by the
argument above), we obtain the r.h.s. of WDVV.

PICTURE: nodal curve with two groups of points corresponding to (1243).

9.3. A-model. For details on the A-model we refer to Witten’s original papers
[38, 42]. For the viewpoint on the A-model as calculating the Euler class of a vector
bundle over the mapping space whose section is the holomorphicity equation, see
[4].

Fix a Riemannian surface Σ and a target Kähler manifold X. We will assume
that the Kähler symplectic form ω on X has integral periods.

We will use local complex coordinates on the target: holomorphic coordinates
xi and antiholomorphic coordinates xī; we will denote the real coordinates on the
target xI (equivalently, one may think of xI as holomorphic and antiholomorphic
coordinates jointly). The action functional of the A-model is
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(1244) S =

∫

Σ

i

2
gIJ∂φ

I ∂̄φJ + ψ
(1,0)
i Dχi − ψ

(0,1)

ī
Dχī + iRīijj̄ψ

(1,0)
i ψ

(0,1)

ī
χjχj̄

The fields are

• A smooth map φ : Σ→ X.
• An odd (anticommuting) field

(1245) χ ∈ Γ(Σ, φ∗TX).

• Odd (1, 0)- and (0, 1)-form fields

(1246) ψ(1,0) ∈ Ω1,0(Σ, φ∗(T 1,0)∗X), ψ(0,1) ∈ Ω0,1(Σ, φ∗(T 0,1)∗X).

One can assign Z-grading to fields (ghost number):

(1247) gh(φ) = 0, gh(χ) = 1, gh(ψ1,0) = gh(ψ0,1) = −1.

In the action (1244), g = g(φ) is the Riemannian metric on the target X pulled
back to Σ by the map φ;

(1248) Dχi = ∂̄χi + Γijk(φ)∂̄φjχk, Dχī = ∂χī + Γīj̄k̄(φ)∂φj̄χk̄

are the Dolbeault operators on Σ twisted by the pullback of the Levi-Civita con-
nection ∇LC on X; R = R(φ) is the pullback of the Riemann curvature tensor on
X to Σ.

The first term of the action (1244) is the action of a sigma-model with target X
seen as a Riemannian manifold; one can rewrite it as

(1249)

∫

Σ

i

2
gIJ∂φ

I ∂̄φJ =

∫

Σ

igīj∂φ
ī∂̄φj +

1

2

∫

Σ

φ∗ω

︸ ︷︷ ︸
Stop

Here ω = i
2gij̄dx

i ∧ dxj̄ is the Kähler symplectic form on X. The last term in the
r.h.s. of (1249) is “topological”: it depends only on the homotopy class of the map
φ (and the cohomology class of ω). In particular, Stop is a locally constant function
on the space of fields.

The space of fields is equipped with a degree −1 odd derivation Q acting by

(1250)

QφI = χI , QχI = 0,

Qψ
(1,0)
i = −igij̄∂φj̄ + Γkijχ

jψ
(1,0)
k ,

Qψ
(0,1)

ī
= −igīj∂̄φj + Γk̄īj̄χ

j̄ψ
(0,1)

k̄
.

The operator Q squares to zero modulo equations of motion,172

(1251) Q2 ∼
EL

0.

One can in fact massage the model (construct a “first-order” action) to make Q
square to zero on the nose, see Section 9.3.4.

The crucial property of the action (1244) is that it is Q-exact, up to the topo-
logical term:

(1252) S ∼
EL

Stop +Q(R)

172More precisely, here and in (1252), we only need the part of the Euler-Lagrange equa-

tions arising as the variation of S w.r.t. fields ψ(1,0), ψ0,1. These equations read Dχi +

iRīi
jj̄
ψ

(0,1)

ī
χjχj̄ = 0 and Dχī − iRīi

jj̄
ψ

(1,0)
i χjχj̄ = 0.
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where

(1253) R =

∫

Σ

−1

2
ψ

(1,0)
i ∂̄φi +

1

2
ψ

(0,1)

ī
∂φī

Again, the equality (1252) is true only modulo equation of motion but becomes
true everywhere on the space of fields in the version of Section 9.3.4.

Remark 9.18. In the language of TCFT, the operator Q is given by integrating
around a field the conserved current J = J + J, cf. (911), wherenormalizations for

J,G?
(1254) J = gij̄χ

i∂φj̄ , J = gījχ
ī∂̄φj .

The currents J,J are conserved separately: ∂̄J ∼
EL

0, ∂J ∼
EL

0.

The fields G, G – the Q-primitives of the components of the stress-energy tensor
(909) are given by

(1255) G(dz)2 = ψ
(1,0)
i ∂φi, G(dz̄)2 = ψ

(0,1)

ī
∂̄φī.

Remark 9.19. The A-model is described by somewhat lengthy formulae due to the
involvement of target geometry. For a flat target all formulae simplify drastically.
E.g., the action (1244) becomes simply a free (quadratic) action

(1256) S = Stop +

∫

Σ

igij̄∂φ
ī∂̄φj + ψ

(1,0)
i ∂̄χi − ψ(0,1)

ī
∂χī,

with gīj . In fact there is a very interesting class of cases where the target is compact
and admits a flat metric everywhere except for finitely many points – toric manifolds
X. In this case one can study the A-model as a free theory with special observables
corresponding to the preimages of the special points in X where the metric is
singular. This approach is due to Frenkel-Losev [13].

9.3.1. Path integral heuristics: independence on the target geometric data. The
fact (1252) leads to the following expectation about the A-model path integral: the
correlator of any collection of Q-exact observables Φ1, . . . ,Φn should be invariant
under deformations of the geometric data on the target, except for the possible
change of the topological term. More precisely, one can split the correlator into
contributions of different homotopy classes of the map φ : Σ→ X:

(1257) 〈Φ1(z1) · · ·Φn(zn)〉 =

∫

Fields

e−SΦ1(z1) · · ·Φn(zn) =

=
∑

[φ]∈[Σ,X]

e−Stop([φ])

∫

Fields[φ]

e−Q(R)Φ1(z1) · · ·Φn(zn) =

=
∑

[φ]∈[Σ,X]

e−Stop([φ])〈Φ1(z1) · · ·Φn(zn)〉[φ]

where [Σ, X] is the set of homotopy classes of maps. Then the expectation is that
for Q-closed observables Φi and for a path (gt, Jt, ωt) of Kähler data on X with
parameter t, the contribution

(1258) 〈Φ1(z1) · · ·Φn(zn)〉[φ]

of a homotopy class into the correlator (1257) does not depend on t.
The logic is that one differentiates the path integral over a given homotopy class

in (1257) in the parameter t of the family which results in a Q-exact expression
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(modulo Euler-Legrange equations) under the path integral; such expressions are
expected to have zero averages over the space of fields.

9.3.2. A-model as an integral representation for the delta-form on holomorphic
maps. If we rescale the target metric g → 1

ε g with ε a constant, the action be-
comes
(1259)

Sε =
1

2ε

∫

Σ

φ∗ω

︸ ︷︷ ︸
Sεtop

+

∫

Σ

i

ε
gīj∂φ

ī∂̄φj

︸ ︷︷ ︸
(I)

+ψ
(1,0)
i Dχi − ψ(0,1)

ī
Dχī + iεRīijj̄ψ

(1,0)
i ψ

(0,1)

ī
χjχj̄

︸ ︷︷ ︸
S′ε

In the limit ε → 0 the dominating term (I) in the action essentially enforces the
constraint ∂̄φi = 0, i.e., enforces the holomorphicity property of the map φ : Σ→ X.

More precisely, integrating out fields ψ(1,0), ψ(0,1), we obtain a cohomologically
smeared delta-form on the space of smooth maps Σ→ X supported on holomorphic
maps:

(1260)

∫
Dψ(1,0)Dψ(0,1) e−S

′
ε = δεHol(Σ,X) ∈ Ω(Map(Σ, X)).

In this identification, one identifies the field χI as

(1261) χI = dMapφ
I ∈ T ∗φMap(Σ, X)

– a 1-form/covector on the mapping space; dMap stands for de Rham operator on
the mapping space. The parameter ε in (1260) serves a “smearing” parameter, with
ε→ 0 limit being the “true” (non-smeared) distributional delta-form.

Prototype of Mathai-Quillen representative. Given a function f : M → R (as-
sume that it is smooth, with nonvanishing differential on its zero-locus), one has
the following cohomologically smeared delta-form on the hypersurface f−1(0) ⊂M :

(1262) δεf−1(0) = (2πε)−
1
2 e−

f(x)2

2ε df ∈ Ω1
cl(M)

with ε > 0 a smearing parameter. In the limit ε → 0 this form distributionally
converges to true delta-form δf−1(0). The form (1262) can be written as a Berezin
integral over an auxiliary odd (anticommuting) variable ψ:

(1263) δεf−1(0) = (2πε)−
1
2

∫
Dψ e−

f(x)2

2ε +ψdf .

More generally, for f : M → Rk a smooth function with surjective differential on
f−1(0), the zero-locus is a submanifold of codimension k and one has the following
smeared delta-form on it:

(1264) δεf−1(0) = (2πε)−
k
2

∫ k∏

a=1

Dψa e
− ||f(x)||2

2ε +ψadf
a ∈ Ωkcl(M),

where we introduced k auxiliary odd variables ψa.
Mathai-Quillen representative of the Euler class of a vector bundle. Let E →M

be a real oriented vector bundle of rank k over a manifold M . Assume that E is
equipped with fiberwise metric g, a connection ∇ compatible with the metric and
a section s : M → E. Consider the following differential form:

(1265) SMQ =
1

2ε
g(s, s) + i〈ψ,∇s〉 − ε

2
〈ψ, F∇(g−1(ψ))〉 =
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=
1

2
gabs

asb + iψa(dsa +Aabs
b)− ε

4
gbcF acψaψb ∈ Ω•(M,∧•E).

Here we think of odd variables ψa as generators of the exterior algebra of the fiber,
∧•Ex (put another way ψa are coordinates on the parity-reversed dual fiber ΠE∗x).
In the second line we rewrote SMQ explicitly in a local trivialization of E; Aab
are the components of the local connection 1-form, F∇ ∈ Ω2(M,End(E)) is the
curvature 2-form of the connection and F ac ∈ Ω2(M) are its components. The
smearing parameter ε in (1265) corresponds to scaling the fiber metric g 7→ 1

ε g.

Even more epxlicitly, using local coordinates xi on M , (1265) can be written as

(1266) SMQ =
1

2
gabs

asb + iψa(∂is
a +A a

i bs
b)χi − ε

4
gbcF a

ij cψaψbχ
iχj ,

where we denoted χi : = dxi.
Consider the fiber Berezin integral

(1267) Ξ =

(
i√
2πε

)k ∫

fiber of ΠE∗→M
Dψ e−SMQ ∈ Ωk(M).

Here Dψ ∈ Γ(M,∧kE∗) is the fiber Berezinian (fermionic integration measure)
induced from the fiber metric and the orientation of the fiber.

Theorem 9.20 (Mathai-Quillen [30]). • Form Ξ is closed.
• Changing the data s, g,∇, ε changes Ξ by an exact form, Ξ 7→ Ξ + d(· · · ).
• The class of Ξ in de Rham cohomology Hk(M) is the Euler class of the

bundle E →M .173

• If the section s intersects the zero-section of E transversally, then one has

(1268) lim
ε→0

Ξ = δs−1(0)

where the limit is understood in distributional sense.

In particular, the form (1267) is a cohomologically smeared delta-form on the
zero-locus of the section s; Ξ is known as the Mathai-Quillen representative of the
Euler class of the bundle E →M .

Mathai-Quillen construction has a straightforward modification to complex vec-
tor bundles equipped with hermitian fiber metric.

A-model as a Mathai-Quillen representative. Consider the vector bundle E over
the space of smooth maps M = Map(Σ, X) where the fiber over the map φ is

(1269) Eφ = Ω0,1(Σ, φ∗T 1,0X)

The bundle E is equipped with:

• A natural section s = ∂̄ : M → E. Note that the zero-locus of this section
is the submanifold of holomorphic maps inside smooth maps, Hol(Σ, X) ⊂
Map(Σ, X).

173Recall that for rank k oriented real vector bundle E over a closed manifold M , the Euler

class e is the cohomology class of M Poincaré dual to the homology class of the zero-locus of a
generic section s : M → E (“generic” here means “transversal to the zero-section”). More precisely
(to take signs into account), “zero-locus” should be understood as the intersection of the graph
of s with the graph of the zero-section. An equivalent definition: consider the Thom class of E –
the cohomology class of the total space τ ∈ Hk(E) with the property that its pushforward to M

by the bundle projection is the constant function 1. Then the Euler class is the pullback e = s∗τ
of the Thom class by an (arbitrary) section s : M → E (here one doesn’t need a transversality
condition).



LECTURE NOTES ON CONFORMAL FIELD THEORY 245

• A natural fiber hermitian metric given by 〈ξ, ρ〉 =
∫

Σ
g(ξ ∧, ρ̄) for ξ, ρ ∈ Eφ,

with g the metric on the target.
• A connection compatible with fiber metric, induced from Levi-Civita con-

nection on X.

Comparing (1267) and the l.h.s. of (1260), we observe that the integral over
the field ψ in the A-model can be formally identified with the Mathai-Quillen
representative of the Euler class of the vector bundle (1269) over the space of
smooth maps, or, put differently, with the cohomologically smeared delta-form on
the cycle of holomorphic maps inside smooth maps.

9.3.3. Evaluation observables. Consider the evaluation map

(1270) ev : Σ×Map(Σ, X)→ X

Given a differential form α on X

(1271) α = αI1···Ip(x)dxI1 · · · dxIp ∈ Ωp(X),

one defines the corresponding evalutation observable174 Õα(z) at a point z ∈ Σ as

(1272) Õα(z) : = ev∗α|z = αI1···Ip(φ)(χI1 + dφI1) · · · (χIp + dφIp)
∣∣
z

∈ Ω•(Map(Σ, X))⊗ ∧•T ∗z Σ ⊂ C∞(FieldsΣ)⊗ ∧•T ∗z Σ

Thus, Õα is a form on Σ depending on field configuration, or more specifically
on the fields φ, χ = dMapχ and first derivatives of φ at the point z. Evaluation
observable can be split according to the de Rham degree on Σ,

(1273) Õα = O(0)
α +O(1)

α +O(2)
α .

The following is checked by a direct computation.

Lemma 9.21. Evaluation observables satisfy the following properties:

(d+Q)Õα = ÕdXα,(1274)

QO(0)
α = O

(0)
dXα

,(1275)

Õα = eΓO(0)
α ,(1276)

where d, dX are the de Rham differentials on the source and the target, respectively;
Γ is the descent operator (938).

In particular, if α is a closed form on X, then O
(0)
α is Q-closed and Õα is (d+Q)-

closed and is the total descendant of O
(0)
α , cf. (945).

Remark 9.22. It is natural to identify the total de Rham differential on Σ ×
Map(Σ, X) with d + Q, rather than d − Q. Thus, in this section we are using
a different sign convention than in Section 6.6 for the descent equations (928),

(946): (d+Q)Õ = 0, or dO(k−1) = −QO(k).

174Here we think of Õα as an observable in the sense of classical field theory, which can then
be put into the path integral. Tilde in the notation refers to the fact that it is a nonhomogeneous

form on Σ which we will in a moment identify as a total descendant (945), for α closed.
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Gromov-Witten classes as correlators of evaluation observables. Consider for sim-
plicity the case Σ = CP1. Given a collection of closed forms on the target,
α1, . . . , αn ∈ Ωcl(X), the correlator of the corresponding evaluation observables
in the path integral formalism is

(1277) 〈Õα1 · · · Õαn〉 =

∫
DφDχ

∫
Dψ e−SÕα1 · · · Õαn =

=
(1260)

∑

d≥0

e−
d
2ε

∫

Mapd(Σ,X)

δεHol(Σ,X)Õα1
· · · Õαn =

=
∑

d≥0

qd

(∫

Hold(Σ,X)

π∗1ev∗α1 ∧ · · · ∧ π∗nev∗αn + d
(
· · ·
))

∈ Ωcl(Cn(Σ)).

Here in the second line, the prefactor is the exponential of the topological term
in the action, e−Stop , evaluated on maps of degree d (defined by (1187)); we also
identify this prefactor as qd with

(1278) q : = e−
1
2ε .

In the second step in (1277) we consider the limit ε → 0 in the path integral over
Mapd(Σ, X), which localizes the integral to holomorphic maps; however the change
of ε induces a shift of the value of the integral by a closed form on the configuration
space (since we are looking at a fiber integral over Cn(Σ)×Map(Σ, X)→ Cn(Σ) of
a closed form changed by an exact form – such a change induces an exact change
of the fiber integral). The cohomology class of the correlator (1277) is the genus
zero Gromov-Witten class (1199).

9.3.4. A-model in first-order formalism. The first-order action for the A-model is

(1279) Sfirst-order = Stop(φ)+

+

∫

Σ

−p(1,0)
i ∂̄φi+p

(0,1)

ī
∂φī+igij̄p

(1,0)
i p

(0,1)

j̄
+ψ

(1,0)
i Dχi−ψ(0,1)

ī
Dχī+iRīijj̄ψ

(1,0)
i ψ

(0,1)

ī
χjχj̄

with Stop(φ) the topological term as in (1249). Here the fields are as in (1244), plus
two new “momentum” fields (even, of ghost number 0):

(1280) p(0,1) ∈ Ω0,1(Σ, ψ∗(T 1,0)∗X), p(1,0) ∈ Ω1,0(Σ, ψ∗(T 0,1)∗X)

Integrating out the fields, p(1,0), p(0,1), one obtains back the action (1244):

(1281)

∫
Dp(1,0)Dp(0,1)e−S

first-order
= e−S .

The odd derivation Q acts on fields of the first-order theory as
(1282)

QφI = χI , QχI = 0,

Qψ
(1,0)
i = p

(1,0)
i + Γkijχ

jψ
(1,0)
k , Qψ

(0,1)

ī
= p

(0,1)

ī
+ Γk̄īj̄χ

j̄ψ
(0,1)

k̄
,

Qp
(1,0)
i = Γkijχ

jp
(1,0)
k −Rj

ikk̄
ψ

(1,0)
j χkχk̄, Qp

(0,1)

ī
= Γk̄īj̄χ

j̄p
(0,1)

k̄
−Rj̄

īkk̄
ψ

(0,1)

j̄
χkχk̄

The operator Q squares to zero

(1283) Q2 = 0
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and one has
(1284)

Sfirst-order = Stop+Q

(∫

Σ

−ψ(1,0)
i ∂̄φi + ψ

(0,1)

ī
∂φī +

i

2
gij̄ψ

(1,0)
i p

(0,1)

j̄
− i

2
gījψ

(0,1)

ī
p

(1,0)
j

)
.

Both equalities (1283), (1284) hold strictly, not just modulo Euler-Lagrange equa-
tions.

The counterpart of currents (1254) in the first-order formalism is

(1285) J = χip
(1,0)
i , J = χīp

(0,1)

ī
,

whereas formulae (1255) for G,G do not change.
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