1. Conformal maps: generalities

(a) Let $(M, g),\left(M^{\prime}, g^{\prime}\right),\left(M^{\prime \prime}, g^{\prime \prime}\right)$ be three (pseudo-)Riemannian manifolds and let $\phi_{1}:(M, g) \rightarrow\left(M^{\prime}, g^{\prime}\right), \phi_{2}:\left(M^{\prime}, g^{\prime}\right) \rightarrow\left(M^{\prime \prime}, g^{\prime \prime}\right)$ be two conformal maps with $\Omega^{\prime}, \Omega^{\prime \prime}$ the respective conformal factors. Show that the composition $\phi_{2} \circ$ $\phi_{1}:(M, g) \rightarrow\left(M^{\prime \prime}, g^{\prime \prime}\right)$ is a conformal map. Find its conformal factor.
(b) Let $\phi:(M, g) \rightarrow\left(M^{\prime}, g^{\prime}\right)$ be a conformal diffeomorphism with conformal factor. Show that the inverse $\phi^{-1}:\left(M^{\prime}, g^{\prime}\right) \rightarrow(M, g)$ is also a conformal diffeomorphism, find its conformal factor.
(c) Let $\phi:(M, g) \rightarrow(M, g)$ be a conformal map with conformal factor Ω. Show that the same map ϕ regarded as a map $\phi:(M, \Lambda \cdot g) \rightarrow(M, \Lambda \cdot g)$ is also a conformal map; find its conformal factor. Here Λ is a positive function on M.

2. Examples of conformal maps

(a) Stereographic projection. Let $S^{n}=\left\{\left(x^{0}, \ldots, x^{n}\right) \mid \sum_{i=0}^{n}\left(x^{i}\right)^{2}=1\right\}$ be the unit sphere in \mathbb{R}^{n+1} with $N=(1,0, \ldots, 0)$ the North pole. Consider the map

$$
\begin{array}{cccc}
\phi: & S^{n} \backslash N & \rightarrow & \mathbb{R}^{n} \\
& \left(x^{0}, \ldots, x^{n}\right) & \mapsto & \frac{1}{1-x^{0}}\left(x^{1}, \ldots, x^{n}\right) \tag{1}
\end{array}
$$

(the stereographic projection). Consider S^{n} with standard round metric $g_{S^{1}}=$ $\sum_{i=0}^{n}\left(d x^{i}\right)^{2}$ (the pullback of the standard metric on \mathbb{R}^{n+1} along the inclusion $S^{n} \hookrightarrow \mathbb{R}^{n+1}$) and \mathbb{R}^{n} (the codomain of (1)) with standard metric $g_{\mathbb{R}^{n}}=$ $\sum_{i=1}^{n}\left(x^{i}\right)^{2}$.
(i) Show that ϕ is a conformal map.
(ii) Find the corresponding conformal factor Ω.
(b) Inversion. Show that the inversion map

$$
\begin{array}{cccc}
\phi: & \mathbb{R}^{n} \backslash\{0\} & \rightarrow & \mathbb{R}^{n} \backslash\{0\} \\
& \vec{x} & \mapsto \frac{\vec{x}}{\|\vec{x}\|^{2}}
\end{array}
$$

is an involutive orientation-reversing conformal diffeomorphism. Find the conformal factor Ω.
(c) Holomorphic and antiholomorphic maps. Let $\phi: D \rightarrow D^{\prime}$ be a smooth map between two open sets in $\mathbb{R}^{2}=\mathbb{C}$ (equipped with standard metric $g=$ $d x^{2}+d y^{2}=d z d \bar{z}$ on the source and $g=u^{2}+d v^{2}=d w d \bar{w}$, where $z=x+i y$, $w=u+i v$ is the complex coordinate on the source and target copy of \mathbb{C}).
(i) Show that ϕ is a conformal map if and only if ϕ is either a holomorphic or an antiholomorphic map (do it in real and in complex coordinates, as two independent computations).
(ii) Show that the corresponding conformal factor Ω is $\left|\frac{\partial w}{\partial z}\right|^{2}$ is ϕ is holomorphic and $\left|\frac{\partial w}{\partial \bar{z}}\right|^{2}$ is ϕ is anti-holomorphic.
(d) Möbius transformations. Show that the group

$$
P S L_{2}(\mathbb{C})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{C}, a d-b c=1\right\} / \mathbb{Z}_{2}
$$

(where the quotient identifies a matrix with its negative) acts on the Riemann sphere $\overline{\mathbb{C}}=\mathbb{C} P^{1}$ by "fractional-linear transformations" (or "Möbius transformations")

$$
\left(\begin{array}{cc}
a & b \tag{2}\\
c & d
\end{array}\right): \quad z \mapsto \frac{a z+b}{c z+d}
$$

(i) Check that the Möbius transformations (2) are conformal maps. Find the corresponding conformal factor Ω.
(ii) Check that the map $P S L_{2}(\mathbb{C}) \rightarrow \operatorname{Conf}\left(\mathbb{C} P^{1}\right)$ is a group homomorphism: product in the group is mapped to composition of Möbius transformations.

