CFT EXERCISES 3, 9/12/2022

1. Witt algebra

Show that the generators $l_{n}=-z^{n+1} \frac{\partial}{\partial z}$ of the Lie algebra W of holomorphic vector fields on \mathbb{C}^{*} (or equivalently meromorphic vector fields on $\mathbb{C P}^{1}$ with poles at 0 and ∞ allowed) satisfy the commutation relation

$$
\left[l_{n}, l_{m}\right]=(n-m) l_{n+m}
$$

Show that written in the complex coordinate $w=1 / z$ on $\mathbb{C P}^{1}\{0\}, l_{n}$ takes the form $w^{-n+1} \frac{\partial}{\partial w}$.

Find the pushforward of the vector field l_{n} under the inversion map $\mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$, $z \mapsto \frac{1}{z}$.

Consider the map $\psi: W \rightarrow \Gamma\left(S^{1},\left.T \mathbb{C}\right|_{S^{1}}\right)$ given by taking the real part of a meromorphic vector field and restricting it to S^{1}. Show that the preimage by ψ of vector fields on S^{1} which are tangent to S^{1} is given by elements of W of the form $\sum_{n} c_{n} l_{n}$ with $c_{-n}=-\bar{c}_{n}$.

2. CONFORMAL SYMMETRY OF $\mathbb{R}^{1,1}$

Consider Minkowski plane $\mathbb{R}^{1,1}$ equipped with the metric $g=(d x)^{2}-(d y)^{2}$. Introduce the "light-cone coordinates" $x^{ \pm}$on $\mathbb{R}^{1,1}$ given by

$$
x^{+}=x+y, \quad x^{-}=x-y
$$

Express the metric g in the light-cone coordinates.
Show that a vector field v on $\mathbb{R}^{1,1}$ is conformal iff it has the form

$$
v=v^{+}\left(x^{+}\right) \partial_{+}+v^{-}\left(x^{-}\right) \partial_{-}
$$

where $v^{ \pm}$are two smooth functions of a single real variable; $\partial_{ \pm}:=\frac{\partial}{\partial x^{ \pm}}=\frac{1}{2}\left(\partial_{x} \pm\right.$ $\left.\partial_{y}\right)$. Compute the infinitesimal conformal factor of v.

Show that a diffeomorphism $\phi: \mathbb{R}^{1,1} \rightarrow \mathbb{R}^{1,1}$ is conformal if and only if it is of the form

$$
\left(x^{+}, x^{-}\right) \mapsto\left(\phi^{+}\left(x^{+}\right), \phi^{-}\left(x^{-}\right)\right) \quad \text { or }\left(x^{+}, x^{-}\right) \mapsto\left(\phi^{+}\left(x^{-}\right), \phi^{-}\left(x^{+}\right)\right)
$$

when expressed in light-cone coordinates (on both source and target copies of $\mathbb{R}^{1,1}$). Compute the conformal factor in both cases.

3. LIOUVILLE THEOREM, STEP-BY-STEP

(i) Write the equation $L_{\epsilon} g=\omega g$ of a conformal vector field $v=v^{i} \partial_{i}$ on $\mathbb{R}^{p, q}$ (equipped with the standard metric $g=\eta_{i j} d x^{i} d x^{j}$, with $\eta_{i j}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p}, \underbrace{-1, \ldots,-1}_{q})$) in components: ${ }^{1}$

$$
\begin{equation*}
\partial_{i} v_{j}+\partial_{j} v_{i}=\omega \eta_{i j} \tag{1}
\end{equation*}
$$

[^0](ii) Prove:
\[

$$
\begin{align*}
\partial_{i} v^{i} & =\frac{n}{2} \omega \tag{2}\\
\Delta v_{i} & =\left(1-\frac{n}{2}\right) \partial_{i} \omega
\end{align*}
$$
\]

where $n=p+q$ the total dimension and $\Delta=\partial_{i} \partial^{i}=\eta^{i j} \partial_{i} \partial_{j}$ the Laplacian.
(iii) From (3) obtain:

$$
\begin{align*}
\frac{1}{2} \eta_{i j} \Delta \omega & =\left(1-\frac{n}{2}\right) \partial_{i} \partial_{j} \omega \tag{4}\\
(n-1) \Delta \omega & =0 \tag{5}
\end{align*}
$$

(iv) From (4), (5) show that, for $n \notin\{1,2\}$,

$$
\begin{equation*}
\partial_{i} \partial_{j} \omega=0 \tag{6}
\end{equation*}
$$

I.e., ω is at most linear in coordinates x^{i}.
(v) Taking derivatives of (1), show that

$$
\begin{equation*}
\partial_{i} \partial_{j} v_{k}=\frac{1}{2}\left(\partial_{i} \omega \eta_{j k}+\partial_{j} \omega \eta_{i k}-\partial_{k} \omega \eta_{i j}\right) \tag{7}
\end{equation*}
$$

(vi) From (6), (7) deduce that, for $n \notin\{1,2\}$, we have

$$
\begin{equation*}
\partial_{i} \partial_{j} \partial_{k} v_{l}=0 \tag{8}
\end{equation*}
$$

I.e., v is at most quadratic in coordinates x^{i}.
(vii) Assume the most general quadratic ansatz for v and linear ansatz for ω,

$$
\begin{align*}
v_{i}(x) & =a_{i}+b_{i j} x^{j}+c_{i j k} x^{j} x^{k} \tag{9}\\
\omega(x) & =2 \mu+4 \nu_{i} x^{i} \tag{10}
\end{align*}
$$

with $a_{i}, b_{i j}, c_{i j k}, \mu, \nu_{i}$ some coefficients, and see what constraints does one have on these coefficients from (1).

[^0]: ${ }^{1}$ For simplicity, do this exercise first for the positive signature case, $p=n, q=0$. In particular, then one can forget about the distinction between upper and lower indices.

