CFT EXERCISES 6, 10/3/2022

These are the outstanding problems from the previous sheets, plus some new ones.

1. 2D SIGMA MODEL WITH TARGET A LiE GROUP

Let G be a matrix Lie group (e.g. you can take $G=G L_{n}(\mathbb{R})$) with \mathfrak{g} the corresponding Lie algebra and (,) an ad-invariant nondegenerate pairing on \mathfrak{g}. Let $\mu=g^{-1} d g \in \Omega^{1}(G, \mathfrak{g})$ be the Maurer-Cartan 1-form on G (the unique \mathfrak{g}-valued left-invariant 1-form on G, restricting to the tautological map $\left.\mu\right|_{1}: T_{1} G \rightarrow \mathfrak{g}$ at $1 \in G)$. Consider the 2 d sigma model with target G - the classical field theory on a Riemann surface Σ with the space of fields

$$
\operatorname{Fields}_{\Sigma}=\operatorname{Map}(\Sigma, G)
$$

and action functional

$$
S(g)=\int_{\Sigma} \underbrace{\frac{1}{2}\left(g^{*} \mu \hat{,} * g^{*} \mu\right)}_{L}
$$

for $g: \Sigma \rightarrow G$.
(i) Show that it is a conformal (Weyl-invariant) theory.
(ii) By expressing the Lagrangian density L in local complex coordinates, show that one has

$$
\begin{equation*}
L=i\left(g^{-1} \partial g \wedge g^{-1} \bar{\partial} g\right) \tag{1}
\end{equation*}
$$

where $\partial=d z \frac{\partial}{\partial z}, \bar{\partial}=d \bar{z} \frac{\partial}{\partial \bar{z}}$ are the holomorphic/antiholomorphic Dolbeault operators, so that in (1) one has a pairing of a form $g^{-1} \partial g \in \Omega^{1,0}(\Sigma, \mathfrak{g})$ and a form $g^{-1} \bar{\partial} g \in \Omega^{0,1}(\Sigma, \mathfrak{g})$ to a form in $\Omega^{2}(\Sigma)$.
(iii) Find the Euler-Lagrange equations.

2. LEGENDRE TRANSFORM

Given a convex smooth function f on a vector space V, its Legendre transform is the function $g \in C^{\infty}\left(V^{*}\right)$ defined as follows:

$$
g(p)=\langle p, v\rangle-f(v)
$$

for any $p \in V^{*}$, where $v=v(p) \in V$ is found from

$$
p=d f(v)
$$

(a) Prove that $f \in C^{\infty}(V)$ and $g \in C^{\infty}\left(V^{*}\right)$ are linked by the Legendre transform if and only if one has

$$
\operatorname{graph}(d f)=\operatorname{graph}(d g) \subset V \times V^{*}
$$

- i.e., f and g are the generating functions for the same exact Lagrangian submanifold in $V \times V^{*}$, seen respectively as either $T^{*} V$ or as $T^{*} V^{*}$.
(b) Prove that the Legendre transform is involutive: if g is the Legendre transform of f, then f is the Legendre transform of g.
(c) Compute the Legendre transform of the general quadratic polynomial

$$
f(v)=a v^{2}+b v+c
$$

with $a, b, c \in \mathbb{R}, a \neq 0$.

3. Example of a Noether current for a mixed source-target SYMMETRY

Consider the free massless scalar field on Euclidean \mathbb{R}^{n}, defined by the action

$$
S[\phi]=\int \frac{1}{2} d \phi \wedge * d \phi=\int \frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi d^{n} x
$$

And consider the mixed source/target transformation - dilation on \mathbb{R}^{n} accompanied by a rescaling of the field value

$$
x \mapsto x^{\prime}=\beta x \quad, \quad \phi(x) \mapsto \phi^{\prime}\left(x^{\prime}\right)=\beta^{-\frac{n}{2}+1} \phi(x)
$$

with $\beta>0$ the scaling parameter. Or, equivalently,

$$
\phi(x) \mapsto \phi^{\prime}(x)=\beta^{-\frac{n}{2}+1} \phi\left(\beta^{-1} x\right)
$$

Show that this is a symmetry (maps solutions of the EL equation to solutions). Show that the corresponding infinitesimal symmetry changes the Lagrangian density by a term of form $d \Lambda-$ and find Λ. Finally, find the Noether current corresponding to the symmetry.

4. Noether current for source symmetries in abelian Chern-Simons THEORY

Consider abelian Chern-Simons on an oriented 3 -manifold M, with fields $A \in$ $\Omega^{1}(M)$ and action

$$
S=\int_{M} \frac{1}{2} A \wedge d A
$$

(a) Show that any vector field r on M is a source symmetry.
(b) Find the conserved current $J_{r} \in \Omega_{\mathrm{loc}}^{2,0}\left(M \times\right.$ Fields $\left._{M}\right)$ associated with r by Noether theorem.
(c) Compare J_{r} with Show that $J_{r}^{\prime}=\iota_{\left\langle T_{\mathrm{Hilb}}, r\right\rangle} d \mathrm{vol}_{g}$ - the conserved current arising from contracting the source symmetry with the Hilbert stress-energy tensor vanishes.
(d) Are the currents J_{r} and J_{r}^{\prime} equivalent? I.e., do they satisfy

$$
J_{r}-J_{r}^{\prime} \underset{E L}{\sim} d(\cdots)
$$

5. Standard presentation of $P S L_{2}(\mathbb{Z})$

Show that the group of Möbius transformations with integer coefficients $P S L_{2}(\mathbb{Z})$ admits the following presentation:

$$
\begin{equation*}
P S L_{2}(\mathbb{Z})=\left\langle S, T \mid S^{2}=1,(S T)^{3}=1\right\rangle \tag{2}
\end{equation*}
$$

where the generators are:

$$
T: z \mapsto z+1, \quad S: z \mapsto-\frac{1}{z}
$$

6. Partition function of the harmonic oscillator

Find explicitly the partition function of the (quantum) harmonic oscillator ${ }^{1}$ with frequency ω on a circle of length t,

$$
Z(t):=\operatorname{tr}_{\mathcal{H}} e^{-\frac{i}{\hbar} \widehat{H} t}
$$

What does this expression look like after Wick rotation, i.e., setting $t=-i T$, with $T>0$ the "Euclidean time."

[^0]
[^0]: ${ }^{1}$ Hint: we know the eigenvalue spectrum of the Hamiltonian explicitly.

