1. Using Ward identity to compute correlators of descendants

Recall that the general Ward identity has the form

$$
\begin{align*}
& \delta_{\epsilon(z) \frac{\partial}{\partial z}}\left\langle\Phi_{1}\left(z_{1}, \bar{z}_{1}\right) \cdots \Phi_{n}\left(z_{n}, \bar{z}_{n}\right)\right\rangle:= \tag{1}\\
&=\sum_{k=1}^{n}\left\langle\Phi_{1}\left(z_{1}, \bar{z}_{1}\right) \cdots\left(\delta_{\epsilon(z) \frac{\partial}{\partial z}} \Phi_{k}\left(z_{k}, \bar{z}_{k}\right)\right) \cdots \Phi_{n}\left(z_{n}, \bar{z}_{n}\right)\right\rangle \quad=0
\end{align*}
$$

for $\epsilon(z) \frac{\partial}{\partial z}$ any meromorphic vector field with poles allowed at z_{1}, \ldots, z_{n}. Fields $\Phi_{1}, \ldots, \Phi_{n}$ in (1) are not necessarily primary. Here the action of the vector field on a field Φ_{k} is defined via

$$
\delta_{\epsilon(z) \frac{\partial}{\partial z}} \Phi_{k}\left(z_{k}, \bar{z}_{k}\right):=-\frac{1}{2 \pi i} \oint_{C_{z_{k}}} d z \epsilon(z) T(z) \Phi_{k}\left(z_{k}, \bar{z}_{k}\right)
$$

where the integral is over a closed simple contour $C_{z_{k}}$ going around z_{k} once in counterclockwise direction.
(a) Specializing (1) to the case when Φ_{k} is primary, of conformal dimension $\left(h_{k}, \bar{h}_{k}\right)$, for each $1 \leq k \leq n$, and the meromorphic vector field is $\epsilon(z) \frac{\partial}{\partial z}=-\left(z-z_{1}\right)^{-p+1} \frac{\partial}{\partial z}$ (with $p \geq 1$), obtain the relation

$$
\begin{equation*}
\left\langle\left(L_{-p} \Phi_{1}\right)\left(z_{1}, \bar{z}_{1}\right) \Phi_{2}\left(z_{2}, \bar{z}_{2}\right) \cdots \Phi_{n}\left(z_{n}, \bar{z}_{n}\right)\right\rangle=\mathcal{D}\left\langle\Phi_{1}\left(z_{1}, \bar{z}_{1}\right) \cdots \Phi_{n}\left(z_{n}, \bar{z}_{n}\right)\right\rangle \tag{2}
\end{equation*}
$$

with \mathcal{D} certain differential operator on functions of z_{2}, \ldots, z_{n}. Find \mathcal{D} explicitly.
(b) Specialize (2) further, to the case $\Phi_{1}=\mathbf{1}$ the identity field and $p=2$. Obtain a relation of the form

$$
\left\langle T\left(z_{1}\right) \Phi_{2}\left(z_{2}, \bar{z}_{2}\right) \cdots \Phi_{n}\left(z_{n}, \bar{z}_{n}\right)\right\rangle=\mathcal{D}\left\langle\Phi_{1}\left(z_{1}, \bar{z}_{1}\right) \cdots \Phi_{n}\left(z_{n}, \bar{z}_{n}\right)\right\rangle
$$

Find the differential operator \mathcal{D} explicitly.

2. Mutual locality of formal distributions

Consider the following two formal powers series ("formal distributions")

$$
\alpha=\frac{1}{z}+\frac{w}{z^{2}}+\frac{w^{2}}{z^{3}}+\cdots, \quad \beta=-\frac{1}{w}-\frac{z}{w^{2}}-\frac{z^{2}}{w^{3}}-\cdots \quad \in \mathbb{C}\left[\left[z, z^{-1}, w, w^{-1}\right]\right]
$$

(a) Show that α and β are "mutually local":

$$
(z-w) \alpha=(z-w) \beta
$$

(b) Show that α arises as Taylor expansion of $\frac{1}{z-w}$ in variable w (with fixed nonzero z), whereas β arises as Taylor expansion of the same function $\frac{1}{z-w}$ but in variable z.

3. A matrix element in free boson theory

For the free boson, prove that one has the matrix element

$$
\begin{align*}
\left\langle\hat{a}_{-1} \mid \mathrm{vac}\right\rangle, & \left.\mathcal{R}(i \partial \hat{\phi}(z) i \partial \hat{\phi}(w)) \hat{a}_{-1}|\mathrm{vac}\rangle\right\rangle= \tag{3}\\
= & \langle\operatorname{vac}| \hat{a}_{1} \mathcal{R}(i \partial \hat{\phi}(z) i \partial \hat{\phi}(w)) \hat{a}_{-1}|\mathrm{vac}\rangle \quad=\frac{1}{(z-w)^{2}}+\frac{1}{z^{2}}+\frac{1}{w^{2}}
\end{align*}
$$

Hint: show that $\lim _{x \rightarrow \infty} x^{2}\langle\operatorname{vac}| i \partial \hat{\phi}(x)=\langle\operatorname{vac}| \hat{a}_{1}$ (using the expansion of $i \partial \phi(x)$ in terms of creation/annihilation operators). Use this together with $\lim _{y \rightarrow 0} i \partial \hat{\phi}(y)|\mathrm{vac}\rangle=$ $\hat{a}_{-1}|\mathrm{vac}\rangle$ to reduce the computation (3) to the following:
$\langle\operatorname{vac}| \hat{a}_{1} \mathcal{R}(i \partial \hat{\phi}(z) i \partial \hat{\phi}(w)) \hat{a}_{-1}|\operatorname{vac}\rangle=\lim _{x \rightarrow \infty, y \rightarrow 0} x^{2}\langle\operatorname{vac}| \mathcal{R} i \partial \hat{\phi}(x) i \partial \hat{\phi}(z) i \partial \hat{\phi}(w) i \partial \hat{\phi}(y)|\operatorname{vac}\rangle$
Here on the r.h.s. we have the 4-point correlation function in the free boson theory that we already know.

Calculate the Laurent expansion ζ of the r.h.s. of (3) in $z($ at $z=0)$ and the expansion θ of (3) in w (at $w=0$). Show that the two resulting formal distributions are mutually local, i.e., satisfy

$$
(z-w)^{2} \zeta=(z-w)^{2} \theta
$$

For which values of z, w does the formal series ζ actually converge? Also, when does one have absolute convergence and when it is just a conditional convergence? What about θ - when does it converge?

4. Local Virasoro action on fields in the free boson theory

Find

$$
L_{-p} \partial \phi(w)
$$

for $p \geq 1$ explicitly (as certain normally ordered differential polynomials in ϕ at $w)$. Hint: compute the OPE $T(z) \partial \phi(w)$ explicitly using Wick's lemma (including the regular terms and expanding fields at z in terms of fields at w) - then one can read off $L_{-p} \partial \phi$ as the coefficient of $(z-w)^{p-2}$ in this OPE. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ The answer is:

 $$
 L_{-p} \partial \phi(w)=\frac{1}{p!} \partial^{p+1} \phi(w)-\frac{1}{2} \sum_{k+l=p-2 ; k, l \geq 0} \frac{1}{k!l!}: \partial^{k+1} \phi(w) \partial^{l+1} \phi(w) \partial \phi(w):
 $$

