1. LIOUVILLE THEOREM, STEP-BY-STEP

(i) Write the equation $L_{\epsilon} g=\omega g$ of a conformal vector field $\epsilon=\epsilon^{i} \partial_{j}$ on $\mathbb{R}^{p, q}$ (equipped with the standard metric $g=\eta_{i j} d x^{i} d x^{j}$, with $\eta_{i j}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p}, \underbrace{-1, \ldots,-1}_{q})$) in components: ${ }^{1}$

$$
\begin{equation*}
\partial_{i} \epsilon_{j}+\partial_{j} \epsilon_{i}=\omega \eta_{i j} \tag{1}
\end{equation*}
$$

(ii) Prove:

$$
\begin{align*}
\partial_{i} \epsilon^{i} & =\frac{n}{2} \omega \tag{2}\\
\Delta \epsilon_{i} & =\left(1-\frac{n}{2}\right) \partial_{i} \omega \tag{3}
\end{align*}
$$

where $n=p+q$ the total dimension and $\Delta=\partial_{i} \partial^{i}=\eta^{i j} \partial_{i} \partial_{j}$ the Laplacian.
(iii) From (3) obtain:

$$
\begin{align*}
\frac{1}{2} \eta_{i j} \Delta \omega & =\left(1-\frac{n}{2}\right) \partial_{i} \partial_{j} \omega \tag{4}\\
(n-1) \Delta \omega & =0 \tag{5}
\end{align*}
$$

(iv) From (4), (5) show that, for $n \notin\{1,2\}$,

$$
\begin{equation*}
\partial_{i} \partial_{j} \omega=0 \tag{6}
\end{equation*}
$$

I.e., ω is at most linear in coordinates x^{i}.
(v) Taking derivatives of (1), show that

$$
\begin{equation*}
\partial_{i} \partial_{j} \epsilon_{k}=\frac{1}{2}\left(\partial_{i} \omega \eta_{j k}+\partial_{j} \omega \eta_{i k}-\partial_{k} \omega \eta_{i j}\right) \tag{7}
\end{equation*}
$$

(vi) From (6), (7) deduce that, for $n \notin\{1,2\}$, we have

$$
\begin{equation*}
\partial_{i} \partial_{j} \partial_{k} \epsilon_{l}=0 \tag{8}
\end{equation*}
$$

I.e., ϵ is at most quadratic in coordinates x^{i}.
(vii) Assume the most general quadratic ansatz for ϵ and linear ansatz for ω,

$$
\begin{align*}
\epsilon_{i}(x) & =a_{i}+b_{i j} x^{j}+c_{i j k} x^{j} x^{k} \tag{9}\\
\omega(x) & =2 \mu+4 \nu_{i} x^{i} \tag{10}
\end{align*}
$$

with $a_{i}, b_{i j}, c_{i j k}, \mu, \nu_{i}$ some coefficients, and see what constraints does one have on these coefficients from (1).

[^0]
2. From complex to conformal structure on a surface

Given a complex structure J on a surface Σ, construct a metric g on it as follows. Choose some (nowhere vanishing and agreeing with the orientation) area form $\sigma \in \Omega^{2}(\Sigma)$. For $u, v \in T_{x} \Sigma$ a pair of tangent vectors at a point $x \in \Sigma$, set

$$
g_{x}(u, v):=\sigma_{x}(u, J v)
$$

Show that:
(a) g is symmetric and positive-definite.
(b) Conformal class of g is independent of the choice of σ.
(c) This construction inverts the construction associating a complex structure to a conformal structure,

$$
g / \sim \rightarrow \begin{array}{cl}
J: & T_{x} \Sigma
\end{array} \rightarrow T_{x} \Sigma, ~\left(\begin{array}{ll}
u & \mapsto v
\end{array}\right.
$$

where v is the "counterclockwise 90 -degree rotation" of u w.r.t. any metric g representing the conformal class (i.e. an orhtogonal vector of same length, with the pair (u, v) positively oriented).

3. Conformal extension of vector fields on a circle into the disk

Consider the vector fields on the unit circle

$$
u_{k}=\cos (k \theta) \frac{\partial}{\partial \theta} \quad, \quad v_{k}=\sin (k \theta) \frac{\partial}{\partial \theta}
$$

for $k \in \mathbb{Z}$. Show that these vector fields can be extended to conformal vector fields on the unit disk only for $k \in\{-1,0,1\}$.

4. Cross-Ratio

Show that the expression

$$
\left[z_{1}, z_{2}: z_{3}, z_{4}\right]=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}
$$

- assigning a complex number to a quadruple of distinct points in \mathbb{C} - is $P S L_{2}(\mathbb{C})$ invariant. I.e., prove that

$$
\left[\alpha\left(z_{1}\right), \alpha\left(z_{2}\right): \alpha\left(z_{3}\right), \alpha\left(z_{4}\right)\right]
$$

for any Möbius transformation $\alpha \in P S L_{2}(\mathbb{C})$.

[^0]: ${ }^{1}$ For simplicity, do this exercise first for the positive signature case, $p=n, q=0$. In particular, then one can forget about the distinction between upper and lower indices.

