CFT EXERCISES, 2/15/2019

1. EUler-Lagrange equations in classical field theory

Find the Euler-Lagrange equations in the following cases.
(a) Non-free scalar field on a Riemannian manifold (M, g) :
$S[\phi]=\int_{M} \frac{1}{2} d \phi \wedge * d \phi+V(\phi) d \operatorname{vol}_{g}=\int_{M} \sqrt{\operatorname{det} g} d^{n} x\left(\frac{1}{2}\left(g^{-1}\right)^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+V(\phi)\right)$
with $\phi \in C^{\infty}(M)$ the scalar field, $V(\phi)=\sum_{k=0}^{p} \frac{a_{k}}{k!} \phi^{k}$ a fixed polynomial of degree $p \geq 3$, and $d \mathrm{vol}_{g}=* 1=\sqrt{\operatorname{det} g} d^{n} x$ the metric volume form.
(b) Yang-Mills theory on (M, g) :

$$
\begin{equation*}
S[A]=-\frac{1}{2} \int_{M} \operatorname{tr} F_{A} \wedge * F_{A} \quad=-\frac{1}{4} \int \operatorname{tr} F_{\mu \nu} F^{\mu \nu} d \operatorname{vol}_{g} \tag{2}
\end{equation*}
$$

where the field A is a connection in a fixed principal G-bundle P over M (with G a semi-simple Lie group) and $F_{A}=\frac{1}{2} F_{\mu \nu} d x^{\mu} d x^{\nu} \in \Omega^{2}(M, \operatorname{ad}(P))$ is the curvature of the connection; tr is the trace in the adjoint representation of the Lie algebra $\mathfrak{g}=\operatorname{Lie}(G)$.
(c) Chern-Simons theory on a 3-manifold M :

$$
\begin{equation*}
S[A]=\int_{M} \operatorname{tr}\left(\frac{1}{2} A \wedge d A+\frac{1}{3} A \wedge A \wedge A\right) \tag{3}
\end{equation*}
$$

with the field $A \in \Omega^{1}(M, \mathfrak{g})$ - the 1-form of a connection in a trivial principal bundle $M \times G \rightarrow M$.

2. Stress-EnERGY TENSOR

Find the stress-energy tensor ${ }^{1}$

$$
T^{\mu \nu}=-\frac{2}{\sqrt{\operatorname{det} g}} \frac{\delta S_{M, g}}{\delta g_{\mu \nu}}
$$

for the scalar field theory (1). Then check explicitly the conservation property $\nabla_{\mu} T^{\mu \nu} \sim 0$ modulo Euler-Lagrange equations.

[^0]
3. Behavior of Hodge star under Weyl transformations

Let $*_{g}$ be the Hodge star associated to a metric g on an n-dimensional manifold M. Show that, for $g^{\prime}=\Omega \cdot g$, with Ω a positive function on M, and for α any p-form, one has

$$
*_{g^{\prime}} \alpha=\Omega^{\frac{n}{2}-p} \cdot *_{g} \alpha
$$

Note that this implies, in particular, that Hodge star is Weyl-invariant when action on forms of degree $\frac{n}{2}$ (for n even).

4. Example of a Noether current for a mixed source-target SYMMETRY

Consider the free massless scalar field on Euclidean \mathbb{R}^{n}, defined by the action

$$
S[\phi]=\int \frac{1}{2} d \phi \wedge * d \phi=\int \frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi d^{n} x
$$

And consider the mixed source/target transformation - dilatation on \mathbb{R}^{n} accompanied by a rescaling of the field value

$$
x \mapsto x^{\prime}=\beta x \quad, \quad \phi(x) \mapsto \phi^{\prime}\left(x^{\prime}\right)=\beta^{-\frac{n}{2}+1} \phi(x)
$$

with $\beta>0$ the scaling parameter. Or, equivalently,

$$
\phi(x) \mapsto \phi^{\prime}(x)=\beta^{-\frac{n}{2}+1} \phi\left(\beta^{-1} x\right)
$$

Show that this is a symmetry (maps solutions of the EL equation to solutions). Show that the corresponding infinitesimal symmetry changes the Lagrangian density by a term of form $d \Lambda$ - and find Λ. Finally, find the Noether current corresponding to the symmetry.

[^0]: ${ }^{1}$ For evaluating the variation w.r.t. the variation of metric, the following identities are useful: $\delta \sqrt{\operatorname{det} g}=\operatorname{tr}\left(g^{-1} \delta g\right) \sqrt{\operatorname{det} g}$ (prove this from $\operatorname{det} g=e^{\operatorname{tr} \log g}$) and $\delta\left(g^{-1}\right)^{\mu \nu}=$ $-\left(g^{-1}\right)^{\mu \alpha} \delta g_{\alpha \beta}\left(g^{-1}\right)^{\beta \nu}$ (or in index-free form: $\delta g^{-1}=-g^{-1} \delta g g^{-1}$ where r.h.s. is understood as a matrix product).

