1. Euler-Lagrange equations

Find

- the Euler-Lagrange equations,
- Noether 1-form (as a 1-form on $T X$),
- the Hamiltonian (as a function on $T X$) in models of classical mechanics defined by the following action functionals:
(a) (Particle on \mathbb{R}^{n} in a force potential.)

$$
S[\mathbf{x}(t)]=\int_{t_{0}}^{t_{1}} d t\left(\frac{m|\dot{\mathbf{x}}|^{2}}{2}-U(\mathbf{x})\right)
$$

Here $\mathbf{x} \in \operatorname{Maps}\left(\left[t_{0}, t_{1}\right], \mathbb{R}^{n}\right)$ is a path in $X=\mathbb{R}^{n}$ parameterized by the interval $\left[t_{0}, t_{1}\right] ; U \in C^{\infty}\left(\mathbb{R}^{n}\right)$ is a smooth function (the "potential"), $m>0$ a fixed "mass."
(b) (Particle on a Riemannian manifold.)

$$
S[x(t)]=\int_{t_{0}}^{t_{1}} d t \frac{m(\dot{x}, \dot{x})_{g}}{2}
$$

for $x:\left[t_{0}, t_{1}\right] \rightarrow X$ with (X, g) a Riemannian manifold. In particular, prove that the Euler-Lagrange equation is the equation of a geodesic on X with standard parametrization.
(c) (Relativistic particle.)

$$
S[x(t)]=\int_{t_{0}}^{t_{1}} d t m \sqrt{(\dot{x}, \dot{x})_{g}}
$$

with notations as in (b).

2. Integrals of motion

Construct (by Noether theorem) the integral of motion (Noether charge) associated to a symmetry. Check explicitly that the integral of motion is indeed independent of t if $\mathbf{x}(t)$ satisfies the Euler-Lagrange equation.
(a) (Spherically symmetric force potential.)

$$
S[\mathbf{x}(t)]=\int_{t_{0}}^{t_{1}} d t\left(\frac{m|\dot{\mathbf{x}}|^{2}}{2}-U(\mathbf{x})\right)
$$

with $U(\mathbf{x})=U(|\mathbf{x}|)$ an $O(n)$-invariant function on \mathbf{R}^{n} (i.e. a function only of the distance to the origin). Find the integral of motion associated to the [target] symmetry

$$
F_{\lambda}: \mathbf{x} \mapsto e^{\lambda M} \mathbf{x}
$$

with $M \in \mathfrak{o}(n)$ a fixed skew-symmetric matrix (thus, the symmetry is a 1parametric family of rotations). ${ }^{1}$

[^0](b) (Mixed target/source scaling symmetry for a free particle.) Find the integral of motion for the free particle
$$
S[\mathbf{x}(t)]=\int_{t_{0}}^{t_{1}} d t \frac{m|\dot{\mathbf{x}}|^{2}}{2}
$$
associated to the mixed symmetry
$$
[\mathbf{x}(t)]_{t_{0}}^{t_{1}} \mapsto \mathbf{x}^{\prime}(t)=\left[e^{\lambda / 2} \cdot \mathbf{x}\left(e^{-\lambda} t\right)\right]_{e^{\lambda} t_{0}}^{e^{\lambda} t_{1}}
$$

3. Integral of motion in Hamiltonian mechanics

Consider the Hamiltonian system on the symplectic plane $\Phi=T^{*} \mathbb{R}$ with coordinates x, p (for the base/fiber) and standard symplectic structure $\omega=d x \wedge d p$, defined by the Hamiltonian function

$$
H=\frac{p^{2}}{2 m}+\mu x \quad \in C^{\infty}(\Phi)
$$

with $m>0$ and μ a constant. Find the corresponding Hamiltonian vector field \check{H} defined by $\iota_{\check{H}} \omega=d H$ and write explicitly Hamilton's equations of motion $\dot{x}=$ $\cdots, \dot{p}=\cdots .^{2}$ Show that the family of symplectomorphisms

$$
\Psi_{\lambda}:(x, p) \mapsto(x+\lambda, p)
$$

is a symmetry (commutes with the flow of \check{H}) and is itself given by flow in time λ of some Hamiltonian vector field $\breve{\psi}$ for certain $\psi \in C^{\infty}(\Phi)$. Find the corresponding integral of motion. ${ }^{3}$

[^1]
[^0]: ${ }^{1}$ For simplicity, first consider cases $n=2,3$ of this problem.

[^1]: ${ }^{2}$ Recall that Hamilton's equations of motion read $\dot{Y}=\{H, Y\}$ for Y any function (in particular, a coordinate function x or p) on Φ, with $\{f, g\}:=L_{\breve{f}}(g)$ the Poisson bracket.
 ${ }^{3}$ Observe that, if $\{H, \psi\}=C$ with C a constant, then $I(x, p ; t):=\psi-C t$ is an integral of motion, i.e. $I(x, p ; t)=I\left(\mathrm{Flow}_{t^{\prime}}(\check{H}) \circ(x, p) ; t+t^{\prime}\right)$.

