CFT EXERCISES, 3/29/2019

1. State corresponding to the stress-energy tensor

In the free boson theory show that one has

(1)
$$\lim_{z \to 0} \hat{T}(z) |\operatorname{vac}\rangle = \frac{1}{2} \hat{a}_{-1} \hat{a}_{-1} |\operatorname{vac}\rangle$$

(Recall that $\hat{T}(z) = -\frac{1}{2} : \partial \hat{\phi}(z) \partial \hat{\phi}(z) :.)$

Show that the state in the r.h.s. of (1) is $\hat{L}_{-2}|\text{vac}\rangle$.

2. Vertex operators

Recall that the vertex operator in the free boson theory are defined as

(2)
$$\hat{V}_{\alpha}(z,\bar{z}) =: e^{i\alpha\phi(z,\bar{z})}$$

with $\alpha \in \mathbb{R}$ a parameter ("charge"). Show that:

(a) One has the OPE

$$\mathcal{R} \ i\partial\hat{\phi}(z) \ \hat{V}_{\alpha}(w,\bar{w}) \sim \frac{\alpha}{z-w} \hat{V}_{\alpha}(w,\bar{w}) + \text{reg.}$$

(Hint: prove it by expanding the exponent in 2 in Taylor series and using the Wick's lemma. Recall that $\mathcal{R} \ \hat{\phi}(z, \bar{z}) \hat{\phi}(w, \bar{w}) - : \hat{\phi}(z, \bar{z}) \hat{\phi}(w, \bar{w}) := -2 \log |z - w|$ and thus, by taking derivative in $z, \mathcal{R} \ \partial \hat{\phi}(z) \hat{\phi}(w, \bar{w}) - : \partial \hat{\phi}(z) \hat{\phi}(w, \bar{w}) := -\frac{1}{z-w}$.) (b) One has the OPE

$$\mathcal{R}\,\hat{T}(z)\,\hat{V}_{\alpha}(w,\bar{w})\sim \frac{\alpha^2/2}{(z-w)^2}\hat{V}_{\alpha}(w,\bar{w})+\frac{\partial\hat{V}_{\alpha}(w,\bar{w})}{z-w}+\mathrm{reg}$$

In particular, this together with the similar OPE with T replaced with \overline{T} implies that V_{α} is, by definition, a primary field of conformal dimension $(h = \frac{\alpha^2}{2}, \overline{h} = \frac{\alpha^2}{2})$.

3. Correlators of primary fields

Assume that we have a function $F(z_1, \bar{z}_1, \ldots, z_n, \bar{z}_n) = \langle \Phi_1(z_1, \bar{z}_1) \cdots \Phi_n(z_n, \bar{z}_n) \rangle$ " (the correlator) on the configuration space of *n* distinct points z_1, \ldots, z_n on $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\} = \mathbb{C}P^1$. Assume that for any Möbius transformation $f : \mathbb{C}P^1 \to \mathbb{C}P^1$ it satisfies the relation

$$F(f(z_1), \bar{f}(\bar{z}_1), \dots, f(z_n), \bar{f}(\bar{z}_n)) \cdot \prod_{k=1}^n (\partial f(z_k))^{h_k} (\bar{\partial}\bar{f}(\bar{z}_k))^{\bar{h}_k} = F(z_1, \bar{z}_1, \dots, z_n, \bar{z}_n)$$

for $h_1, \bar{h}_1, \ldots, h_n, \bar{h}_n$ some real numbers (conformal dimensions of the primary fields Φ_1, \ldots, Φ_n) with $h_k - \bar{h}_k \in \mathbb{Z}$.¹

¹Note that the bar in \bar{h}_k does not stand for complex conjugation, it is just a notation for the anti-holomorphic conformal dimension. One often imposes the condition $h_k, \bar{h}_k > 0$ which

(a) Show that (3) implies the following differential equation ("Ward identity") for the correlator

$$\sum_{k=1}^{n} \left(\epsilon(z_k) \frac{\partial}{\partial z_k} + \bar{\epsilon}(z_k) \frac{\partial}{\partial \bar{z}_k} + h_k \cdot (\partial \epsilon)(z_k) \cdot + \bar{h}_k \cdot (\bar{\partial} \bar{\epsilon})(\bar{z}_k) \cdot \right) F(z_1, \bar{z}_1, \dots, z_n, \bar{z}_n) = 0$$

for $\epsilon(z)\frac{\partial}{\partial z}$ any holomorphic vector field on $\mathbb{C}P^1$. (b) Consider the case n = 2 of (3). Show that invariance (3) of the correlator under translations, rotations and scalings implies that

(5)
$$F(z_1, \bar{z}_1, z_2, \bar{z}_2) = \frac{C}{(z_1 - z_2)^{h_1 + h_2} (\bar{z}_1 - \bar{z}_2)^{\bar{h}_1 + \bar{h}_2}}$$

with C a constant.

(c) Show that invariance of the correlator for n = 2 under the full Möbius group (i.e. adjoining special conformal transformations) imposes a further constraint on (5), that C must vanish unless $h_1 = h_2$ and $\bar{h}_1 = \bar{h}_2$.

 $\mathbf{2}$

implies a physically meaningful statement $\lim_{z_k \to \infty} F(z_1, \bar{z}_1 \dots, z_n, \bar{z}_n) = 0$ (no long-distance correlatation).