CFT EXERCISES, 3/29/2019

1. State corresponding to the stress-Energy tensor

In the free boson theory show that one has

$$
\begin{equation*}
\lim _{z \rightarrow 0} \hat{T}(z)|\mathrm{vac}\rangle=\frac{1}{2} \hat{a}_{-1} \hat{a}_{-1}|\mathrm{vac}\rangle \tag{1}
\end{equation*}
$$

(Recall that $\hat{T}(z)=-\frac{1}{2}: \partial \hat{\phi}(z) \partial \hat{\phi}(z):$.)
Show that the state in the r.h.s. of (1) is $\hat{L}_{-2}|\mathrm{vac}\rangle$.

2. Vertex operators

Recall that the vertex operator in the free boson theory are defined as

$$
\begin{equation*}
\hat{V}_{\alpha}(z, \bar{z})=: e^{i \alpha \hat{\phi}(z, \bar{z})}: \tag{2}
\end{equation*}
$$

with $\alpha \in \mathbb{R}$ a parameter ("charge"). Show that:
(a) One has the OPE

$$
\mathcal{R} i \partial \hat{\phi}(z) \hat{V}_{\alpha}(w, \bar{w}) \sim \frac{\alpha}{z-w} \hat{V}_{\alpha}(w, \bar{w})+\text { reg. }
$$

(Hint: prove it by expanding the exponent in 2 in Taylor series and using the Wick's lemma. Recall that $\mathcal{R} \hat{\phi}(z, \bar{z}) \hat{\phi}(w, \bar{w})-: \hat{\phi}(z, \bar{z}) \hat{\phi}(w, \bar{w}):=-2 \log |z-w|$ and thus, by taking derivative in $z, \mathcal{R} \partial \hat{\phi}(z) \hat{\phi}(w, \bar{w})-: \partial \hat{\phi}(z) \hat{\phi}(w, \bar{w}):=-\frac{1}{z-w}$.)
(b) One has the OPE

$$
\mathcal{R} \hat{T}(z) \hat{V}_{\alpha}(w, \bar{w}) \sim \frac{\alpha^{2} / 2}{(z-w)^{2}} \hat{V}_{\alpha}(w, \bar{w})+\frac{\partial \hat{V}_{\alpha}(w, \bar{w})}{z-w}+\operatorname{reg} .
$$

In particular, this together with the similar OPE with T replaced with \bar{T} implies that V_{α} is, by definition, a primary field of conformal dimension $\left(h=\frac{\alpha^{2}}{2}, \bar{h}=\right.$ $\left.\frac{\alpha^{2}}{2}\right)$.

3. Correlators of primary fields

Assume that we have a function $F\left(z_{1}, \bar{z}_{1}, \ldots, z_{n}, \bar{z}_{n}\right)="\left\langle\Phi_{1}\left(z_{1}, \bar{z}_{1}\right) \cdots \Phi_{n}\left(z_{n}, \bar{z}_{n}\right)\right\rangle$ " (the correlator) on the configuration space of n distinct points z_{1}, \ldots, z_{n} on $\overline{\mathbb{C}}=$ $\mathbb{C} \cup\{\infty\}=\mathbb{C} P^{1}$. Assume that for any Möbius transformation $f: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{1}$ it satisfies the relation

$$
\begin{equation*}
F\left(f\left(z_{1}\right), \bar{f}\left(\bar{z}_{1}\right), \ldots, f\left(z_{n}\right), \bar{f}\left(\bar{z}_{n}\right)\right) \cdot \prod_{k=1}^{n}\left(\partial f\left(z_{k}\right)\right)^{h_{k}}\left(\bar{\partial} \bar{f}\left(\bar{z}_{k}\right)\right)^{\bar{h}_{k}}=F\left(z_{1}, \bar{z}_{1}, \ldots, z_{n}, \bar{z}_{n}\right) \tag{3}
\end{equation*}
$$

for $h_{1}, \bar{h}_{1}, \ldots, h_{n}, \bar{h}_{n}$ some real numbers (conformal dimensions of the primary fields $\left.\Phi_{1}, \ldots, \Phi_{n}\right)$ with $h_{k}-\bar{h}_{k} \in \mathbb{Z} .{ }^{1}$

[^0](a) Show that (3) implies the following differential equation ("Ward identity") for the correlator
(4)
$\sum_{k=1}^{n}\left(\epsilon\left(z_{k}\right) \frac{\partial}{\partial z_{k}}+\bar{\epsilon}\left(z_{k}\right) \frac{\partial}{\partial \bar{z}_{k}}+h_{k} \cdot(\partial \epsilon)\left(z_{k}\right) \cdot+\bar{h}_{k} \cdot(\bar{\partial} \bar{\epsilon})\left(\bar{z}_{k}\right) \cdot\right) F\left(z_{1}, \bar{z}_{1}, \ldots, z_{n}, \bar{z}_{n}\right)=0$
for $\epsilon(z) \frac{\partial}{\partial z}$ any holomorphic vector field on $\mathbb{C} P^{1}$.
(b) Consider the case $n=2$ of (3). Show that invariance (3) of the correlator under translations, rotations and scalings implies that
\[

$$
\begin{equation*}
F\left(z_{1}, \bar{z}_{1}, z_{2}, \bar{z}_{2}\right)=\frac{C}{\left(z_{1}-z_{2}\right)^{h_{1}+h_{2}}\left(\bar{z}_{1}-\bar{z}_{2}\right)^{\bar{h}_{1}+\bar{h}_{2}}} \tag{5}
\end{equation*}
$$

\]

with C a constant.
(c) Show that invariance of the correlator for $n=2$ under the full Möbius group (i.e. adjoining special conformal transformations) imposes a further constraint on (5), that C must vanish unless $h_{1}=h_{2}$ and $\bar{h}_{1}=\bar{h}_{2}$.

[^1]
[^0]: ${ }^{1}$ Note that the bar in \bar{h}_{k} does not stand for complex conjugation, it is just a notation for the anti-holomorphic conformal dimension. One often imposes the condition $h_{k}, \bar{h}_{k}>0$ which

[^1]: implies a physically meaningful statement $\lim _{z_{k} \rightarrow \infty} F\left(z_{1}, \bar{z}_{1} \ldots, z_{n}, \bar{z}_{n}\right)=0$ (no long-distance correlatation).

