1.1.) Systems of linear equations
(Lay, Lay, McDonald)
variables (indeterminates)
Linear equation:

System of linear equations:
m equations on n variables
\longrightarrow set of all solutions ("solution set")

parallel lines
\rightarrow no solutions
\Rightarrow system is inconsistent
(c)

lines coincide
\rightarrow infinitely many solutions

$$
x_{1}=x_{2}+1, x_{2} \text { any number }
$$

Any system of lin. eq. has
either (1) no solutions or
(2) exactly one solution
(3) infritely mary solutions] syctiom consistent

Matrix notation
Linear system $\quad x_{1}-2 x_{2}+x_{3}=0$
$\rightarrow \xlongequal{\operatorname{madrix}} \underset{\text { of coefficients }}{ }\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 3 & -3 \\ 2 & 0 & 3\end{array}\right]$
$2 x_{1}:+3 x_{3}=3$
(coefficients of each variable aligned in columns)

$$
\left.\begin{array}{l}
3 \text { nous (} 3 \text { equations) } \\
3 \text { columns (} 3 \text { variables) }
\end{array}\right\} \Rightarrow \begin{aligned}
& \text { matrix of } \\
& \text { size } 3 \times 3
\end{aligned}
$$

$$
\rightarrow \xrightarrow{\text { augmented }}\left[\begin{array}{ccc:c}
1 & -2 & 1 & 0 \\
0 & 3 & -3 & 6 \\
2 & 0 & 3 & 3
\end{array}\right]
$$

a 3×5 matrix
added a column of right-hand sides

Solving a linear system
idea use x_{1} - -term in eq, to eliminate x_{1} from the other equations
use x_{2}-term in eq 2 to eliminate x_{2} from the oder eq. etc.
\sim obtain a very simple equivalent linear syr. (ie. with the same solution set)
ε_{x}

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
3 x_{2}-3 x_{3} & =6 \\
2 x_{1} \quad+3 x_{3} & =3
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 3 & -3 & 6 \\
2 & 0 & 3 & 3
\end{array}\right]
$$

- keep x_{1} : eq, and eliminate it from other eq.: $\int_{r_{3} \mapsto}$ add $(-2) \cdot$ eq, to eq

$$
\begin{gathered}
\text { new } \\
\text { system }
\end{gathered}:\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 3 & -3 & 6 \\
0 & 4 & 1 & 3
\end{array}\right]
$$

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}=0 \\
3 x_{2}-3 x_{3}=6 \\
4 x_{2}+x_{3}=3
\end{array}
$$

- multiply eq by $\frac{1}{3}$, to get 1 as the gaff of x_{2} in cq 2 (optional-sinplifies the next step)

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-x_{3} & =2 \\
4 x_{2}+x_{3} & =3
\end{aligned} \quad\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -1 & 2 \\
0 & 4 & 1 & 3
\end{array}\right]
$$

- use x_{2}-term in eq 2 to eliminate x_{2} from eq 93: replace eq 3 with eq 3 -4 e eq 2
a system in "triangular""
(or"echelon") form
- Eliminate x_{3} from eq, eq $: \quad e q_{2} \mapsto e q_{2}+e q_{3}$

$$
e q_{1} \longmapsto e q_{1}-e q_{3}
$$

$$
\begin{aligned}
x_{1}-2 x_{2} & =1 \\
x_{2} & =1 \\
x_{3} & =-1
\end{aligned} \quad\left[\begin{array}{cccc}
1 & -2 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

- Eliminate x_{2} from eq. $:$ eq. \rightarrow eq 1 +2 eq 2 $\quad \mid r_{1} \mapsto r_{1}+2 r_{2}$

$$
\begin{aligned}
x_{1} & =3 \\
x_{2} & =1 \\
x_{3} & =-1
\end{aligned} \quad\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

\rightarrow we proved that the only solution of the original sys. is $(3,1,-1)$
check
(substitute ito

$$
\begin{array}{lll}
\text { orig. sys.) } & 2 \cdot 3 & +3(-1)=3
\end{array}
$$

Solung a In says, we are the operations:
(1) replace an eq. With itself plus a multiple of another eq.
(2) interchange two equations
(3) multiply all terms in an equation by a nonzero constant
for the augmented matrix, we puccoon the corresponding le re- fay row operations
(1) (replacement) replace a row with itself plus a multiple of acroter row
(2) (interchange) interchange two rows
(3) (scaling) multiply all entries is a row by a nonzero constant

$$
\begin{aligned}
& \begin{array}{rrr}
-4 \cdot \text { eq } & -4 x_{2}+4 x_{3}=-8 \\
\text { eq } & \begin{aligned}
4 x_{2}+x_{3} & =3 \\
5 x_{3} & =-5
\end{aligned} \quad \begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-x_{3} & =2 \\
5 x_{3} & =-5
\end{aligned} \quad\left[\begin{array}{rccc}
1 & -2 & 1 & 0 \\
0 & 1 & -1 & 2 \\
0 & 0 & 5 & -5
\end{array}\right]
\end{array} \\
& \xrightarrow{ } \\
& \text { - multiply eq by } \frac{1}{5} \\
& \begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-x_{3} & =2 \\
x_{3} & =-1
\end{aligned} \quad\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -1 & 2 \\
0 & 0 & 1 & -1
\end{array}\right]
\end{aligned}
$$

def To matrices are row equivalent of they can be travsforrned one into another by a sequence of elem. now operations

- Row operations are reversible.
- If the augm, matrices of two lin sys. are roc equivalent, then the two systems have the same solution set.
(1.2.) Row reduction and echelon forms
- leading entry in a roc u = left most nonvazioling entry
a rectangular matrix is in row echelon form (REF) if
- all nonzero nous are above zero nous
- each leading entry in a roo is (in a column) do the right of the leading entry in a roo above it
- all entrees in a colum below a leading entry are zeno.
pivot columns
Ex:

$$
\left[\begin{array}{ccccc}
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllllll}
0 & 0 & * & * & * & * & * \\
0 & 0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$\neq 0$ - leading entries $\quad *$-any entree
A matrix is: reduced row echelon form (RREF) if additionally
-all leading entries are 1

- each leading 1 is the only nonzero entry in its column.

$$
\underline{\varepsilon_{x}}:\left[\begin{array}{llll}
1 & 0 & * & * \\
0 & 1 & * & * \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllllll}
0 & 1 & * & 0 & 0 & * & 0 \\
0 & 0 & 0 & 1 & 0 & * & 0 \\
0 & 0 & 0 & 0 & 1 & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- Any matrix can be row reduced (transformed by a sequence of elem. cow op.) into more than one matrix in REF. However, RREF of a matrix is unique.
- Leadingentries are always in same positions for any REF of A = pivot positions. A column containing a pivot position = "pict column"

Row reduction algorithm
matrix $A \xrightarrow[\text { steps } I-N]{ }$ REF of $A \xrightarrow[\text { step } V]{ }$ RREF of A
"Forward phase"
"backward phase"
$\varepsilon_{x}:$

$$
A=\left[\begin{array}{ccccc}
Q & 2 & -6 & -1 & -2 \\
2 & 1 & 9 & 9 & 6 \\
2 & 4 & 0 & 6 & 0
\end{array}\right]
$$

Step, begin with leftmost nonzero clung. It is a pivot column; pivot pos. is at the top

Step II: seled a nonzero entry in pivot col. as pivot. If necessary, interchange rows to move this entry into pivot pos.

$$
{\underset{i n}{r_{1} E r_{3}}}\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
2 & 1 & 9 & 9 & 6 \\
0 & 2 & -6 & -1 & -2
\end{array}\right]
$$

Step III Use row replacement to create zeros in all positions bebu the pivot

$$
\xrightarrow[r_{2} \mapsto r_{2}-r_{1}]{ }\left[\begin{array}{ccccc}
(2) & 4 & 0 & 6 & 0 \\
0 & -3 & 9 & 3 & 6 \\
0 & 2 & -6 & -1 & -2
\end{array}\right]
$$

Step IV Cover (or ignore) the row costaning pinot pos. and all rows above it.
Apply steps I- III to the remaining submatrix.
Repeat until there are no nonzero nous to modify.

$$
\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
0 & -3 & 9 & 3 & 6 \\
0 & j_{2} & -6 & -1 & -2
\end{array}\right] \xrightarrow[r_{3} \rightarrow r_{3}+\frac{2}{3} r_{2}]{ }\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
0 & -3 & 9 & 3 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \xrightarrow[r_{2} \rightarrow-\frac{1}{3} r_{2}]{\substack{\text { nev pinot }}}\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
0 & 1 & -3 & -1 & -2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

$$
\text { REFT } \quad \begin{aligned}
& \text { already in REF. } \\
& \Rightarrow \text { IV stops }
\end{aligned}
$$

If we want RREF:
Step V: beginning with rightmost pivot and walking upward and to the left, create zoos above each pivot. If pivot is not 1 , make it 1 by rescaling rows

Solutions of lin.sys. suppose augm. mat. of a lin. sys. has been reduced to RREF

$$
\left[\begin{array}{ccc|c}
x_{1} & x_{2} & x_{3} & \\
\vdots & \vdots & \vdots & -1 \\
\vdots & \vdots & 3 & -1 \\
0 & \vdots & 2 & 5 \\
0 & \vdots & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
x_{1}+3 x_{3} & =-1 \\
x_{2}+2 x_{3} & =5 \\
0 & =0
\end{aligned}
$$

variables x_{1}, x_{2} corresponding to punt cOlumns are "baric variables": var. x_{3} corresp to a nan-pivot col. is a "free variable".
Can solve for basic variables in terms of free variables:

$$
\left\{\begin{array}{l}
x_{1}=-1-3 x_{3} \\
x_{2}=5-2 x_{3}
\end{array} \quad-\right.\text { description of all sols of the lin. Sys. }
$$

$$
x_{3} \text { is free }
$$

(takes any value)
eeg. cantake $x_{3}=1 \rightarrow(-4,3,1)$ is a sol.

$$
-1-1-1_{-3.1}^{11} 5^{\prime \prime}-2.1
$$

- A system is consistent iff REF of the angm.mat. does not have a rev of form
solution of a consistent syr. is unique iff there are no free variables, ie. no non-pivot columns (except the lest one)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & .0 & b \\
j
\end{array} \quad l=0=b\right.} \\
& \text { it contradictory } \\
& \text { eq. }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
0 & 1 & -3 & -1 & -2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \xrightarrow[\substack{r_{2}-r_{2}+r_{3} \\
r_{1}-1-r_{1}-6 r_{3}}]{ }\left[\begin{array}{ccccc}
2 & 4 & 0 & 0 & -12 \\
0 & 1 & -3 & 0 & 0 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \xrightarrow[r_{1} \rightarrow r_{1}-<r_{2}]{ }\left[\begin{array}{ccccc}
2 & 0 & 12 & 0 & -12 \\
0 & 0 & -3 & 0 \\
0 \chi 0 & 0 & 0
\end{array}\right]} \\
& \xrightarrow[\substack{\text { rescale } \\
r_{1} \rightarrow r_{1} \cdot \frac{1}{2}}]{ }\left[\begin{array}{ccccc}
1 & 0 & 6 & 0 & -6 \\
0 & 1 & -3 & 0 & 0 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \longleftrightarrow \text { RREF of } A
\end{aligned}
$$

