$1 / 17 / 20201$
Row reduction algorithm

$$
\text { matrix } A \xrightarrow[\text { sterns } I-N]{ } \text { REF of } A \underset{\text { step } V}{ } \text { RREF of } A
$$

"forward phase"
"backward
phase"
LAST TIME
Ex:

$$
A=\left[\begin{array}{ccccc}
(9) & 2 & -6 & -1 & -2 \\
2 & 1 & 9 & 9 & 6 \\
2 & 4 & 0 & 6 & 0
\end{array}\right]
$$

Step 1: begin with leftmost nonzero column. It is a pivot column; pivot pos. is at the top
Step II: select a nonzero entry in pivot col. as pivot. If necessary, interchange rows to move this entry into pivot pos.

$$
{\underset{i n}{r_{1} E r_{3}}}\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
2 & 1 & 9 & 9 & 6 \\
0 & 2 & -6 & -1 & -2
\end{array}\right]
$$

Step III Use row replacement to create zeros in all positions bebouthe pivot

$$
\xrightarrow[r_{2} \mapsto r_{2}-r_{1}]{ }\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
0 & -3 & 9 & 3 & 6 \\
0 & 2 & -6 & -1 & -2
\end{array}\right]
$$

Step IV Goer (or ignore) the row contaning pinot pos. and all nous above it.
Apply steps I- III to the remaining submatrix.
Repeat until there are no nonzero nous to modify.

$$
\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
0 & -3 & 9 & 3 & 6 \\
0 & j_{2} & -6 & -1 & -2
\end{array}\right] \xrightarrow[r_{3} \rightarrow r_{3}+\frac{2}{3} r_{2}]{ }\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
0 & -3 & 9 & 3 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \xrightarrow[r_{2} \rightarrow-\frac{1}{3} r_{2}]{\substack{\text { nev pinot }}}\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
0 & 1 & -1 & -1 & -2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

$$
\text { REF! } \quad \begin{aligned}
& \text { already in REF. } \\
& \Rightarrow I V \text { stops }
\end{aligned}
$$

If we want RREF:
Step V: beginning with rightmost pivot and walking upward and to the left, create zoos above each pinot. If pivot is not 1 , make it 1 by rescaling rows

Solutions of lin.sys. suppose augm. mat. of a lin. sys. has been reduced to RREF

$$
\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & \\
\vdots & \vdots & 3 & -1 \\
\vdots & \vdots & 2 & 5 \\
\vdots & \vdots & 2 & 0 \\
\vdots & \vdots & 0 & 0
\end{array}\right] \quad \text { 1.e. ryskan } \quad \begin{aligned}
x_{1}+3 x_{3} & =-1 \\
x_{2}+2 x_{3} & =5 \\
0 & =0
\end{aligned}
$$

$$
\text { variables } x_{1}, x_{2} \text { corresponding to punt }
$$

Columns are "basie variables":

$$
0=0 \quad \text { var. } x_{3} \text { corresp to a non-pinat col is a }
$$ "free variable".

Can solve for basic variables in terms of free variables:

$$
\left\{\begin{array}{l}
x_{1}=-1-3 x_{3} \\
x_{2}=5-2 x_{3}
\end{array} \quad-\right.\text { description of all sols of the lin. sys. }
$$

$$
x_{3} \text { is free }
$$

(takes any value)
eeg. cantake $x_{3}=1 \rightarrow(-4,3,1)$ is a sol.

$$
-1-1-1_{-3.1}^{11} 5^{\prime \prime}-2.1
$$

- A system is covistent iff REF of the angm.mat. does wot have a rev of form

$$
\left[\begin{array}{lll}
0 \ldots 0 & b
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{lll}
\text { H } \\
0
\end{array} \quad \begin{aligned}
& 0=b \\
& \\
& \\
& \\
& \\
& \\
& \text { contradictory } \\
& \text { eq. }
\end{aligned}
$$

(ie. iff the last column is ot pinotal)
solution of a consistent syr. is unique iff there are no free variables, ie. no non-pivot columns (except the lest one)

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
0 & 1 & -3 & -1 & -2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \xrightarrow[\substack{r_{2}-r_{2}+r_{3} \\
r_{1}-r_{1}-6 r_{3}}]{ }\left[\begin{array}{ccccc}
2 & 4 & 0 & 0 & -12 \\
0 & 1 & -3 & 0 & 0 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \xrightarrow[r_{1} \rightarrow r_{1}-<r_{2}]{ }\left[\begin{array}{ccccc}
2 & 0 & 12 & 0 & -12 \\
0 & 0 & -3 & 0 & 0 \\
0 \not 0 & 0 & 0 & 2
\end{array}\right]} \\
& \xrightarrow[\substack{\text { rescale } \\
r_{1} \rightarrow r_{1} \cdot \frac{1}{2}}]{ }\left[\begin{array}{ccccc}
1 & 0 & 6 & 0 & -6 \\
0 & 1 & -3 & 0 & 0 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \longleftrightarrow \text { RREF of } A
\end{aligned}
$$

(1.3.) Vector equations

- vector $=$ ordered list of numbers
- column vector = matrix with only one column

Vectors in \mathbb{R}^{2}
Ex: $\left[\begin{array}{l}1.3 \\ -2\end{array}\right],\left[\begin{array}{l}5 \\ 0\end{array}\right] \quad$ Set of vectors with two (real) entries $=: \mathbb{R}^{2}$

- vectors \vec{u}, \vec{v} in \mathbb{R}^{2} are equal if their corresponding components are equal.

$$
\text { E.g. }\left[\begin{array}{l}
2 \\
3
\end{array}\right] \neq\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

for $\vec{u}, \vec{v} \in \mathbb{R}^{2}$, can form the sum $\vec{u}+\vec{v}$ by adding corresp. entries of u, v e.g. $\left[\begin{array}{l}2 \\ 3\end{array}\right]+\left[\begin{array}{c}-1 \\ 5\end{array}\right]=\left[\begin{array}{l}2+(-1) \\ 3+5\end{array}\right]=\left[\begin{array}{l}1 \\ 8\end{array}\right]$
for $\vec{u} \in \mathbb{R}^{2}, c$ a number, the scaler multiple $c \cdot \vec{u}$ is obtained by multiplying each entry of u by c :

$$
3\left[\begin{array}{l}
2 \\
7
\end{array}\right]=\left[\begin{array}{l}
3.2 \\
3.7
\end{array}\right]=\left[\begin{array}{c}
6 \\
21
\end{array}\right]
$$

Ex: for $\vec{u}=\left[\begin{array}{c}2 \\ -1\end{array}\right], \vec{v}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$, find $5 \vec{u},-2 \vec{v}, 5 \vec{u}+(-2 \vec{v})$
Sol: $5 \vec{u}=\left[\begin{array}{c}10 \\ -5\end{array}\right] \quad-2 \vec{v}=\left[\begin{array}{c}-6 \\ -4\end{array}\right] \quad 5 \vec{u}+(-2 \vec{v})=\left[\begin{array}{c}4 \\ -7\end{array}\right]$

Geometric description of vectors in \mathbb{R}^{2}
point (a, b) on the coordinate plane $\sim\left[\begin{array}{l}a \\ b\end{array}\right]$

So: $\mathbb{R}^{2}=$ set of all points on the plane
vectors as points

Sum: parallelogram rule

multiples $\varepsilon_{x}: \vec{u}=\left[\begin{array}{c}2 \\ -1\end{array}\right] \quad$ Display $\vec{u}, 2 \vec{u},-\frac{1}{2} \vec{u}$

Vectors in \mathbb{R}^{n}

$$
\mathbb{R}^{2}=\text { set of vectors of harm } \vec{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \quad(n \times 1 \text { matrices })
$$

- can add tue vectors ir \mathbb{R}^{n} (must be of the same size!)
- can Lorn a scalar multiple c. \vec{u} Cone has commutativity, associativity, distributivity, like hor numbers)
- Zero vector $\overrightarrow{0}=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right], \overrightarrow{0}+\vec{u}=\vec{u}$
- negative of a vector $-\vec{u}=(-1) \cdot \vec{u}=\left[\begin{array}{c}-u_{1} \\ -u_{2} \\ \vdots \\ -u_{n}\end{array}\right] \quad$ Then $(-\vec{u})+\vec{u}=\overrightarrow{0}$
- Also, notation: $\vec{u}+(-\vec{v})=: \vec{u}-\vec{v}$

Linear combinations
for vectors $\vec{v}_{1}, \ldots, \vec{v}_{p} \in \mathbb{R}^{n}$ and scalars C_{1}, \ldots, C_{p}, the vector $\vec{y}=c_{1} \vec{v}_{1}+\ldots+c_{p} \vec{v}_{p} \quad$ is called the linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{p}$ with weights c_{1}, \ldots, c_{p}

Ex: Some lin. comb. of $\vec{v}_{1}, \vec{v}_{2}: \quad 3 \vec{v}_{1}-\frac{5}{7} \vec{v}_{2}, \quad \frac{1}{2} \vec{v}_{1}=\frac{1}{2} \vec{v}_{1}+0 \cdot \vec{v}_{2}, \overrightarrow{0}=0 \cdot \vec{v}_{1}+0 \cdot \vec{v}_{2}$

Ex: Some lin. comb. of $\vec{v}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$:
Q: expres \vec{u} as alin.conb. of \vec{v}_{1} and \vec{v}_{2} Sol: by parallelogram rule, $\vec{u}=2 \vec{v}_{1}+\vec{v}_{2}$

Ex: $\vec{a}_{1}=\left[\begin{array}{c}1 \\ -3 \\ -1\end{array}\right], \vec{a}_{2}=\left[\begin{array}{c}3 \\ -5 \\ 2\end{array}\right]$
$\vec{b}=\left[\begin{array}{l}-1 \\ -1 \\ -4\end{array}\right]$
Q: can \vec{b} be generated as a lin. comb. of \vec{a}_{1}, \vec{a}_{2} ?
I.e. cancefund weights x_{1}, x_{2} such that $x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}=\vec{b}$?

$$
\begin{align*}
& \text { (*) means } x_{1} \underbrace{\left[\begin{array}{c}
1 \\
-3 \\
-1
\end{array}\right]}_{\vec{a}}+\underbrace{\left[\begin{array}{c}
3 \\
-5 \\
2
\end{array}\right]}_{\overrightarrow{a_{2}}}=\underbrace{\left[\begin{array}{c}
-1 \\
-1 \\
-4
\end{array}\right]}_{\vec{b}} \tag{*}\\
& \text { l.h.s. }=\left[\begin{array}{c}
x_{1} \\
-x_{1} \\
-x_{1}
\end{array}\right]+\left[\begin{array}{c}
3 x_{2} \\
-5 x_{2} \\
2 x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+3 x_{2} \\
-3 x_{1}-5 x_{2} \\
-x_{1}+2 x_{2}
\end{array}\right]
\end{align*}
$$

So: (x) is true ff $\left\{\begin{array}{l}x_{1}+3 x_{2}=-1 \\ -3 x_{1}-5 x_{2}=-1 \\ -x_{1}+2 x_{2}=-4\end{array} \quad\right.$ - linear system!
Augmented
matrix: $\left[\begin{array}{ccc}1 & 3 & -1 \\ -3 & -5 & -1 \\ -1 & 2 & -4\end{array}\right] \underset{\text { equiv }}{\sim}\left[\begin{array}{lll}1 & 3 & -1 \\ 0 & 4 & -4 \\ 0 & 5 & -5\end{array}\right] \sim\left[\begin{array}{ccc}1 & 3 & -1 \\ 0 & 1 & -1 \\ 0 & 5 & -5\end{array}\right] \sim\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$
So, the system is equiv. to

$$
\begin{aligned}
& x_{1}=2 \\
& x_{2}=-1 \\
& 0=0
\end{aligned}
$$

thus: $2 \vec{a}+(-1) \vec{a}_{2}=\vec{b} \quad-\vec{b}$ is a lin con of \vec{a}_{1}, \vec{a}_{2}

$$
2\left[\begin{array}{c}
1 \\
-3 \\
-1
\end{array}\right]+(-1)\left[\begin{array}{c}
3 \\
-5 \\
2
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1 \\
-4
\end{array}\right]
$$

Note: the augm. mat. of our system was $\left.\left[\begin{array}{ccc}1 & 3 & \begin{array}{c}-1 \\ -3 \\ -1 \\ -1 \\ a_{1}\end{array} \\ \hline & \frac{1}{a_{2}} & \left.\begin{array}{c}1 \\ -4 \\ -4 \\ \hline\end{array}\right]\end{array}\right] \begin{array}{lll}\text { notation } \\ = & \vec{a} & \vec{a} \\ a_{2} & \vec{b}\end{array}\right]$

- Equation $\quad x_{1} \vec{a}_{1}+\ldots+x_{p} \vec{a}_{p}=\vec{b} \quad$ has the same solution set as the In.sys. whore augm. mat. is $\left[\vec{a}_{1} \ldots \vec{a}_{p} \vec{b}\right] \quad$ (**)
In particular, \vec{b} can be generated as a lin. comb. of $\vec{a}_{1}, \ldots, \vec{a}_{p}$ if there exists a solution for the $l_{i n}$ sys. corresponding to the matrix $(* *)$

Def Let $\vec{v}_{1}, \ldots, \vec{v}_{p} \in \mathbb{R}^{n}$. The set of all lin. comb. of $\vec{v}_{1}, \ldots, \vec{v}_{p}$ is denoted Span $\left\{\vec{v}_{1}, \ldots \vec{v}_{p}\right\}=$ "subset of \mathbb{R}^{n} spanned (or generated) by $\vec{v}_{1}, \ldots, \vec{v}_{p} "$
I.e. $S_{\text {pan }}\left\{\vec{v}_{1}, \ldots \vec{v}_{p}\right\}=\operatorname{set}$ of all vectors that can becuritten in the form $c_{1} \vec{v}_{1}+\ldots+c_{p} \vec{v}_{p}$ with c_{1}, \ldots, c_{p} realars

- vector \vec{b} is in $S_{p a n}\left\{\vec{v}_{1},-, \vec{v}_{p}\right\}$ iff vector equation $x_{1} \vec{v}_{1}+\ldots+x_{p} \vec{v}_{p}=\vec{b}$ has a solution \Leftrightarrow lin.sys. with Augm. Mat. $\left[\vec{v}_{1} \cdots \vec{v}_{p} \vec{b}\right]$ has a solution
- $S_{r a n}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ contains every sealer multiple of \vec{v}_{1} and in particular contains $\overrightarrow{0}$.

