$1 / 22 / 2020$
LAST TIME: $\vec{a},\left[\begin{array}{c}1 \\ -3 \\ -1\end{array}\right], \vec{a}_{2}=\left[\begin{array}{c}3 \\ -5 \\ 2\end{array}\right], \vec{b}=\left[\begin{array}{l}-1 \\ -1 \\ -4\end{array}\right]$
Q: can we write $\vec{b}=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}(x)$ Lo some x_{1}, x_{2} ?
Sol: $(x) \sim$ lin.sys. with Aug. Mat. $\left[\begin{array}{c|c|}\hline-1 & 3 \\ -3 & -5 \\ -1 & 2\end{array}\right)\left[\begin{array}{c}-1 \\ -1 \\ -4\end{array}\right] \sim\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$

$$
\begin{array}{ll}
x_{1} & =2 \\
1 & = \\
x_{2} & =-1
\end{array}
$$

$\overrightarrow{a_{1}} \vec{a}_{2} \vec{b}$

$$
=\left[\begin{array}{lll}
\vec{a}_{1} & \vec{a}_{2} & \vec{b}
\end{array}\right] \quad \text { (Notation) }
$$

- Equation $x_{1} \vec{a}_{1}+\ldots+x_{p} \vec{a}_{p}=\vec{b}$ has same sol. Set as lin.sys. with Aug. Mat. $A=\left[\begin{array}{llll}\vec{a}_{1} \cdots & \vec{a}_{a} & \vec{b}\end{array}\right]$ (in particular, \vec{b} can be generated as a lin comb. of $\vec{a}_{1}, \ldots, \vec{a}_{p}$, if the lin syr. corresp.to A has a solution)
def. Let $\vec{v}_{1}, \ldots, \vec{v}_{p} \in \mathbb{R}^{n}$. The set of all linear combinations of $\vec{v}_{1}, \ldots, \vec{v}_{p}$ is denoted
$S_{p a n}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}=\left\{c_{1} \vec{v}_{1}+\ldots+c_{p} \vec{v}_{p} \mid c_{1}, \ldots, c_{p} \in \mathbb{R}\right\}$

$$
=\text { the subset of } \mathbb{R}^{n} \text { spanned (or generated) by } \vec{v}_{1}, \ldots, \vec{v}_{p} \text {. }
$$

- a vector \vec{b} is in Span $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ iff the vector eq. $x_{1} \vec{v}_{1}+\ldots+x_{p} \vec{v}_{p}=\vec{b}$ has a sol. \Leftrightarrow lin .syr. with Aug. Mat. $\left[\vec{u}_{1} \ldots \vec{v}_{p} \vec{b}\right]$ has a sol.
- Span $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ contains every scalar multiple of \vec{v}_{1} and cataivs $\overrightarrow{0}$.

Geom. description of $S_{\text {ran }}\{\vec{v}\}, \operatorname{S}_{\text {pen }}\{\vec{u}, \vec{v}\}$
Let $\vec{v} \in \mathbb{R}^{3}$ a nonzero vector. Span $\{\vec{v}\}=\{$ scalar multiples of $\vec{v}\}$

=pts on the he in \mathbb{R}^{3} through \vec{o} and \vec{v}

- Lat $\vec{u}, \vec{v} \in \mathbb{R}^{3}$ two nonzero vectors sit. \vec{v} is not a mu title of \vec{u}. Span $\{\vec{u}, \vec{u}\}=$ plane in \mathbb{R}^{3} through $\overrightarrow{0}, \vec{u}, \vec{u}$.

Ex: $Q: \quad \vec{a}_{1}=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right], \vec{a} \vec{a}_{2}=\left[\begin{array}{c}5 \\ -13 \\ -3\end{array}\right], \vec{b}=\left[\begin{array}{c}-3 \\ 8 \\ 1\end{array}\right] \quad$ Is $\vec{b}_{\text {in }}$ the plane Spins $\{\vec{a}, \vec{a}, \vec{a} 2$?
Sol: $\operatorname{does} x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}=\vec{b}$ have a sol? $\left[\begin{array}{ccc}1 & 5 & -3 \\ -2 & -13 & 8 \\ 3 & -3 & 1\end{array}\right] \sim\left[\begin{array}{ccc}1 & 5 & -3 \\ 0 & -3 & 2 \\ 0 & 0 & -2\end{array}\right]$

$$
0=-2 \Rightarrow \text { no solution! }
$$

$$
\vec{a}_{1} \vec{a}_{2} \vec{b} \quad \text { REF } \quad \Rightarrow \vec{b} \notin S_{p a n} \text { ! }
$$

(1.4.) Matrix Equation $A \vec{x}=\vec{b}$

Def for an $m \times n$ matrix $A=\left[\begin{array}{lll}\vec{a}_{1} & \cdots & \vec{a}_{n}\end{array}\right]$ and $\vec{x} \in \mathbb{R}^{n}$, the matrix-vector product is $A \vec{x}=\left[\vec{a}_{1}-\vec{a}_{n}\right]\left[\begin{array}{l}x_{1} \\ x_{n} \\ x_{n}\end{array}\right]:=x_{1} \vec{a}_{1}+\ldots+x_{n} \vec{a}_{n} \quad$ columns \quad in. cont. of of. of A with weights given by dries
Note: $A \vec{x}$ is only defined if \# columns in $A=$ \#entries $n \vec{x}$.
Ex: $\begin{gathered}{\left[\begin{array}{cc}1 & {\left[\begin{array}{c}-2 \\ -4 \\ 5\end{array}\right)} \\ 3 \\ 0\end{array}\right)} \\ \hat{a}_{1}\end{gathered} \hat{r}_{a_{2}} \frac{1}{a_{3}}$
Q for $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \in \mathbb{R}^{m}$, wort lin.conb. $\vec{u}=2 \vec{v}_{1}-5 \vec{v}_{2}+3 \vec{v}_{3}$ as a matrix vect-product
Sol $\vec{u}=\underbrace{\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]\left[\begin{array}{c}2 \\ -5 \\ 3\end{array}\right]}_{m \times 3 \text { matrix }}$ "matrix eq". of $\operatorname{form} A_{x}=\vec{b}$

$$
\text { Lin.sys }-4 x_{1}-2 x_{2}+3 x_{2}=5 \quad \Leftrightarrow \quad \text { vedor } x_{1}\left[\begin{array}{c}
1 \\
-4
\end{array}\right]+x_{2}\left[\begin{array}{c}
-2 \\
5
\end{array}\right]+x,\left[\begin{array}{l}
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
5 \\
7
\end{array}\right] \Leftrightarrow\left[\begin{array}{ccc}
1 & -2 & 3 \\
-4 & 5 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{1} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
5 \\
7
\end{array}\right]
$$

- If $A=\left[\vec{a}_{1} \cdots \vec{a}_{-}\right] \quad m \times n$ matrix, $\vec{b} \in \mathbb{R}^{m}$, matrix of coff of the liao syr.
then matrix eq. $A \vec{x}=\vec{b}$ has same sol. set
as the vect eq. $x_{1} \vec{a}_{1}+\ldots+x_{1} \vec{a}_{n}=\vec{b}$
and same as linn sss. with Aug. Mat. $\left[\vec{a}_{1}, \cdots \vec{a}, \vec{b}\right]$
Existence of solutions
- Existence of solutions $\vec{A} \vec{x}=\vec{b}$ hasa solution ff \vec{b} is a lin. comb. of Glumes of $A\left(\Leftrightarrow \vec{b} \in S_{\text {ain }}\{\vec{a}, \ldots, \vec{a}\}\right)$

Ex: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right], \vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right] \quad Q$: Is cq. $A \vec{x}=\vec{b}$ consistent for all \vec{b} ?
Sol: Aug. Mat $=\left[\begin{array}{cccc}1 & 2 & 3 & b_{1} \\ 6 & 5 & 6 & b_{2} \\ 7 & 8 & 9 & b_{2}\end{array}\right] \sim\left[\begin{array}{cccc}1 & 2 & 2 & b_{1} \\ 0 & -3 & -6 & b_{2}-4 b_{1} \\ 0 & -6 & -12 & b_{3}-7 b_{1}\end{array}\right] \sim\left[\begin{array}{cccc}1 & 2 & 3 & b_{1} \\ 0 & -3 & -6 & b_{2}-2 b_{1}, \\ 0 & 0 & 0 & b_{3}-2 b_{2}+b_{1}\end{array}\right]$ 年 want this
$\Rightarrow \vec{A} \vec{x}=\vec{b}$ consistent iff $b_{1}-2 b_{2}+b_{3}=0$

- eg. of a plane through the origin in \mathbb{R}^{3}

$$
=\operatorname{Sran}\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}
$$

- $\vec{A} \vec{x}=\vec{b}$ us rot consistent for every \vec{b}, be cause REF of A has a roc of zeros

If A had a pinot in each now, REF $\left[A B_{B}^{-}\right]$could be of form $\left[\begin{array}{lll}* & * & * \\ 0 & * \\ 0 & 0 & * \\ 0 & 0 & *\end{array}\right]$ - corvister $\forall \vec{b}$.

Theorem Let A be an $m \times n$ matrix. The following are equivalent.
(a) for each $\vec{b} \in \mathbb{R}^{m}$, eq. $A \vec{x}=\vec{b}$ has a solution
(b) each $\vec{b} \in \mathbb{R}^{m}$ is a Din. comb. of columns of A
(c) columns of A span entire \mathbb{R}^{m}
(d) A has a pivot in every row
note: coif. matrix, not the augm. mat.
Roo-vedor rule for com tinge $\Delta \vec{x}$
If $A \vec{x}$ is defined, then $i^{\text {th }}$ entry of $\vec{A} \vec{x}$ is the sum of products of corresponding entries
from row i of A and from \vec{x}.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
7 x_{1}+8 x_{2}+g & x_{3}
\end{array}\right]\left[\begin{array}{ll}
5 & 5 \\
{[}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}
\end{aligned}
$$

Ex: $\left[\begin{array}{ccc}1 & -2 & 3 \\ -4 & 5 & 0\end{array}\right]\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]=\left[\begin{array}{l}1 \cdot 2+(-2)(-1)+3 \cdot 3 \\ (-4) \cdot 2+5 \cdot(-1)+0 \cdot 3\end{array}\right]=\left[\begin{array}{c}13 \\ -13\end{array}\right]$

- Properties of matrix-vector product $A \vec{x}$
for A an man matrix $, \vec{u}, \vec{v} \in \mathbb{R}^{n}$ and c a scalar:
(a) $A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}$
(b) $A(c \vec{u})=c(A \vec{u})$

