1/29/2020| 1.8. Linear transformations
Ex: $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 2\end{array}\right] \quad A$ "acts" on vectors $\vec{x} \in \mathbb{R}^{3}$ by transforming \vec{x} into $A \vec{x} \in \mathbb{R}^{2}$

$$
\begin{gathered}
\Delta\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
7 \\
3
\end{array}\right], \Delta\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\vec{x} \quad \vec{b} \\
\vec{u}
\end{gathered} \overrightarrow{0}
$$

A transformation (o rfunction, or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule which assigns to each vector $\vec{x} \in \mathbb{R}^{n}$ a vector $T(\vec{x}) \in \mathbb{R}^{m}$
\mathbb{R}^{n}-"domain of T, \mathbb{R}^{m}-"codomain"
Notation: $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
domain odomain
for $x \in \mathbb{R}^{n}, T(\vec{x}) \in \mathbb{R}^{m} \quad$.image of \vec{x} " (under the action of T)
Range of $T=$ set of all images $T(\vec{x})$

- Given A an man matrix, we have a matrix transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \uparrow$ with $T(\vec{x})=A \vec{x}$. Notation: $\vec{x} \longmapsto A \vec{x}$ for such transf.

Ex: $A=\left[\begin{array}{cc}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right]$ define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $T(\vec{x})=A \vec{x}$
(a) find image $T(\vec{u})$ for $\vec{u}=\left[\begin{array}{c}2 \\ -1\end{array}\right] \quad$ Sol: $\left[\begin{array}{c}1 \cdot 2+(-3)(-1) \\ 3 \cdot 2+5 \cdot(-1) \\ (-1) \cdot 2+7(-1)\end{array}\right]=\left[\begin{array}{c}5 \\ 1 \\ -9\end{array}\right]$
(b) Solve $T(\vec{x})=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right]$ for \vec{x}. Sol: Aug. Mat $\left[\begin{array}{ccc}1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & -5\end{array}\right] \sim\left[\begin{array}{ccc}1 & 0 & 3 / 2 \\ 0 & 1 & -1 / 2 \\ 0 & 0 & 0\end{array}\right]$

$$
\Rightarrow \begin{aligned}
& x_{1}=-3 / 2 \\
& x_{2}=1 / 2
\end{aligned} \quad \Rightarrow \vec{x}=\left[\begin{array}{c}
-3 / 2 \\
1 / 2
\end{array}\right] \quad \text {-its image is } \vec{b} \text { ! }
$$

(c) Is there more then one \vec{x} st. $T(\vec{x})=\vec{b}$?

Sol: $A \vec{x}=\overrightarrow{5}$ has a unique sol. (n ore vars) $\Rightarrow N O$, there is only one \vec{x} whose image is \vec{b}.
(d) IS $\vec{c}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$ in the range of T ?

Sol: $\begin{aligned} \Delta \vec{x}=\vec{c} \\ \text { does sol. exist? }\end{aligned} \quad$ Aug. Mat. $\left[\begin{array}{ccc}1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & 5\end{array}\right] \sim\left[\begin{array}{ccc}1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -35\end{array}\right] \Rightarrow \begin{aligned} & \text { system is in consistent, } \\ & \text { solution docs not } \\ & \text { exist } \\ & \\ & \Rightarrow \text { NO }\end{aligned}$
def A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if
(i) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v}) \quad$ for all $\vec{u}, \vec{v} \in \mathbb{R}^{n}$
(ii) $T(c \vec{u})=c T(\vec{u}) \quad$ for all $c \in \mathbb{R}, \vec{u} \in \mathbb{R}^{n}$

Main example: every matrix transf. $T: \vec{x} \mapsto A \vec{x}$ is a linear transf.

$$
\text { (Indeed: } \quad A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}, A(c \vec{u})=c(A \vec{u}) \text {) }
$$

- Proporties of a lin transf. : $\cdot T(\overrightarrow{0})=\overrightarrow{0}$

$$
\text { - } T(c \vec{u}+d \vec{v})=c T(\vec{u})+d T(\vec{v})
$$

more generally: $T\left(c_{1} \vec{v}_{1}+\ldots+c_{p} \vec{v}_{p}\right)=c_{1} T\left(\vec{v}_{1}\right)+\ldots+c_{p} T\left(\vec{v}_{p}\right) \leftarrow$ Engineering
Ex: for r a scalar, define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\tilde{x})=r \vec{x}$. For $0 \leq r<1, T$ is called
1.9 Matrix of a lin.transf.

的: $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is columns: $\vec{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \vec{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ a Cin.transf. sit. $T\left(\vec{e}_{1}\right)=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right], T\left(\vec{e}_{2}\right)=\left[\begin{array}{c}2 \\ -1 \\ 5\end{array}\right]$
Find $T(\vec{x})$ for arbitrary $\vec{x} \in \mathbb{R}^{2}$.

$$
\begin{aligned}
\text { Sol: } \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{x_{1}}_{\vec{e}_{1}} \begin{array}{l}
1 \\
0
\end{array}]
\end{aligned}+\underbrace{x_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \Rightarrow T(\vec{x})}_{\vec{e}_{2}}=\begin{aligned}
& T\left(x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}\right) \\
&=x_{1} T\left(\vec{e}_{1}\right)+x_{2} T\left(e_{2}\right)= \\
&=x_{1} \underbrace{\left[\begin{array}{l}
1 \\
3
\end{array}\right]}_{T\left(\vec{e}_{1}^{\prime}\right)}+x_{2} \underbrace{\left[\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right]}_{T\left(\vec{e}_{2}\right\}}=\underbrace{\left[\begin{array}{cc}
1 & 2 \\
0 & -1 \\
3 & 5
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\Delta \vec{x}
\end{aligned}
$$

THM Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a lin. transf. Then there exists a unique matrix A st. $T(\vec{x})=A \vec{x}$ for all $\vec{x} \in \mathbb{R}^{n}$.
In fact, $\underbrace{A=\left[T\left(\vec{e}_{1}\right) \cdots T\left(\vec{e}_{n}\right)\right]}_{\text {stand.matrix of e in transf. } T}$ where $\vec{e}_{j}=\left[\begin{array}{l}0 \\ \vdots \\ 1 \\ 0 \\ 0\end{array}\right]+j^{- \text {th }}$ place is the $j^{- \text {th }}$ identity mann of
$\underline{\text { Ex. }} T$-dilation, $r=3 \quad T: \underbrace{\left[\begin{array}{l}1 \\ 0\end{array}\right]}_{\overrightarrow{e_{1}}} \mapsto\left[\begin{array}{l}3 \\ 0\end{array}\right], \underbrace{\left[\begin{array}{l}0 \\ 1\end{array}\right]}_{\overrightarrow{e_{2}}} \mapsto\left[\begin{array}{l}0 \\ 3\end{array}\right] \Rightarrow A=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$ -stand matrix of T.
Ex: $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \xrightarrow{T\left(x_{x}\right)} \underbrace{\substack{\text { counter }}}_{\rightarrow \vec{x} \text { rotation by } 90^{\circ}}$
canterclockevise

$$
A=\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]
$$

- stand. mat. of rotation by angle φ

def A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto \mathbb{R}^{m} if each $\vec{b} \in \mathbb{R}^{m}$ the image of at least one $\frac{\vec{x} \in \mathbb{R}^{n}}{\mathbb{R}^{m}}$

$$
\text { . } T \text { is onto if range = codomain }
$$

T not onto

def $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if each $\vec{b} \in \mathbb{R}^{m}$ is the image of $\frac{\text { at most one }}{\vec{x} \in \mathbb{R}^{n}}$ - T is $1-1$ iff $T(\vec{x})=\vec{b}$ for each \vec{b} has a unique sol.,

T not 1-1 or nore at all.

T_{1-1}

Ex: T - lin.mapping with stand.mat. $A=\left[\begin{array}{cccc}1 & 2 & -3 & 2 \\ 0 & 4 & 1 & -1 \\ 0 & 0 & 0 & 5\end{array}\right] \quad Q:(a)$ is $T i \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ (b) is T_{1-1} ?

Sol: (a) A has a piuat in every rou $\Rightarrow A \vec{x}=\vec{b}$ cisistent $\forall \vec{b} \Rightarrow T$ onto
(b) $A \vec{x}=\vec{b}$ has a free variable \Rightarrow no uniqueress $\Rightarrow T$ not $1-1$!

Rem: T is $1-1$ iff eq. $T(\vec{x})=\overrightarrow{0}$ has only the triv. sol.
THM: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a lin.transf., A-the stand.mat.
(a) T is outo iff columns of A span \mathbb{R}^{m}
(b) T is 1-1 iff columas of A are lin inden.

