$1 / 31 / 2020$
Rem: T is 1-1 iff eq. $T(\vec{x})=\overrightarrow{0}$ has only the triv. sol.
THM: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a lintransf., A-the stand.mat.
(a) T is onto iff columns of A span \mathbb{R}^{m}
[pivot in each row]
(b) T is 1-1 of columns of A are lin.indep.
2.11

Matrix operations

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 j} \\
\vdots & a_{1 n} \\
a_{i 1} & \cdots & a_{i} \\
\vdots & a_{i j} & a_{i n} \\
a_{m 1} & \cdots & a_{m} \\
\cdots & a_{m n}
\end{array} C_{i, j}\right) \text {-entry of } A
$$

Zero matrix \bigcirc (Bf size $m \times n$) -all entries zeros

- for A, B of samesize man, can form a sum $A+B$, $(A+B)_{i j}=a_{i j}+b_{i j}$

Ex: $\quad A=\left[\begin{array}{ccc}1 & 3 & 0 \\ 2 & 4 & -1\end{array}\right] \quad B=\left[\begin{array}{ccc}0 & -1 & 3 \\ 1 & 2 & 0\end{array}\right] \quad A+B=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 6 & -1\end{array}\right]$

- scalar multiples $\underset{\substack{\text { scalar }}}{C A}, \quad(c A)_{i j}=c a_{i j}$

Ex: $2 B=\left[\begin{array}{ccc}0 & -2 & 6 \\ 2 & 4 & 0\end{array}\right], A+2 B=\left[\begin{array}{ccc}1 & 1 & 6 \\ 4 & 8 & -1\end{array}\right]$
properties - as for vector operations: $C(A+B)=c A+c D$ etc.
matrix multiplication

- want a matrix $A B$ st. $A(B \vec{x})=(A B) \vec{x}$ for any \vec{x}.

$$
\begin{aligned}
& A(B \vec{x})=A\left(x_{1} \vec{b}_{1}+\ldots+x_{p} \vec{b}_{p}\right)=x_{1} A b_{1}+\ldots+x_{p} A b_{p}= \\
& =\underbrace{\left[A \vec{b}_{1} \cdots A \vec{b}_{p}\right]}_{A B} \vec{x}
\end{aligned}
$$

def If A is an $m \times n$ matrix, B - $n \times p$ matrix, then the product $A B$ is an $m \times p$ matrix,

$$
A B=A\left[\vec{b}_{1}, \vec{b}_{p}\right]=\left[A \vec{b}, \cdots A \vec{b}_{p}\right]
$$

- multiplication of matrices corresponds to composition of lintransf.

Ex: $A=\left[\begin{array}{cc}1 & 3 \\ -2 & -1\end{array}\right] \quad B=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 3 & 5\end{array}\right]$

$$
\vec{b}_{1} \vec{b}_{2} \vec{b}_{3}
$$

Sol: $A \vec{b}_{1}=\left[\begin{array}{c}2 \\ -4\end{array}\right] \quad A \vec{b}_{2}=\left[\begin{array}{c}10 \\ -5\end{array}\right] \quad A \vec{b}_{3}=\left[\begin{array}{c}15 \\ -5\end{array}\right] \quad \Rightarrow A B=\left[\begin{array}{ccc}2 & 10 & 15 \\ -4 & -5 & -5\end{array}\right]$

- for $A D$ to be defined, need \#columns $(A)=\# \operatorname{rous}(B)$

($m \times n-m a t r i x) \cdot(n \times p-$ matrix $)=m \times p$ matrix
- Row-column rule for $A B$:

$$
\begin{aligned}
& (A B)_{i j}=a_{i 1} b_{1 j}+a_{12} b_{2 j}+\ldots+a_{i n} b_{n j} \\
& \varepsilon_{x}:\left[\begin{array}{cc}
-+ & -3 \\
-2 & -1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 3 & 5
\end{array}\right]=\left[\begin{array}{ccc}
* & * & 1.0+3.5 \\
* & * & *
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & 3 \\
-2 & -1-1
\end{array}\right]\left[\begin{array}{lll}
2 & i & 0 \\
0 & 3 & 5
\end{array}\right]=\left[\begin{array}{cc}
* & * \\
*(-2) \cdot 1+(-1) \cdot 3 *
\end{array}\right] \text { entry }(2,2)}
\end{aligned}
$$

Properties: $A(B C)=(A D) C,(A+B) C=A C+B C, \quad I_{m} A=A=A I_{n}$
UARNINGS 1. Generally, $A B \neq B A \longleftarrow \varepsilon_{x} A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \quad D=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$

$$
A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \neq D A=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

2. Cancellation laws don't hold:

$$
A C=B C \neq>\quad A=B
$$

3. $A B=0 \nRightarrow A=0$ or $B=0$

If A an $n \times n$ matrix, $k \geqslant 1, A^{k}=\underbrace{A \cdot A \cdot \cdots \cdot A}_{k}-k^{- \text {th }}$ power of A

- Transpose for A an $m \times n$ matrix, its transpose A^{\top} is an $n \times m$ matrix whose columns are formed from respective rows of A.
Ex: $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \Rightarrow A^{\top}=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 2 & 5 \\ 3 & 6\end{array}\right] \Rightarrow B^{\top}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$
Prenceties: $\left(A^{\top}\right)^{\top}=A,(A+B)^{\top}=A^{\top}+B^{\top},(C A)^{\top}=C A^{\top},(A B)^{\top}=B^{\top} A^{\top}$ reverse order!!
2.2 The inverse of a matrix

A non matrix :s invertible if there is an non mat. C sit. $C A=\underbrace{I}_{I_{n}}$ and $A C=I$
Then C is called the inverse of A.
It is unique (if exists), notation: A^{-1}. Thus, $A^{-1} A=I, A A^{-1}=I$. a ron-invertible A is called "Singular"
Ex: $A=\left[\begin{array}{cc}2 & 5 \\ -3 & -7\end{array}\right], C=\left[\begin{array}{cc}-7 & -5 \\ 3 & 2\end{array}\right] \quad A C=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], C A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, thus $A^{-1}=C$.
The: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and $A^{-1}=\frac{1}{a d-b_{c}}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$. If $\frac{a d-b c}{\lambda}=0$, then A is non-invertible "determinant" $\operatorname{det} A$

Ex: $A=\left[\begin{array}{cc}2 & 5 \\ -3 & -7\end{array}\right]$, $\operatorname{det} A=2(-7)-5(-3)=1, A^{-1}=\left[\begin{array}{cc}-7 & -5 \\ 3 & 2\end{array}\right]$, af. prev. $c x$.
Ex: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{-1}=\frac{1}{-2}\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]=\left[\begin{array}{cc}-2 & 1 \\ 3 / 2 & -1 / 2\end{array}\right]$

- If A is an invertible $n \times n$ matrix, then for each $\vec{b} \in \mathbb{R}^{n}$, eq. $A \vec{x}=\vec{b}$ has unique sol. $\vec{x}=A^{-1} \vec{b}$.
-Properties: $\left(A^{-1}\right)^{-1}=A,(A B)^{-1}=\frac{B^{-1} A^{-1}}{\text { reverse order }},\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$

Algorithm forfinding A^{-1}
Row reduce the "augmented matrix" $[A \vdots I]-n \times 2 n$ matrix if A is invertible, RREF is: $\left[I ; A^{-1}\right]$.

$$
\begin{aligned}
& \underline{\text { Ex: }} A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad[A: I]=\underbrace{\left[\begin{array}{ll:ll}
1 & 2 & 1 & 0 \\
3 & 4 & 0 & 1
\end{array}\right]}_{A} \sim \underbrace{\left[\begin{array}{ll:ll}
1 & 2 & 1 & 0 \\
0 & -2 & -3 & 1
\end{array}\right]}_{I}\left[\begin{array}{ll:ll}
1 & 2 & 1 & 0 \\
0 & 1 & 3 / 2 & -1 / 2
\end{array}\right] \\
& \sim \underbrace{\left[\begin{array}{cc:cc}
1 & 0 & -2 & 1 \\
0 & 1 & 1 / 2 & -1 / 2
\end{array}\right]}_{I}
\end{aligned}
$$

