$2 / 14 / 20201$
(3.3) Cramer's rule. Volume and linear transformations.

A $n \times n$ matrix,$\vec{b} \in \mathbb{R}^{n}$. Let $A_{i}(\vec{b})=\left[\vec{a}_{1} . . \vec{b} \ldots \vec{a}_{n}\right]$
Tho (Cramer's rule)
for A invertible $n \times n, \vec{b} \in \mathbb{R}^{n}$, the unique solution of $A \vec{x}=\vec{b}$ has entries

$$
\left.x_{i}=\frac{\operatorname{det} A_{i}(\vec{b})}{\operatorname{det} A} \right\rvert\,, i=1, \ldots, n
$$

ε_{x}

Ex for which S (parameter), system $35 x_{1}-2 x_{2}=1$
(a) has a unique solution?

$$
-6 x_{1}+S x_{2}=2
$$

(b) write the sol. using Cramer's rule
Sol: $A=\left[\begin{array}{cc}35 & -2 \\ -6 & 5\end{array}\right]$

$$
\text { Let }=3 s^{2}-12=3(s-2)(s+2)
$$

$$
\operatorname{det}=s+4
$$

$$
\begin{aligned}
A_{2}(\vec{C}) & =\left[\begin{array}{ll}
3 s & 1 \\
-6 & 2
\end{array}\right] \\
\operatorname{det} & =6 s+6=6(s+1)
\end{aligned}
$$

(a): Set $\neq 0$ iff $s \neq \pm 2$

$$
\begin{aligned}
(b): x_{1} & =\frac{s+4}{3(s-2)(s+2)} \\
x_{2} & =\frac{6(s+1)}{3(s-2)(s+2)}=2 \frac{(s+1)}{(s-2)(s+2)}
\end{aligned}
$$

Formula for A^{-1}
for A invertible non matrix,

$$
A^{-1}=\frac{1}{\operatorname{det} A} \underbrace{\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right]}_{\text {"adjugate" of } A,} \text { adj } A
$$

$$
\begin{aligned}
& \begin{array}{ll}
4 x_{1}+5 x_{2}=2 \\
2 x_{1}+3 x_{2}=6
\end{array} \quad \text { Solve using }: \quad A=\left[\begin{array}{ll}
4 & 5 \\
2 & 3
\end{array}\right] \quad \Delta_{1}(\vec{b})=\left[\begin{array}{ll}
2 & 5 \\
6 & 3
\end{array}\right] \quad A_{2}(\vec{b})=\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right] \\
& \uparrow \quad \text { dst }=2 \\
& \text { dep }=-24 \\
& \text { dep }=20 \\
& x_{1}=\frac{-24}{2}=-12 \\
& x_{2}=\frac{20}{2}=10
\end{aligned}
$$

Ex: $A=\left[\begin{array}{c:cc}0 & 1 & 1 \\ -1 & -0 & -3 \\ 2 & 1 & -6\end{array}\right] \quad$ find $\left(A^{-1}\right)_{12}$
Sal:

$$
\begin{aligned}
& \operatorname{det} A=\left|\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & -3 \\
0 & 1 & 0
\end{array}\right|=-\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=1 \quad C_{21}=-\left|\begin{array}{cc}
1 & 1 \\
1 & -6
\end{array}\right|=7 \\
& \left.\Rightarrow A^{-1}\right)_{12}=\frac{C_{21}}{\operatorname{det} A}=7
\end{aligned}
$$

Determinants as area or volume
Thy (a) If $A=\left[\overrightarrow{a_{1}} \overrightarrow{a_{2}}\right]$ is a 2×2 matrix, the area of the parallelogram determined by \vec{a}_{1}, \vec{a}_{2} is $|\operatorname{det} A|$
(b) If $A=\left[\vec{a}_{1} \vec{a}_{2} \vec{a}_{3}\right]$ is a 3×3 matrix, the volume of the peralldipiped determined by $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$ is $|\operatorname{det} A|$
Ex: $A=\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right] \quad$ Area of $\frac{[1 / 1 / 1 /[}{[a}\left[\begin{array}{l}a \\ 0\end{array}\right] \quad|a d|=|\operatorname{det} A|$
Idea of proof of (a):

$$
A \underset{\mathcal{\gamma}}{\sim} \text { diagonal matrix }\left[\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right]
$$

$\left.\begin{array}{l}\text { (i) sol. replacements } \\ \text { (ii) col. interchanges }\end{array}\right\}$ charge neither $|\operatorname{det} A|$, nor Area
(ii) Area (parall. Ret. by $\left.\vec{a}_{2}, \vec{a}_{1}\right)=$ Area (parall. dat. by \vec{a}_{1}, \vec{a}_{2})
(i) Area (parall. dat. by $\left.\vec{a}_{1}, \vec{a}_{2}+c \vec{a}_{1}\right)=$ Area (parall. deft. by \vec{a}_{1}, \vec{a}_{2})

$$
\text { both areas }=\binom{\text { base }}{b} \cdot\binom{h e \text { eight }}{h}
$$

Ex: find the area of the parallelogram with vertices at $(-2,-2),(0,3),(4,-1),(6,4)$
 Sol: translate the parall. by $(2,2)$, to have $\overrightarrow{0}$ as a vertex new parall. $\int_{(0,0)}^{\frac{111}{(2,5)}} \cdot(8,6)$

$$
\text { Area }=\left|\operatorname{det}\left[\begin{array}{ll}
2 & 6 \\
5 & 1
\end{array}\right]\right|=|-28|=
$$

How arcas/volumes are changed by a linear transformation?
THM* (a) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a in transf. determined by a 2×2 matrix A. If S is a parallelogram in \mathbb{R}^{2}, then (Area of $\left.T(S)\right)=|\operatorname{det} A|$.(Area of S)
(b) If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is determined by a 3×3 matrix A and S. preallel:piped in \mathbb{R}^{3}, then $\quad($ Volume of $T(S))=|\operatorname{det} A|$ (Volume of S)

TM ${ }^{*}$ generalizes to finite area regions S of $\mathbb{R}^{2} /$ finite volume regions of \mathbb{R}^{3}

can be appoximated -union of little parallelegrans by a union of little squares

$$
\operatorname{Area}(T(S))=|\operatorname{det} A|-\operatorname{Area}(s)
$$

Ex: let E be a region in \mathbb{R}^{2} bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Area $(E)=$?
Sol:

Indeed: $T\left(\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \Rightarrow \begin{array}{l}u_{1}=\frac{x_{1}}{a} \\ u_{2}=\frac{x_{2}}{b}\end{array}\right.$

$$
\begin{aligned}
& \text { multiby } A=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \\
& \text { Thus: } \operatorname{Area}(E)=\underbrace{|\operatorname{det} A|}_{a b} \underbrace{A_{\text {ref }}(D)}_{\pi \cdot 1^{2}}=\pi a b \\
& \vec{u} \text { is the mit disk } D: f \quad \vec{x} \therefore E \text { : } \\
& u_{1}^{2}+u_{2}^{2} \leq 1 \quad \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}} \leq 1
\end{aligned}
$$

