2/17/2020 Vector spaces and subspaces. Null spaces and column spaces.
(4.1.) Vector spaces and subspaces
def A vector space - a nonempty set V, objects - "Vectors", with two operations: * addition $\quad \vec{u}+\vec{v} \in V \quad$ for $\vec{u}, \vec{v} \in V$

* multiplication by rcalars $c \vec{u} \in V$ for $\vec{u} \in V, c \in \mathbb{R}$;

Such that: ' $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$,
\exists zero -vector $\overrightarrow{0} \in V$ s.t. $\vec{u}+\vec{o}=\vec{u} \forall \vec{u}$

$$
\begin{aligned}
& \text { - } \vec{u}+\vec{v}=\vec{v}+\vec{u} \text {, } \\
& \text { - } c(\vec{u}+\vec{v})=c \vec{u}+c \vec{v},(c+d) \vec{u}=c \vec{u}+d \vec{u} \\
& c(d \vec{u})=(c d)^{\prime} \vec{u} \\
& \text { - } \forall \vec{u} \text { J negative }-\vec{u} \text { set. } \vec{u}+(-\vec{u})=0 \\
& 1 \cdot \vec{u}=\vec{u}
\end{aligned}
$$

Corollaries: $\overrightarrow{0}$ is unique, $\overrightarrow{-u}$ is unique

$$
0 \cdot \vec{u}=\overrightarrow{0}, c \overrightarrow{0}=\overrightarrow{0},-\vec{u}=(-1) \vec{u} .
$$

(Main example up to now)
Ex: spaces $\mathbb{R}^{n}, n \geqslant 1$
Ex: set of arrows (directed line segments) in \mathbb{R}^{2}. Tue arrous are considered equal if they have same length and point in the same direction $\quad P^{\prime}=$ addition: by parallelogram rule

Scalar multiplicaton:

$$
\vec{v} / 2 \vec{v}
$$

$$
l-\vec{v}
$$

Ex: S - space of all doubly-infinite sequences of numbers $y_{k}=\left\{\ldots y_{-2} y_{-1} y_{0} y_{1} y_{2} \ldots\right\}$

$$
\left\{y_{k}\right\}+\left\{z_{k}\right\}=\left\{y_{k}+z_{k}\right\}, C\left\{y_{k}\right\}=\left\{c y_{k}\right\}
$$

Ex: for $n \geqslant 0, \mathbb{P}_{n}$-set of polynomials of degree $\leqslant n, \vec{p}(t)=a_{0}+a_{1} t+\ldots+a_{n} t^{n}(*)$ degree of $\vec{P}=$ highest power of t whose coff in $(*)$ is $\neq 0$. $\frac{1 \quad \mathrm{r} \text { real coifs }}{1}$
for $\vec{p}(t)=a_{0} \neq 0$, degree $=0$. If all $a_{j}=0, \vec{p} \equiv 0$ is called the zero polynomial (its degree is not defined)
Sum: for $\vec{q}(t)=b_{0}+b_{1} t+\ldots+b_{n} t^{n}$,

$$
\begin{array}{rll}
\vec{p}+\vec{q} & : s: & (\vec{p}+\vec{q})(t)=\vec{p}(t)+\vec{q}(t)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) t+\ldots+\left(a_{n}+b_{n}\right) t^{n} \\
c \cdot \vec{p} & : & (c \vec{p})(t)=c \vec{p}(t)=c a_{0}+\left(c a_{1}\right) t+\ldots+\left(\left(a_{n}\right) t^{n}\right.
\end{array}
$$

$\overrightarrow{0}=$ zero polynomial (-1) $\vec{p}=-\vec{p}$ negative.

Ex: $: V$ = the set of all reat-valued functions on a set \mathbb{D}

$$
\begin{aligned}
& (f+g)(t)=f(t)+g(t), \quad(c f)(t)=c f(t) \\
& \text { R.g. } \mathbb{D}=\mathbb{R}, f=1+\sin 3 t, \quad g=2+7 t \\
& \text { then: }(f+g(t)=3+\sin 3 t+7 t, \quad(2 g(t)=4+14 t \\
& \text { zcco vector: } f(t)=0 \quad \forall t \text {. } \\
& \text { - each functor is a "point" of } V
\end{aligned}
$$

def A subspace of a vector space V is a subset $H C V$ satisfying:
(a) $\overrightarrow{0} \in H$
(b) $\vec{u}+\vec{v} \in H$
(c)

$$
f \vec{u}, \vec{u} \in H
$$

$$
\begin{aligned}
& c \vec{u} \in H \\
& \text { if } \vec{u} \in H, c \in \mathbb{R}
\end{aligned}
$$

(H closed under addition) (Hclosed under scalar multiplication)

- A subspace $H \subset V$ is automatically a vector space

Ex: $H=\{\overrightarrow{0}\} \subset V$ is a subspace -zero subspace of V
Ex: let $\mathbb{P}=$ all polynomials in t

- $\mathbb{P} \subset\{$ functions on $\mathbb{R}\}$-sub space
- $\mathbb{P}_{n} \subset \mathbb{P}, n \geqslant 0 \quad$ subspace

Ex: \mathbb{R}^{2} is not a subspace of \mathbb{R}^{3} (not even a subset!)
But: $H=\left\{\left.\left[\begin{array}{l}s \\ t \\ 0\end{array}\right] \right\rvert\, s, t \in \mathbb{R}\right\}$ is a rubipace of \mathbb{R}^{3} which "looks and acts" like \mathbb{R}^{2}

$$
\text { a line not through } \overrightarrow{0} \text { in } \mathbb{R}^{2} \text {-not a subspace }
$$

- Subspace spanned by a set

THM: If $\vec{v}_{1}, \ldots, \vec{v}_{p}$ are: V, then $H=\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is a subspace of V $\left\{c_{1} \vec{v}_{1}+\cdots+c_{p} \vec{v}_{p}\right\}$
H- subspace spanned/gereated by $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$
$\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$-spanaing/gererating set for H.
Ex: $H=\{$ vectors of form $(a-s b, b-a, a, b) \mid a, b \in \mathbb{R}\}$ show that $H \subset \mathbb{R}^{\{ }$ subspace
Sol: $\left[\begin{array}{c}a-2 b \\ b-a \\ a \\ b\end{array}\right]=\underbrace{a}_{\vec{v}_{1}} \begin{array}{c}1 \\ -1 \\ 0\end{array}]+\underbrace{b\left[\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right]}_{\vec{v}_{2}}$.
Thus $H=\operatorname{Sran}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$-subspace of \mathbb{R}^{4}
L.21 Null spaces, column spaces and lizeartrasformations

Recall: for $A m \times n$ matrix,

$$
\begin{aligned}
& N_{u} \mid A=\left\{\vec{x} \subset \mathbb{R}^{n} \text { sit. } A \vec{x}=\vec{b}\right\} \quad \text {-sub space of } \mathbb{R}^{n} \\
& \text { col }_{0} A=S_{\text {pan }\{\vec{a}, \ldots, \vec{a}\}}=\left\{\vec{b} \in \mathbb{R}^{m} \text { sit. } \vec{b}=A \vec{x} \operatorname{for} \operatorname{Some} \overrightarrow{\vec{x}} \in \mathbb{R}^{\prime}\right\} \\
& \text {-subspace of } \mathbb{R}^{m}
\end{aligned}
$$

car describe as $S_{\text {pan }}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$
with $\vec{v}_{1}, \ldots, \vec{v}_{p}$ from the parametric vector volution of $A \vec{x}=\overrightarrow{0}$.
def A lin. transf. T from a v. rp. V into a v.sp. W is a rule assigning to each vector \vec{x} in V a vedor $T(\vec{z})$ in W sit
(i)

$$
\begin{aligned}
& T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{u}) \quad \text { (ii) } \quad T(c \vec{u})=c T(\vec{u}) \\
& a_{y} \vec{u}, \vec{u}
\end{aligned}
$$

kernel (or null space) of T : set of all \vec{u} in V sit. $T(\vec{u})=\overrightarrow{0}$. <subspace of V. range of T : all vectors of former $T(\vec{x})$ in $W \quad \longleftarrow$ subspace of W.

$\varepsilon_{x}: T: V=\mathbb{R}^{n} \longrightarrow W=\mathbb{R}^{m}$
ken $T=N_{u} 1 A$

$$
\vec{x} \longmapsto{\underset{\text { man matrix }}{ } \vec{x}^{\Delta} \vec{x}}_{\text {m }}
$$

$$
\text { range } T=\operatorname{col} A
$$

Ex: $V=$ functions on $[a, b]$ which have catimuous der: vatives
$\omega=$ continuous functions on $[a, b]$
$D: V \rightarrow W$ fineartranst.
ken $D=\{$ constant functions on $[a, b]\}$
$f \mapsto f^{\prime}$

$$
\text { range } D=W \text {. }
$$

