S.21 Null spaces, column spaces and lizeartransformations

Recall: for $A m \times n$ matrix,

$$
\begin{aligned}
& N_{u \mid} A=\left\{\vec{x} \subset \mathbb{R}^{n} \text { sit. } A \vec{x}=\vec{b}\right\} \quad \text {-sub space of } \mathbb{R}^{n} \\
& \text { col }_{0} A=S_{\text {pen }\left\{\overrightarrow{a_{1}}, \ldots, \vec{a}\right\}}=\left\{\vec{b} \in \mathbb{R}^{m} \text { sit. } \vec{b}=A \vec{x} \operatorname{for} \operatorname{Some}\right. \\
& \text {-subspace of } \mathbb{R}^{m}
\end{aligned}
$$

can describe as $S_{p \text { an }}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$
with $\vec{v}_{1}, \ldots, \vec{v}_{p}$ from the parametric vector relation of $\vec{A} \vec{x}=\overrightarrow{0}$.
def $A \operatorname{lin}$. transf. T from a v. rp. V into a v.sp. W is a rule assigning to each vector \vec{x} in V a vedor $T(\vec{z})$ in W sit
(i)

$$
\begin{aligned}
& T(\vec{u}+\vec{v})=T(\vec{u})+T\left(\vec{u}^{\prime}\right) \quad \text { (ii) } \quad T(c \vec{u})=c T(\vec{u}) \\
& \text { any } \vec{u}, \vec{u}
\end{aligned}
$$

kernel (or null space) of T : set of all \vec{u} in V sit. $T(\vec{u})=\overrightarrow{0}$. <subspace of V. rage of T : all vectors of farm $T(\vec{x})$ in $W \quad \longleftarrow$ subspace of W.

$\varepsilon_{x}: T: V=\mathbb{R}^{n} \rightarrow W=\mathbb{R}^{m}$
ken $T=N_{u l} A$

$$
\vec{x} \longmapsto{\underset{\text { man matrix }}{ } \vec{x}^{\Delta} \vec{x}}_{\text {m }}
$$

$$
\text { range } T=\operatorname{col} A
$$

Ex: $V=$ functions on $[a, b]$ which have catinuous der: natives
$\omega=$ continuous functions on $[a, b]$
$D: V \rightarrow W$ fineartranst.
ken $D=\{$ constant functions on $[a, b]\}$
$f \mapsto f^{\prime}$

$$
\text { range } D=W \text {. }
$$

4.31 Linearly:idependent sets, bases.

Vectors $\vec{v}_{1}, \ldots, \vec{v}_{p}$ in a vect. sp. V are linearly independent, iff
the rect. eq. $c_{1} \vec{v}_{1}+\ldots+c_{p} \vec{v}_{p}=\overrightarrow{0}(*)$ has only the triv. sol. $c_{1}=\ldots=c_{p}=0$
otherwise, set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is lin. dep. and (x) (with not all weights zero) is a lin. dep. rel. among $\vec{v}_{1}, \ldots, \vec{v}_{p}$.
as in $\mathbb{R}^{n}:\{\vec{v}\}$ is linindep. if $\vec{v} \neq \overrightarrow{0}$
$\{\vec{u}, \vec{v}\}$ lin. dep. if $\vec{v}=c \vec{u}$ or $\vec{u}=d \vec{v}$.
$\left\{\overrightarrow{0}, \vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is lin. dep.
The Set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ of $p \geqslant 2$ vectors in V with $\vec{v}_{1} \neq 0$ is lin. dep. If Some $\vec{v}_{j}(j>1)$ is a lin. comb. of $\vec{v}_{1}, \ldots, \vec{v}_{j-1}$.
Note: for $V \neq \mathbb{R}^{n},(*)$ cannot be cast as matrix eq. $A \vec{x}=\overrightarrow{0}$. We must rely on def. and the for lin.(in) dependence

Ex: $V=\mathbb{P} \quad p_{1}(t)=1 \quad p_{2}(t)=t \quad p_{3}(t)=2-3 t$
then $\left\{p_{1}, p_{2}, p_{3}\right\}$ is lin dep. because $p_{3}=2 p_{1}-3 p_{2}$
Ex: Set. \{sint, cost\} is Pin.indep. in C[0,1] (spare of continuousfuncions on $0 \leq t \leq 1$)
since there is 0 scalar C sit. cos $t=c$. sin for all $t \in[0,1]$

- set $\{\sin t$ cost, $\sin 2 t\}$ is lin. der. in $C[0,1]$ since $\sin 2 t=2 \sin t \cos t \forall t$.
def Let H be a subspace of v.sp. V. A set of vectors $B=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}$ in V is a basis for H if
(i) B is a lin.indep. set
(ii) $H=\operatorname{Sran}\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}$
- Ex: let A-invertible $n \times n$ matrix, $A=\left[\vec{a}_{1}-\cdots \vec{a}_{n}\right]$. Then, columns of A q form a basis for \mathbb{R}^{n} - they are lin.indep. \& span \mathbb{R}^{n} by Inv.Mat.Thm.
$\tilde{H} \varepsilon_{x_{i}}$ Let $\vec{e}_{1}=\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right], \vec{e}_{2}=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ 0\end{array}\right], \ldots, \vec{e}_{n}=\left[\begin{array}{l}0 \\ \vdots \\ 0 \\ 1\end{array}\right]$ be columns of I,
$\stackrel{\rightharpoonup}{3} \mid\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$-standard basis for \mathbb{R}^{n}

Ex: $\vec{v}_{1}=\left[\begin{array}{l}3 \\ 0 \\ 6\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}-4 \\ 1 \\ 7\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{c}-2 \\ 1 \\ 7\end{array}\right] \quad Q:\left\{\vec{u}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} \quad$ a bass $f o r \mathbb{R}^{3}$?
Sol: $A=\left[\vec{v}_{1} \vec{v}_{2} \vec{v}_{3}\right] \sim\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ So, A invertible \Rightarrow YES
Ex: let $S=\left\{1, t, t^{2}, \ldots, t^{n}\right\} \quad S$ - basis for \mathbb{P}_{n}. the standard basis.
Indeed: S spans \mathbb{P}_{n}. Linear independence: assume $c_{0} \cdot 1+c_{1} \cdot+\ldots+c_{n} t^{\prime}=\overrightarrow{0}(-1)$

The spanning set theorem
Ex: $\quad \vec{v}_{1}=\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}2 \\ 2 \\ 0\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{c}6 \\ 16 \\ -5\end{array}\right] \quad, H=S_{\text {pan }}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$
Note: $\vec{v}_{3}=5 \vec{v}_{1}+3 \vec{v}_{2}$
Q: (a) shoo that $H=\operatorname{Sren}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$
(b) find a basis for H.

Sol. (a) a vector: Spar $\left\{\vec{v}_{1}, \overrightarrow{v_{2}}\right\}$ is $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\left(+0 \vec{v}_{3}\right)$ in H a vector in H is $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3} \vec{v}_{1}+3 \vec{v}_{2}\left(c_{1}+5 c_{3}\right) \vec{v}_{1}+\left(c_{2}+3 c_{3}\right) \vec{v}_{2}$ in $S_{p c o s}\left\{\vec{v}_{1}, \vec{v}\right\}$
(b) $\operatorname{Sa}_{\{ }\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ - linindef. (not multiples of one another)

- speer H, due to (a)

THM (spanning pet theorem)
Let $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ be a spanning set for H.
(a) if a vector \vec{v}_{k} from S is a l_{i}. comb. of other vectors: S, then the set formed from S by deleting \vec{V}_{k} still spans H.
(b) if $H \neq\{\overrightarrow{0}\}$, some subset of S is a bases for H.

- He largest ein.indep set in H . more, the result will no longer span H!
ε_{x}

$$
\begin{aligned}
& \text { Puthershraking }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { linindep.set, bis in } \mathbb{R}^{3} \quad \operatorname{sanas} \mathbb{R}^{3} \text {, lin. dep. } \\
\text { does ot span } \mathbb{R}^{3}
\end{array}
\end{aligned}
$$

