THM (spanning pet theorem)
$\underset{\sum}{\text { W. }}$ Let $S=\left\{\vec{u}_{1}, \ldots, \vec{v}_{p}\right\}$ be a spanning set for H.
(a) if a vector \vec{v}_{k} from S is a lir. comb. of other vectors in S, than the set
t formed from S by deleting \vec{V}_{k} still spans H.
(b) if $H \neq\{\overrightarrow{0}\}$, some subset of S is a basis for H.

A basis for H is: - the smallest spanning set for $H \subset$ can delete lin. dep vectors from a a spanning set for H. When we arrive to a more, the ices. subset, if we delete one

- He largest einindep. set :n H

Putherolvinking
ε_{x}

$$
\begin{aligned}
& \text { linindep.set 'ps basis :- } \mathbb{R}^{3} \\
& \text { pass } \mathbb{R}^{3} \text {, lin. dep. } \\
& \text { does not span } \mathbb{R}^{s}
\end{aligned}
$$

4.4. Coordinate systems
a basis B (with n vectors) for V imposes a "cord system" on V whit makes V "act like \mathbb{R}^{n} "
The (Unique representation theorem)
Let $B=\left\{\vec{b}_{1, \ldots}, \vec{b}_{n}\right\}$ be a basis for a v.sp. V. Then for each $\vec{x} \in V$ there exists a $\frac{\text { unique }}{\lambda}$ set of scalars c_{1}, \ldots, c_{n} sit. $\vec{x}=c_{1} \vec{b}_{1}+\ldots+c_{n} \vec{b}_{n}$ from spanning
property of B from lin in dep.
property
def weights C_{1}, \ldots, C_{n} in $(*)$ - coordinates of \vec{x} rel to B (B-coordinates $[\vec{x}]_{B}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right] \in \mathbb{R}^{n}$ - cord. vector of $\vec{x}($ rel. to $B) / B$-cord. vector of \vec{x}
Mapping $\quad \begin{aligned} V & \longrightarrow \mathbb{R}^{n} \\ \vec{x} & \mapsto[\vec{x}]_{B}\end{aligned} \quad$ cord. mapping defned by B.

Ex: $B=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ basis in $\mathbb{R}^{2} \quad \underline{Q}: \vec{x} \in \mathbb{R}^{2}$ with $[\vec{x}]_{B}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$ Ind \vec{x}.
$\vec{b}_{1} \quad \vec{b}_{2}$
Sol: $\vec{x}=-2 \vec{b}_{1}+3 \vec{b}_{2}=\left[\begin{array}{l}1 \\ 6\end{array}\right] . \quad$ Note: $\vec{x}=\left[\begin{array}{l}1 \\ 6\end{array}\right]=1 \vec{e}_{1}+6 \vec{e}_{2}$

thus, word. vector of \vec{x} rel. to stand basis $E=\{\vec{e}, \vec{e}\}$

$$
\text { is }[\vec{x}]_{\varepsilon}=\vec{x}
$$

Coordinates in \mathbb{R}^{n}
Ex: $B=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ in $\mathbb{R}^{2}, \quad \vec{x}=\left[\begin{array}{l}4 \\ 5\end{array}\right], Q:$ find $[\vec{x}]_{B}$
$\vec{b}_{1} \quad \vec{b}_{2}$
Sol: $c_{1} \vec{b}_{1}+c_{2} \overrightarrow{b_{2}}=\vec{x} \quad \Leftrightarrow \underbrace{\left[\begin{array}{cc}b_{1} & b_{2} \\ 1 & 1\end{array}\right]}_{P_{B} \text { - matrix changing } B \text {-cords of } \vec{x} \text { to and. cords }}\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}\hat{1} \\ 5\end{array}\right] \quad$ sol: $[\vec{x}]_{B}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}3 \\ 2\end{array}\right]$

- for any basis B in \mathbb{R}^{n}, let $P_{B}=\left[\vec{b}_{1}, \vec{b}_{n}\right]$

Coord.mapping

The Let $B=\left\{\vec{b}_{1}, \cdots, \vec{b}_{n}\right\}$ be a basis $f_{0} V$. Then the cooed mapping $\vec{x} \longmapsto[\vec{x}]_{B}$ is a $1-1$ en. transf. from V onto \mathbb{R}^{n}.

In particular, $\left[c_{1} \vec{u}_{1}+\ldots+c_{p} \vec{u}_{p}\right]_{B}=c_{1}\left[\vec{u}_{1}\right]_{B}+\ldots+c_{p}\left[\vec{u}_{p}\right]_{B} \quad$-preserves $\operatorname{lin} \frac{3}{c o m b}$.

- A lin.mapping $T: V \rightarrow W$ which is $\underline{1-1}$ and onto is called an isomorphism. - every vector space calculation in \bar{U} is veproducedin W and vice versa.

So, V and W are "same".

- A v.sp. V with a basis of n vectors is indistinguishable bon \mathbb{R}^{n}.

Ex: $B=\left\{1, t, t^{2}, t^{3}\right\}$ stand basis in \mathbb{P}_{3}

$$
\begin{aligned}
& p \text { in } \mathbb{P}_{3} \text { is } p(t)= a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
&-\ln \text {. omb. f stand } \\
& \text { basis vectors }
\end{aligned} \quad[p]_{B}=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

Word. marring

$$
\begin{aligned}
& p_{1} \rightarrow\left[p_{\mathbb{B}}\right. \\
& \mathbb{P}_{3} \rightarrow \mathbb{R}^{4}
\end{aligned} \quad \mathbb{P}_{3} \text { "acts" like } \mathbb{R}^{\Lambda}
$$

ε_{x}

$$
\begin{aligned}
& p_{1}=1+2 t^{2} \\
& P_{2}=4+t+5 t^{2} \quad \text { check that } \begin{array}{r}
\text { \{p, } p_{2}, p_{3}^{3} \text { are lin. dep. in } \mathbb{P}_{2} \\
P_{3}=3+2 t
\end{array} \quad \text { using cord. vectors }
\end{aligned}
$$

Sol:
Aug.mat.
of $\hat{A}=0$$\left[\begin{array}{llll}1 & 4 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 2 & 5 & 0 & 0\end{array}\right] \sim\left[\begin{array}{llll}1 & 4 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Rightarrow$ al. of A are lin. dep.

$$
\begin{aligned}
& {\left[p_{1}\right]_{B}\left[p_{2}\right]_{B}\left[p_{3}\right]_{B} \sim\left[\begin{array}{cccc}
1 & 0 & -5 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
x_{1}-5 x_{3}=0 \\
x_{2}+2 x_{3}=0
\end{array} \Rightarrow} \\
& \Rightarrow 5\left[p_{1}\right]_{B}-2\left[p_{2}\right]_{B}+\left[p_{3}\right]_{B}=0
\end{aligned}
$$

$\Rightarrow 5 p_{1}-2 p_{2}+p_{3}=0$ relation for polynomials
Ex: $\vec{v}_{1}=\left[\begin{array}{l}3 \\ 6 \\ 2\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right] \quad \vec{x}=\left[\begin{array}{c}3 \\ 12 \\ 7\end{array}\right] \quad B=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$-basis $\operatorname{Ror} H=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$
(a) is $\vec{x}: H$ (b) if yes, find $[\vec{x}]_{B}$

Sol:

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\vec{x} \quad \text { Aug. Mat. }\left[\begin{array}{ccc}
3 & -1 & 3 \\
6 & 0 & 12 \\
2 & 1 & 7
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

$\Rightarrow \quad$ sol exists (a)-y(s) $c_{1}=2, c_{2}=3$
(b) $\left[\begin{array}{l}2 \\ 3\end{array}\right]$

Practice questions
(1)

$$
B=\left\{p_{1}=1+2 t^{2}, \quad P_{2}=t, \quad P_{3}=2+3 t^{2}\right\} \quad \text { in } \mathbb{P}_{2} \quad p=1+t+t^{2}
$$

Q : find $[p]_{B}$

$$
\text { Sol: }\left[\begin{array}{llll}
1 & 0 & 2 & 1 \\
0 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 2 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & -1 & -1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& c_{1}\left[p_{1}\right]_{\varepsilon}+c_{2}\left[p_{2}\right]_{\varepsilon}+c_{3}\left[p_{3}\right]_{\varepsilon}=P \quad\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \quad \Rightarrow[p]_{B}=\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]
\end{aligned}
$$

$$
-p_{1}+p_{2}+p_{3}=p
$$

(2)

$$
B=\frac{\left\{\left[\begin{array}{l}
1 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
5
\end{array}\right]\right\} \text { in } \mathbb{R}^{2}}{\overrightarrow{b_{1}}}
$$

$$
\text { (a) } f_{\text {nd }} P_{B} \rightarrow P_{B}=\left[\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right]
$$

$$
\text { (b) } P_{B}^{-1}=\text { ? } \quad \rightarrow P_{B}^{-1}=-\left[\begin{array}{cc}
5 & -2 \\
-3 & 1
\end{array}\right]=\left[\begin{array}{cc}
-5 & 2 \\
3 & -1
\end{array}\right]
$$

(c) fid B-cord.vector of $\vec{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ ung (b)

$$
[\vec{x}]_{B}=\left[\begin{array}{cc}
-5 & 2 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

