2/28/2020| 5.1 Eigenvectors and eigenvalues
def $A n$ eigenvector of an $n \times n$ matrix A is a nonzero vector \vec{x} st. $A \vec{x}=\lambda \vec{x}$
A scalar λ is called an eigenvalue of A if $A \vec{x}=\lambda \vec{x}$ has a nontriv. solution \vec{x}.
Such \vec{x} is called an eigenvector corresponding to λ.
Ext: $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right] \quad \vec{u}=\left[\begin{array}{c}6 \\ -5\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}3 \\ -2\end{array}\right] \quad Q:$ are \vec{u}, \vec{v} eigenvectors?
Sol: $\Delta \vec{u}=\left[\begin{array}{c}-30 \\ 20\end{array}\right]=(-4) \vec{u} \Rightarrow \begin{gathered}\vec{u}-\text { eigen vector } \\ \text { with } \lambda=-4 \text { eigen }\end{gathered}$
$A \vec{v}=\left[\begin{array}{c}-9 \\ 11\end{array}\right] \neq \lambda \vec{v} \Rightarrow \vec{v}$ not an eigenvector!

Ex: Show that $\lambda=7$ is an eigenvalue for A; find corresponding eigenvectors.
Sol $\lambda=7$ is an e-value :if $A \vec{x}=7 \vec{x}$ has a nontriv. sol. $\Leftrightarrow A \vec{x}-7 \vec{x}=\overrightarrow{0}$

$$
A-7 I=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]-\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right]=\left[\begin{array}{cc}
-6 & 6 \\
5 & -5
\end{array}\right]
$$

$$
\Leftrightarrow(A-7 I) \vec{x}=\overrightarrow{0}
$$

are lindap. \Rightarrow there are nontrivesol. to hong. eq.

$$
\Rightarrow \lambda=7 \text { is an eigenvalue! }
$$

Aug. Mat: $\left[\begin{array}{ccc}-6 & 6 & 0 \\ 5 & -5 & 0\end{array}\right] \sim\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$ general sol: $\vec{x}=x_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ each such vector eigenvector for $\lambda=7$
WARNING: We used row reduction to find eigenvectors but
it cannot bo used to find eigenvalues. REF A does not display the eigenvalues of A !
for $A n \times n, \lambda$ is an e.v. ff $(A-\lambda I) \vec{x}=\overrightarrow{0}^{(* *)}$ has a nontrw. sol.
set of sol of $\left(x_{*}\right)=\operatorname{Nul}(A-\lambda I) \subset \mathbb{R}^{n}$

Ex: $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right], \lambda=2$ find a basis for the eigenspace H
Sol: $A-2 I=\left[\begin{array}{lll}2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6\end{array}\right]$
Auy.mat for $(* *):\left[\begin{array}{cccc}2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0\end{array}\right] \sim\left[\begin{array}{cccc}1 & -\frac{1}{2} & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

$$
\vec{x}=x_{2} \underbrace{\left[\begin{array}{c}
1 / 2 \\
0 \\
0
\end{array}\right]}_{\overrightarrow{v_{1}}}+\underbrace{x_{3}}_{\overrightarrow{v_{2}}}
$$

Thus, H - plane in \mathbb{R}^{3}, $x_{1}=\frac{1}{2} x_{2}-3 x_{3}$

$$
x_{2}, x_{3} \text { free }
$$

$$
\left\{\vec{v}_{1}, \vec{v}_{2}\right\} \text {-basis. }
$$

THM Eigenvalues of a triangular matrix are the diagonal entries
Idea:

Ex: $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 1 & 0 & 0 \\ -2 & -1 & 2\end{array}\right]$
Note: $\lambda=0$ is an eigenvalue $\Leftrightarrow A \vec{x}=\overrightarrow{0}$ has a nontriv sol. $\Leftrightarrow A$ non-invertible
Them: If $\left\{\vec{v}_{1}, \ldots, \vec{v}_{r}\right\}$ eigenvectors that a merespand to distinct eigavalues $\lambda_{1}, \ldots, \lambda_{r}$ of a $n \times n$ mat. A, then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{r}\right\}$ is a lin in dep. Set.
5.2 Characteristic equation

Ex: fid the eignvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$
$\frac{\text { Sol: }}{\lambda_{e . ~}^{*}}(A-\lambda I) \vec{x}=\overrightarrow{0}$ has a nontriv.sol. $\Leftrightarrow A-\lambda I$ non-invertible

$$
\begin{aligned}
& \Leftrightarrow \operatorname{det}(A-\lambda I)=0 \\
& A-\lambda I=\left[\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right] \quad \operatorname{det}=(2-\lambda)(-6-\lambda)-3 \cdot 3=\lambda^{2}+4 \lambda-21=(\lambda+7)(\lambda-3) \\
& \text { thus } \operatorname{det}=0 \text { if } \lambda \in\{3,-7\}
\end{aligned}
$$

So, $\lambda=3, \lambda=-7$-eigenvalues.
Inv. Mat. Than (Cont'd): A non matrix is invertible tiff
(5) 0 is not an eigenvalue of A
(t) $\operatorname{det} A \neq 0$

- λ is an eigenvalue of A ff λ satisfies the characteristic equation $\operatorname{det}(A-\lambda I)=0$

Ex: $A=\left[\begin{array}{lll}3 & 1 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 3\end{array}\right] \quad \underline{Q}$: find the char.eq. $\quad \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}3-\lambda & 1 & 2 \\ 0 & 1-\lambda & 5 \\ 0 & 0 & 3-\lambda\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)$
So, char. eq: $\underbrace{-(\lambda-3)^{2}(\lambda-1)}_{\text {char. polynomial of } A}=0$
Note: $\lambda=3$-e.v. with (algebraic) multiplicity 2 (multiplicity as a root of chasieq.)
Ex: A 6×6 char. poly $=\lambda^{6}-\left\{\lambda^{5}-12 \lambda^{4}\right.$. Q:findeegenvalues \& their multiplicities
S.1: char. poly $=\lambda^{4}(\lambda-6)(\lambda+2)$. So, e.v. are:

$$
\begin{aligned}
& \lambda=0 \quad \text { (mull. 4) } \\
& \lambda=6 \text { (mull. 1) } \\
& \lambda=-2 \text { (multi. 1) }
\end{aligned}
$$

- for A $n \times n$, char. eq. has n roots (counting with multiplicities). some of then can be complex.

Similarity def. A is similar to B if there is an invertible P st.

$$
\overline{\left.\left.P^{-1} A P=\bar{B} \quad\left(\text { or equivalently } A=P B P^{-1}\right), ~\right)=\bar{x}\right)}
$$

- $A \rightarrow P^{-1} A P$ "similarity transformation" Note: $A \approx B \Rightarrow B \approx A$

THM If A and B are similar, they have the sane char poly and hence same e.v. (with sane multiplicities)

WARNING 1. $\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right] \not \approx\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ same eigen values but not similar
2. similarity is not the same as row equivalence. rows operations change eigenvalues

