 (b) In thin case, any sequence of now operations that reduces A to In also transforms In to $A^{-1}$.


Algorithm forfinding $A^{-1}$
Row reduce the "augmented matrix" $[A \vdots I]-n \times 2 n$ matrix if $A$ is invertible, $\operatorname{RREF}$ is: $\left[I \vdots A^{-1}\right]$.
$\left.\left.\begin{array}{rl}\underline{E_{x}}: A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad[A ; I]=\underbrace{\left[\begin{array}{ll:ll}1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1\end{array}\right]}_{A} \underbrace{}_{I}\left[\begin{array}{cc:c}1 & 2: 1 & 1 \\ 0 & -2 & -3\end{array}\right. & 1\end{array}\right]\left[\begin{array}{cc:cc}1 & 2 & 1 & 0 \\ 0 & 1 & 3 / 2 & -1 / 2\end{array}\right]\right)$
2.3 Characterizations of invertible matrices

Thu ("The invertible matrix theorem")
Let $A$ be a square, $n \times n$, matrix. The following are equivalent:
(a) $A$ is invertible
(b) $A \sim I_{n}$
(c)* $A$ has $n$ pivots - most useful
(d) $A \vec{x}=\overrightarrow{0}$ has only the trivial solution
(e) columns of $A$ are lin.indep.
(f) lin. transf. $\vec{x} \mapsto A \vec{x}$ is 1-1.
(g) $A \vec{x}=\vec{b}$ has a sol. for end $\vec{b} \in \mathbb{R}^{n} \quad \sim\left(g^{\prime}\right) A \vec{x}=\vec{b}$ has a meringue sol. $\forall \vec{b} \in \mathbb{R}^{n}$
(h) columns of $A$ span $\mathbb{R}^{n}$
(i) lin.transf $\vec{x} \longmapsto A \vec{x}$ is onto $\mathbb{R}^{n}$
( $j$ ) there is $C$ sit. $C A=I$
$(k)$ there :s $D$ st. $A D=I$
(l) $A^{\top}$ invertible.

If $A, B \quad n \times n$ matrices and $A B=I$, then
$A, B$ are both invertible, with $B=A^{-1}, A=B^{-1}$
Ex: $A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9\end{array}\right]$ invertible? Sol: $A \sim\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & -1 & -1\end{array}\right] \sim\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 11 & 4 \\ 0 & 0 & (3)\end{array}\right]$

$$
\begin{aligned}
& \overrightarrow{(c)^{(2)}} \\
& \text { of THM }
\end{aligned} \text { A invertible }
$$

Invertible linear transformations
for $A$ invertible, we have

$$
A^{-1} A \vec{x}=\vec{x}
$$



- a lin. transf. $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible if there exists $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ sit.

$$
\begin{aligned}
& S(T(\vec{x}))=\vec{x} \text { for all } \vec{x} \in \mathbb{R}^{n} \\
& T(S(\vec{x}))=\vec{x} \quad "
\end{aligned}
$$

if such $S$ exists, it is unique and :s "the inverse of $T^{\prime \prime}, S=T^{-1}$
. if $T$ has stand mat. $A$, then $T$ is invertible of $A$ invertible.
In this case, $S$ is given by $S(\vec{x})=A^{-1} \vec{x}$
Ex: let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ one-to-one. By $\operatorname{Thm}(f), A^{i s}$ invertible $\Rightarrow T$ invertible
Practice questions:
(I) $A=\left[\begin{array}{ccc}2 & 3 & 0 \\ 3 & 5 & 0 \\ -4 & -6 & 1\end{array}\right]$ is it invertible?
(II) Is $\left[\begin{array}{lll}1 & 2 & 7 \\ 1 & 7 \\ 1 & 7 \\ 7\end{array}\right] \quad$ Is $\left[\begin{array}{ll}3 & 4 \\ 5 & 7\end{array}\right]$ invertible?
invertible?
(if yes,, ind the inverse
(III) Assume $A, B n \times n$, invertible. Is $(A B)^{T}$ invertible? What is the inverse? (in terns of $A^{-1}, B^{-1}$ )

$$
\begin{aligned}
\text { Sol: I : } & {\left[\begin{array}{ccc:ccc}
2 & 3 & 0 & 1 & 0 & 0 \\
3 & 5 & 0 & 0 & 1 & 0 \\
-4 & -6 & 1 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{ccc:ccc}
2 & 3 & 0 & 1 & 0 & 0 \\
0 & 1 / 2 & 0 & -\frac{3}{2} & 1 & 0 \\
0 & 0 & 1 & 2 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{ccc:c:ccc}
1 & \frac{3}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & 1 & 0 & -3 & 2 & 0 \\
0 & 0 & 1 & 2 & 0 & 1
\end{array}\right] } \\
& \sim\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & 5 & -3 & 0 \\
0 & 1 & 0 & -3 & 2 & 0 \\
0 & 0 & 1 & 2 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
I \quad A^{-1}
$$

- Elementary matrices
an elem. matrix is the result of a single elem. Fou operation on the identity matrix.
Ex: $E_{\mu}=\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right], E_{\mu}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], E_{\lambda}=\left[\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right]$

$$
r_{2} \mapsto r_{2}-3 r_{1} \quad r_{1} \geqq r_{2} \quad r_{2} \mapsto 5 r_{2}
$$

for $\left.A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], E_{1} A=\left[\begin{array}{cc}a & b \\ c-3 a & d-3 b\end{array}\right], E_{2} A=\left[\begin{array}{cc}a & d \\ a & b\end{array}\right], E_{3} A=\left[\begin{array}{cc}a & b \\ 5 & c\end{array}\right) d\right]$

- If an elem row op is perborned on $m \times n$ mat. $A$, the resulting matrix is $E A$, where $E$ is the mam elem.nat. created by doing the same row op. on Am.
$A \underset{\rho}{\sim} E A \quad$ where $I \underset{\rho}{\sim} E$.
- Each $E$ is invertible. The inverse is an elem. mat. of the sanetype.

Argument for (b) of Tho on p. 1:

$$
\begin{aligned}
& A \sim E_{1} A \sim E_{2}\left(E_{1} A\right) \sim \ldots \sim \underbrace{E_{p} \cdots E_{1} A}_{A^{-1}}=I \\
& I \sim E_{1} I=E_{1} \sim E_{2} E_{1} \sim \cdots \sim E_{p} \cdots E_{1}
\end{aligned}
$$

