$2 / 5 / 2020 \mid 2.8$ Subspaces
def A subspace of \mathbb{R}^{n} is any set H in \mathbb{R}^{n} sit.
(a) $\overrightarrow{0} \in H$
(b) $\vec{u}+\vec{v} \in H \quad$ if $\vec{u}, \vec{v} \in H$
(c) $c \vec{u} \in H$ if $\vec{u} \in H, c$ a scalar

Ex: $\vec{v}_{1}, \vec{v}_{2} \in \mathbb{R}^{n}$, then $H=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is a subspace of \mathbb{R}^{n}
Let's check: (a) $\overrightarrow{0}=0 \cdot \vec{v}_{1}+0 \cdot \vec{v}_{2} \in H \quad J$
(b)

$$
\begin{aligned}
\vec{u}=s_{1} \vec{v}_{1}+s_{2} \vec{v}_{2} \\
\vec{v}=t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}
\end{aligned} \Rightarrow \vec{u}+\vec{v}=\left(s_{1}+t_{1}\right) \vec{v}_{1}+\left(s_{2}+t_{2}\right) \vec{v}_{2} \quad \in H
$$

(c) $c \cdot \vec{u}=\left(c s_{1}\right) \vec{v}_{1}+\left(c s_{2}\right) \vec{v}_{2} \in H$

Thus: for $\vec{v}_{1} \neq 0, \vec{v}_{2} \neq c \vec{v}_{1}, \operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ - a plane: : \mathbb{R}^{n} through $\overrightarrow{0}$

$$
\text { for } \vec{v}_{1} \neq 0, \vec{v}_{2}=c \vec{v}_{1}, S_{\text {ran }}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}-a l i v e:=\mathbb{R}^{n}
$$

through $\overrightarrow{0}$

Ex: a line L not through the orrin is not a subspace

$(a, b, c$ all $f a i l)$
$\vec{o} \notin L, \vec{u}+\vec{v} \notin L, 2 \vec{u} \notin L$

Ex: for $\vec{v}_{1}, \ldots, \vec{v}_{p} \in \mathbb{R}^{n}, H=S_{\text {pan }}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is a subspace of \mathbb{R}^{n}
-the subs race "spanned" (or "generated") by $\vec{v}_{1}, ., \vec{v}_{p}$
Ex: \mathbb{R}^{n} itself is a subspace. Also, $H=\{0\}$ is a subspace ("zero subspace").

Column space and null space of a matrix
def For $A=\left[\vec{a}_{1} \ldots \vec{a}_{n}\right]$ an $m \times n$ matrix, its "column space" is the set of linear comb.
Col $A:=\operatorname{Span}\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\} \quad$ - subspace of \mathbb{R}^{n}

- Col $A=\mathbb{R}^{m}$ iff columns of A span $\mathbb{R}^{m} \Leftrightarrow$ pivot in each row of A.
$\operatorname{Col} A=$ set of all \vec{b} sit. $A \vec{x}=\vec{b}$ has a solution.
def The null space of $A, N_{u} \mid A$, is the ret of all solutions of homog.eq. $A \vec{x}=\overrightarrow{0}$
- Nul Δ is a subspace of \mathbb{R}^{n}
- Nu A is defend implicitly

$$
\text { (implicitly } \text { (as solutions of an eq.) }^{\text {in }}
$$

Basis for a subspace
want to describe a subspace by the smallest possible set spanning it.
def A basis for a subspace H of \mathbb{R}^{n} is a Cin.indep. set in H which gains H
Ex: columns of an nuectible $n \times n$ matrix A form a basis for $H=\mathbb{R}^{n}$ (they are lin.indep. and span \mathbb{R}^{1} by Inv. Mat. The.)
E.g. for $A=I_{n}$, its columns $\vec{e}_{1}=\left[\begin{array}{c}1 \\ \vdots \\ \vdots\end{array}\right], \vec{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \ldots, \vec{e}_{n}\left[\begin{array}{c}0 \\ \vdots \\ \vdots \\ 1\end{array}\right]$ Set $\left\{\vec{e}_{1}, . . \vec{e}_{n}\right\}$-standard basis for \mathbb{R}^{n}.

Ex: Find a basis for SuI A ,

$$
A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

Sol: write the sol. of $A \vec{x}=0$ in parametric form:

$$
\begin{aligned}
& \text { Aug. Mat. }\left[\begin{array}{ll}
A & \overrightarrow{0}
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & -2 & 0 & -1 & 3 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \text { REF } \\
& x_{1}-2 x_{2} \quad-x_{5}+3 x_{5}=0 \\
& x_{3}+2 x_{5}-2 x_{5}=0 \\
& 0=0 \\
& \Rightarrow \begin{array}{l}
x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
x_{3}=-2 x_{4}+2 x_{5}
\end{array} \\
& \begin{array}{l}
x_{3}=-2 x_{4}+2 x_{5} \\
x_{2}, x_{4}, x_{5} \text { free }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{cc}
2 x_{2}+x_{4} & -3 x_{5} \\
x_{2} & -2 x_{1}+2 x_{5} \\
x_{4} & x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right] \\
\vec{u}=x_{2} \vec{u}+x_{4} \vec{v}+x_{5} \vec{u}
\end{aligned}
$$

Thus: $\operatorname{Nul} A=S_{\text {ran }}\{\vec{u}, \vec{v}, \vec{w}\}$. Moreover, $\vec{u}, \vec{v}, \vec{w}$ are lin.indep.

$$
\left(x_{2} \vec{u}+x_{4} \vec{v}+x_{5} \vec{w}=\overrightarrow{0} \Rightarrow x_{2}, x_{4}, x_{5}=0\right)
$$

So, $\{\vec{u}, \vec{v}, \vec{u}\}$ - basis for Vul A.
ε_{x}

$$
B=\left[\begin{array}{lllll}
1 & 2 & 0 & 3 & 0 \\
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\overrightarrow{b_{1}} & \vec{b}_{2} & \overrightarrow{b_{3}}, \overrightarrow{b_{4}} \vec{b}_{5}
\end{array}\right.
$$

Sol: note: $\vec{b}_{2}=2 \vec{b}_{1}, \vec{b}_{2}=3 \vec{b}_{1}+4 \vec{b}_{3}$
So, any lin. comb. of $\vec{b}_{1}, \ldots, \vec{b}_{5}$ is in fact a lin. omb. of $\vec{b}_{1}, \vec{b}_{3}, \vec{b}_{5}$ (pivot column)

$$
\begin{aligned}
& \vec{v}=c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+c_{3} \vec{b}_{3}+c_{3} \vec{b}_{4}+c_{5} \vec{b}_{5}=\left(c_{1}+2 c_{2}+3 c_{4}\right) \vec{b}_{1}+\left(c_{3}+\left\{c_{4}\right) \vec{b}_{3}+c_{5} \vec{b}_{5}\right. \\
& 2 \vec{b}, \quad \overrightarrow{b_{1}+4 \vec{b}_{3}} \quad \in \operatorname{Sran}\left\{\vec{b}_{1}, \vec{b}_{3}, \vec{b}_{5}\right\}
\end{aligned}
$$

Also, $\vec{b}_{1}, \vec{b}_{3}, \vec{b}_{5}$ are columns of I_{4} and thus are In. indef.

$$
\Rightarrow\left\{\vec{b}_{1}, \vec{b}_{3}, \vec{b}_{5}\right\} \text {-barit for col } B \text {. }
$$

Ex:

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 1 & 7 & 1 \\
-2 & -4 & -1 & -10 & -2 \\
3 & 6 & 0 & 9 & 1 \\
1 & 2 & -2 & -5 & 7
\end{array}\right]
$$

Sol: A 1.n.denendence rel among col. of A is a sol of $A \vec{x}=0$ and $A \vec{x}=\overrightarrow{0}$ has same solutions as $B \vec{x}=\overrightarrow{0}$!
So:

$$
\begin{aligned}
& \vec{b}_{2}=2 \vec{b}_{1} \\
& \vec{a}_{2}=2 \vec{a}_{1} \\
& \overrightarrow{b_{4}}=3 \overrightarrow{b_{a}}+4 \overrightarrow{b_{3}} \quad \Rightarrow \vec{a}_{2}=3 \vec{a}_{1}+\left\langle\vec{a}_{3}\right. \\
& \vec{b}_{1}, \vec{b}_{3}, \vec{b}_{5} \text { Cinindep. } \\
& \vec{a}_{1}, \vec{a}_{3}, \vec{a}_{5} \text { linindep. }
\end{aligned}
$$

Thus: $\left\{\vec{a}_{1}, \vec{a}_{3}, \vec{a}_{5}\right\}$ is a basis $\operatorname{for} \operatorname{Col} A$

The Pivot columns of A form a basis for Col A.
Warning: we need pivot columns of A itself, not of a REF of A.

