$2 / 7 / 2020$
LAST TIME.
Ex:

$$
B=\left[\begin{array}{lllll}
1 & 2 & 0 & 3 & 0 \\
0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & \overrightarrow{1}
\end{array}\right]<-\operatorname{RREF}
$$

Q: find a basis for Cols
$\vec{b}, \overrightarrow{b_{2}} \vec{b}_{3} \vec{b}_{4} \vec{b}_{5}$
Sol: note: $\vec{b}_{2}=2 \vec{b}_{1}, \vec{b}_{2}=3 \vec{b}_{1}+4 \vec{b}_{3}$
So, any lin. comb. of $\vec{b}_{1}, \ldots, \vec{b}_{5}$ is in fact a lin. omb. of $\vec{b}_{1}, \vec{b}_{3}, \vec{b}_{5}$ (pivot columns)

$$
\begin{aligned}
\vec{v}=\vec{c}_{1} \vec{b}_{1}+{\underset{2}{ }}_{c_{2} \vec{b}_{2}}^{\vec{b}_{2}}+\vec{c}_{3} \vec{b}_{3}+\vec{c}_{4} \vec{b}_{4}+c_{5} \vec{b}_{5} \\
3 \vec{b}_{1}+4 \vec{b}_{3}
\end{aligned}=\left(\begin{array}{l}
\left(c_{1}+2 c_{2}+3 c_{4}\right) \vec{b}_{1}+\left(c_{3}+\left\{c_{4}\right) \vec{b}_{3}+c_{5} \vec{b}_{5}\right. \\
\epsilon \operatorname{sran}\left\{\vec{b}_{1} \vec{b}_{3}, \vec{b}_{5}\right\}
\end{array}\right.
$$

Also, $\vec{b}_{1}, \vec{b}_{3}, \vec{b}_{5}$ are columns of I_{4} and thus are lin. indef.

$$
\Rightarrow\left\{\vec{b}_{1}, \vec{b}_{3}, \vec{b}_{5}\right\} \text {-bart for col. }
$$

Ex:

$$
\begin{aligned}
& A= {\left[\begin{array}{ccccc}
1 & 2 & 1 & 7 & 1 \\
-2 & -4 & -1 & -10 & -2 \\
3 & 6 & 0 & 9 & 1 \\
1 & 2 & -2 & -5 & 7
\end{array}\right] \sim B!\quad \sim B^{\prime} \quad \text { Rind a basis of Col } A \text {. } } \\
& \\
& \vec{a}_{1} \vec{a}_{2} \vec{a}_{3} \\
& i \vec{a}_{4} \vec{a}_{5} \\
& \frac{1}{\text { pivot columns }}
\end{aligned}
$$

Sol. Alr.denendence rel. among col. of A is a sol of $A \vec{x}=0$ and $A \vec{x}=\overrightarrow{0}$ has same solutions as $B \vec{x}=\overrightarrow{0}$!
So:

$$
\begin{array}{ll}
\vec{b}_{2}=2 \vec{b}_{1} \\
\vec{b}_{4}=3 \vec{b}_{9}+4 \vec{b}_{3}
\end{array} \quad \Rightarrow \begin{aligned}
& \vec{a}_{2}=2 \vec{a}_{1} \\
& \vec{a}_{1}, \vec{b}_{3}, \vec{b}_{5} \\
& \text { linindep. }^{2}+4 \vec{a}_{3} \\
& \vec{a}_{1}, \vec{a}_{3}, \vec{a}_{5}
\end{aligned} \text { lin.indep. }
$$

Thus: $\left\{\vec{a}_{1}, \vec{a}_{3}, \vec{a}_{5}\right\}$ is a basis $\operatorname{for} \operatorname{Col} A$

Thy Pivot columns of A form a basis for ColA.
Warning: we need pivot columns of A itself, not of a REF of A.
2.9. Dimension and rank

Coordinate systems: H-subspace, $B=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}$ a basis for H any vector $\vec{x} \in H$ can be written as a ln. comb of basis vectors in a unique way!
$\begin{aligned}-i f(1) \vec{x} & =c_{1} \vec{b}_{1}+\ldots+c_{p} \vec{b}_{p} \quad \text { tue representations of } \vec{x} \Rightarrow \overrightarrow{0} \quad \overrightarrow{0}=\left(c_{1}-d_{1}\right) \overrightarrow{b_{1}}+\ldots\left(c_{p}-d_{p}\right) \overrightarrow{b_{p}} \\ \text { (2) } \vec{x} & =d_{1} \vec{b}, \ldots+d_{p} \vec{b}_{p} \quad \text { as a Com.onb }\end{aligned}$
since B linindep., we have $c_{1}=d_{1}, \ldots, c_{p}=d_{p}$, ie. (1) $=$ (2)
def Let $B=\left\{\overrightarrow{b_{1}}, \ldots, \vec{b}_{p}\right\}$ a basis for H. For each $\vec{x} \in H$,
$\vec{x}=c_{1} \vec{b}_{1}+\ldots+c_{p} \vec{S}_{p} ; c_{1}, \ldots, c_{p}$-coordinates of \vec{x} relative to the basis B
$[\vec{x}]_{B}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{p}\end{array}\right]$ - coordinate vector of $\vec{x}($ rel. to $B)$, or B-coordinate vector of \vec{x}.
$\begin{aligned} & \text { En: } \quad \vec{v}_{1}=\left[\begin{array}{l}2 \\ 5 \\ 1\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right] \vec{x}=\left[\begin{array}{c}1 \\ 10 \\ 11\end{array}\right] \\ & \underbrace{\text { bars }}_{B=\left\{\vec{v}_{1}, \vec{v}\right\}} \text { for } H=\operatorname{Sran}_{\text {ran }}\left\{\vec{v}_{1}, \vec{v}\right\}\end{aligned}$
Sol: $\vec{x} \in H$ iff eq. $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\vec{x}^{(*)}$ is conristent
Aug. mat $\left[\begin{array}{ccc}2 & -1 & 1 \\ 5 & 0 & 10 \\ 1 & 3 & 11\end{array}\right] \sim\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right]$ Hence, $(*)$ is consistent, $c_{1}=2, c_{2}=3$

$$
\Rightarrow[\vec{x}]_{B}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

$$
\begin{aligned}
-\vec{x}^{2}=2+60 \\
\vec{v}_{1}+3 \vec{v}_{3}
\end{aligned}
$$

Basis B determines a coordinate system on H points in H are in \mathbb{R}^{3} but are determined by $[\vec{x}]_{B} \in \mathbb{R}^{2}$ Correspondence $\vec{x} \mapsto[\vec{x}]_{B}$ is a one-to one correspondence between H and \mathbb{R}^{2} preserving enear combinations" "isomorphism"). H is"isomorphic" to \mathbb{R}^{2}.

- Generally, if $B=\left\{\vec{b}, \ldots, \vec{b}_{p}\right\}$ a basis for H, mapping $\underset{\vec{x}}{\overrightarrow{\mathrm{x}} \mapsto[\vec{x}]_{B}} \underset{\mathbb{R}^{P}}{ }$ is a 1-1 comespondence which makes H" look and act" like like \mathbb{R}^{\prime}.

Claim If H has a basis of p vectors, then each basis 2, H has exactly p vectors
def The dimension of a nonzero subspace H, din H is the number of vectors in any basis in $H . A l s o, \operatorname{dim}\{\overrightarrow{0}\}=0 \quad$ (convention).
$\underline{\varepsilon_{k i}} \cdot \operatorname{dim} \mathbb{R}^{n}=n$, every basis in \mathbb{R}^{n} consists of n vectors

- $\operatorname{dim}\left(\right.$ plane in $\left.\mathbb{R}^{3}\right)=2$

$$
\cdot \operatorname{dim}\left(\operatorname{line}: \mathbb{R}^{3}\right)=1
$$

through ob
Ex: Vul $A=$ basis vectors comespond to free variables of $A \vec{x}=\overrightarrow{0}$
So: $\operatorname{dim} N_{u} \mid A=$ \# non-pivotal columns
= \# Area variables
def: The rank of a matrix A, $\operatorname{rark} A$, is $\operatorname{dim} C_{0} \mid A$.
Thus, $\operatorname{rank} A=$ \#pivatal columns
Ex: $\quad A=\left[\begin{array}{ccccc}1 & 2 & 1 & 7 & 1 \\ -2 & -4 & -1 & -10 & -2 \\ 3 & 6 & 0 & 9 & 1 \\ 1 & 2 & -2 & -5 & 7\end{array}\right]$
Q: what is the rank of A ?
Sol: $A \sim\left[\begin{array}{llllll}1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \quad 3$ pivot columns \Rightarrow rank $=3$
Note: dim Vul $A=$ \#non-pinat col. $=2$
Them (the rank theorem)
If a matrix A has n columns, then rank $A+\operatorname{dim} N_{u} \mid A=n$
The (basis: the)
Let H be a p-dimensional rubspace of \mathbb{R}^{n}. Any l_{i}, indef, set of p vectors in H is automatically a basis for H. Also, any set of p vectors in H spanning H is a basis for H.

Inventible matrix thm (cont'd)
A nxn matrix. The flllowng are equivalent to A beng invertible:
(m) Columns of A form a basis for \mathbb{R}^{n}
(b) $\operatorname{Col} A=\mathbb{R}^{n}$
(c) $\operatorname{dim} \operatorname{col} A=n$
(P) $\operatorname{rank} A=n$
(9) $N_{u} \mid A=\{\overrightarrow{0}\}$
(r) $\operatorname{dim} N_{u} \mid A=0$

