$3 / 23 / 20201$
(6.1) Inner product, length, orthogonality

- Want to generalize geometric notions of length, distance, perpendicularity from $\mathbb{R}^{2}, \mathbb{R}^{3}$ to \mathbb{R}^{n}
def for $\vec{u}, \vec{v} \in \mathbb{R}^{n}$, the "inner product" ("dot product") is $\vec{u}_{1 \times n}^{\top} \vec{v} \overrightarrow{v N}_{n=1}=\vec{u} \cdot \vec{v}$-anumber If $\vec{u}=\left[\begin{array}{c}u_{1} \\ u_{n} \\ u_{n}\end{array}\right] \vec{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right], \vec{u} \cdot \vec{v}=\left[u_{1}, \cdots u_{n}\right]\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]=u_{1} v_{1}, \ldots+u_{n} v_{n}$
Ex: $\vec{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}3 \\ 5 \\ -1\end{array}\right] \quad \begin{aligned} & \vec{u} \cdot \vec{v}=1 \cdot 3+25+3(-1)=(10) \\ & \vec{v} \cdot \vec{u}=3 \cdot 1+5 \cdot 2+(-1) \cdot 3=10)!\end{aligned}$
The (a) $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$
(b) $(\vec{u}+\vec{v}) \cdot \vec{w}=\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{v} \quad\} \Rightarrow\left(c_{1}, \vec{u}+\ldots+c_{p} \vec{u}_{p}\right) \cdot \vec{v}=\begin{gathered}c_{1}(\vec{u} \cdot \vec{v})+\ldots \\ +c_{p}\left(\vec{u}_{p}-\vec{v}\right)\end{gathered}$ $+c_{p}\left(\vec{u}_{p} \vec{v}\right)$
(d) $\vec{u} \cdot \vec{u} \geqslant 0$ and $\vec{u} \cdot \vec{u}=0$ iff $\vec{u}=\overrightarrow{0}$
def Length ("norm") of $\vec{v} \in \mathbb{R}^{n}$ is $\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}=\sqrt{v_{1}^{2}+\ldots+v_{1}^{2}} \geqslant 0,\|\vec{v}\|^{2}=\vec{v} \cdot \vec{v}$

- $\|c \vec{v}\|=|c|\|\vec{v}\|$ for $c \in \mathbb{R}$
- a vector of length 1 - "unit vector". For $\vec{v} \neq \overrightarrow{0}, \vec{v} \overrightarrow{\vec{u}} \overrightarrow{\vec{u}}=\frac{1}{\|\vec{v}\|} \vec{v} \begin{gathered}\text { unit vection } \\ \text { in the diredon } \\ \text { of }\end{gathered}$

Ex $\vec{v}=\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right] \quad$ Q: find \vec{u} a unit vedor in the direction of \vec{v}.
Sol: $\|\vec{v}\|^{2}=\vec{v} \cdot \vec{v}=1^{2}+(-2)^{2}+2^{2}=9, \quad\|\vec{v}\|=3, \vec{u}=\frac{1}{3} \vec{v}=\left[\begin{array}{c}1 / 3 \\ -2 / 3 \\ 2 / 3\end{array}\right] \quad\|\vec{u}\|^{2}=\left(\frac{3}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}$
def for $\vec{u}, \vec{v} \in \mathbb{R}^{n}$, the distance between \vec{u} and \vec{v} is:

$$
=\frac{1+k+4}{9}=1
$$

dist $(\vec{u}, \vec{v}):=\|\vec{u}-\vec{v}\|$
Ex. $\vec{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}3 \\ 5\end{array}\right] \quad$ dist $(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\|=\left\|\left[\begin{array}{c}-2 \\ -3\end{array}\right]\right\|=\sqrt{(-2)^{2}+(-3)^{2}}=\sqrt{13}$

Orthogonal vectors
def vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ are orthogonal (to each other) if $\vec{u} \cdot \vec{v}=\overrightarrow{0}$
(perpendicular)

$$
\vec{u} \cdot \vec{u}+\frac{n}{2 u \cdot} \cdot \vec{v}+\vec{v} \cdot \vec{v}
$$

Note: $\overrightarrow{0} \perp \vec{u}$ for any \vec{u}.
Orthogonal complements.

- If $\vec{z} \in \mathbb{R}^{n}$ is orthogonal to every vector in $\omega \subset \mathbb{R}^{n}$ (a subspace), then \vec{z} is orthogonal to W
- Set of all vectors in \mathbb{R}^{n} orthogonal to W - "orthogonal complement of $W^{\prime \prime}, W^{1}$ -

$$
W^{\perp}=L, L^{\perp}=W \text {. }
$$

$\cdot \vec{x}$ is in $\omega^{\perp}\left(f_{0}\right.$, any $\left.\omega\right)$ if it is orthog. to any vector in a set which spans
LS.

$$
\text { - } W^{\perp} \text { is a subspace of } \mathbb{R}^{n}
$$

Ex: for A man matrix, $\operatorname{Nul} A$ and Row $A \cdot \mathbb{R}^{n}$-orthog complements of each other

$$
\begin{aligned}
& \text { Nul } A^{\top} \text { and ColA } \subset \mathbb{R}^{m} \text { - orthog. complements } \\
& \text { of cad other }
\end{aligned}
$$

- for $W \subset \mathbb{R}^{n}, \operatorname{dim} W \neq \operatorname{dim} W^{1}=n$
6.2 Orthogonal sets

A set of vectors $\left\{\vec{u}_{1}, \ldots, \bar{u}_{p}\right\}$ in \mathbb{R}^{n} is an orthogonal set if
$\vec{u}_{1} \cdot \vec{u}_{j}=0$ for each pair $i \neq j$.
$\varepsilon_{x}^{*}: \vec{u}_{1}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right] \quad \vec{u}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right] \quad \vec{u}_{3}=\left[\begin{array}{c}-1 / 2 \\ -2 \\ 7 / 2\end{array}\right] \quad Q$: check that $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ is an orthog.
Sol: $\vec{u}_{1} \cdot \vec{u}_{2}=3(-1)+1 \cdot 2+1 \cdot 1=0 \quad \vec{u}_{1} \cdot \vec{u}_{3}=3\left(-\frac{1}{2}\right)+1(-2)+1\left(\frac{7}{2}\right)=0 v$ $\vec{u}_{2} \cdot \vec{u}_{3}=(-1)(-1 / 2)+2(-2)+1(7 / 2)=0^{v}$
THM If $S=\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ is an orthog. set of nonzero vedors in \mathbb{R}^{n}, then S is linindep Hence, S is a basis for Span S.

- an orthogonal basis for a subspace $W \subset \mathbb{R}^{n}$ is a basis which is also an orthogonal set.

TAM ${ }^{\text {© }}$ Let $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthog. basis for $W \subset \mathbb{R}^{n}$. For each $\vec{y} \in W$, weights in $y=c_{1} \vec{u}_{1}+\ldots+c_{p} \vec{u}_{p}$ are: $c_{j}=\frac{\vec{y} \cdot \vec{u}_{j}}{\vec{u}_{j} \cdot \vec{u}_{j}}, j=1, \ldots, p$
$\left\langle I_{\text {dea }}: y \cdot \vec{u}_{1}=c_{1} \vec{u}_{1} \cdot \vec{u}_{1}+c_{2} \vec{u}_{c} \vec{u}_{1}+\ldots+c_{\rho} \vec{u}_{p} \vec{u}_{1} \Rightarrow c_{1}=\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}\right.$; similarly for $\left.c_{j}\right\rangle$
Ex: orthog set from ε_{x}^{x} is a maris: $\mathbb{R}^{3} . \vec{y}=\left[\begin{array}{c}6 \\ 1 \\ -8\end{array}\right] \quad Q$: express \vec{y} as a lin.conb.

$$
S=\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{\mu}_{3}\right\}
$$ of vectors in S

Sol: $\vec{y}=\underbrace{\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}}_{\frac{11}{11}} \vec{u}_{1}+\underbrace{\frac{\vec{y} \cdot \vec{u}_{2}}{\vec{u}_{2} \cdot \vec{u}_{2}}}_{\frac{-12}{6}} \vec{u}_{2}+\underbrace{\vec{u}_{3} \cdot \vec{u}_{3}}_{\frac{-33}{33 / 2}} \vec{u}_{3}=\overrightarrow{\vec{u}_{1}-2 \vec{u}_{2}-2 \vec{u}_{3}}$
\leftarrow did not need to solve the in .syr.
to compute the weights

Orthogonal projection onto a vector $/$ a line Given $\vec{u} \neq \overrightarrow{0}$ in \mathbb{R}^{n}, wart to write $\vec{y} \in \mathbb{R}^{n}$ as

$\overrightarrow{\hat{y}}=\frac{\vec{y} \cdot \vec{u}}{\overrightarrow{\vec{u}} \cdot \vec{u}}=\operatorname{proj}_{L} \vec{y} \quad$-orthogonal projection of \vec{y} onto the line $L=\operatorname{Span}\{\vec{u}\}$
\quad does not change if $\vec{u} \mapsto c \vec{u}, c \neq 0$

Ex: $\vec{y}=\left[\begin{array}{l}7 \\ 6\end{array}\right] \quad \vec{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right] \quad$ Q: write \vec{y} as $\hat{\hat{y}}+\hat{z}+\vec{z}_{a}$ orthog to \vec{u}
Sol: $\vec{y} \cdot \vec{u}=40, \vec{u} \cdot \vec{u}=20$

$$
\Rightarrow \overrightarrow{\hat{y}}=\frac{40}{20}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right], \vec{z}=\vec{y}-\hat{\vec{y}}=\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{c}
8 \\
4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] . \quad \text { So: }\left[\begin{array}{l}
7 \\
6
\end{array}\right]\left[\begin{array}{c}
8 \\
4
\end{array}\right]+\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Q: find dist (y, L)
Sol: $\operatorname{dist(\vec {y},L)=} \begin{aligned} \operatorname{dist}(\vec{y}, \hat{\vec{y}}) & =\|\vec{y}-\hat{-}\| \\ & \text { Closest point on } L\end{aligned}$

$$
\begin{aligned}
& \text { closest point on } L \\
& \text { to } y
\end{aligned}
$$

Ex. (THM ${ }^{\varepsilon^{3}}$, geometric picture)
$\left.\omega=\mathbb{R}^{2}=\operatorname{Span}\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}\right\}\right\}$
$\vec{y} \in \mathbb{R}^{2}$ can be written as

So: THM ${ }^{\text {B }}$ decomposes \vec{y} into a sum of orthog, projections onto 1-dim subspaces (which are mutually orthogonal)

Orthonormal sets $S=\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$:s orthonormal if it is an orthog. set of uni vectors. If $\omega=$ span S, then $S-\%$ basis for ω.
Ex: $\left\{\vec{e}_{1}, \ldots, \vec{e}_{2}\right\}-0 / \sim$ barisfor \mathbb{R}^{n}
$\varepsilon_{\text {xi }} \vec{v}_{1}=\left[\begin{array}{l}3 / \sqrt{11} \\ 1 / \sqrt{\sqrt{11}} \\ 1 / \sqrt{11}\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}-1 / \sqrt{6} \\ 1 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{c}-1 / \sqrt{66} \\ 2 / \sqrt{\sqrt{66}} \\ 7 / \sqrt{66}\end{array}\right]$
$\left\{\vec{u}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}-0 / n$ basis for \mathbb{R}^{3} Contained from Ext by nemalizing vectors to unit length, $\vec{v}_{i}=\frac{1}{\| \vec{u}_{i}}, \overrightarrow{\vec{u}}_{i}$)
THM An mon matrix U has o / n edumns
if $U^{\top} U=I$
THM Let U be a man matrix with $0 / n$ columns and let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$. Then:
(a) $\|\cup \vec{x}\|=\|\vec{x}\|$
(b) $(u \vec{x}) \cdot(u \vec{y})=\vec{x} \cdot \vec{y}$
(c) $U \vec{x} \cdot U \vec{y}=0$ if $\vec{x} \cdot \vec{y}=0$
I.e. mapping $\vec{x} \longmapsto U \vec{x}$ preserves length and orthogonality.

Case $m=n$: square U with ole columns is an orthogonal mattie. U ortleyoral $\& U^{-1}=U^{\top}$

