$3 / 25 / 2020$
LAST TIME: $\cdot \vec{u} \frac{1}{\text { orthog. }} \vec{v}$ iff $\vec{u} \cdot \vec{v}=0$

$$
\text { - } \operatorname{proj}_{\vec{u}} \vec{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}
$$

THM: Let $W \subset \mathbb{R}^{n}$ a subspace, $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$-orthogonal basis for W. For each $\vec{y} \in W$, weights in $\vec{y}=c_{1} \vec{u}_{1}+\ldots+c_{p} \vec{u}_{p}{ }^{(t)}$ are: $c_{j}=\frac{\vec{y} \cdot \vec{u}_{j}}{\vec{u}_{j} \cdot \vec{u}_{j}}$
$\left\langle I_{\text {dea }}: \vec{y} \cdot \vec{u}_{1}=c_{1} \vec{u}_{1} \vec{u}_{1}+c_{2} \vec{u}_{2} \vec{u}_{1}+\cdots+c_{p} \vec{u}_{p_{1}} \vec{u}_{1}\right.$

$$
=c_{1} \vec{u}_{1} \cdot \vec{u}_{1} \quad \Rightarrow c_{1}=\frac{\bar{y}_{1} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \dot{u}_{1}} . \quad \text { Similarly for } c_{j}
$$

- THM above implies:

$$
\begin{aligned}
& \text { Ecg. for } \omega=\mathbb{R}^{2} \\
& \text { an ortlog. basis! }
\end{aligned}
$$

Orthonormal sets $S=\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ is orthonormal if it is an orthog. Set of unit vectors. If $W=$ Span S, then $S-\frac{1}{n}$ basis for W.
$\underline{\varepsilon_{x}}:\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$-olIn barisfor \mathbb{R}^{n}
Ex:

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right]
$$

$\left\{\vec{u}_{1}, \vec{v}_{2}\right\}-0 / n$ basis for \mathbb{R}^{2} Cobtained from $\varepsilon_{x^{*}}$ by normalizing vectors to unit length, $\vec{v}_{i}=\frac{1}{\left\|\vec{v}_{i}\right\|} \vec{a}_{i}$)
THM An men matrix U has D / n columns

$$
\text { if } u^{\top} u=I
$$

THM Let U be a men matrix with $0 / n$ columns and let $\vec{x}, \vec{y} \in \mathbb{R}$? Then:
(a) $\|\cup \vec{x}\|=\|\vec{x}\|$
(b) $(U \vec{x}) \cdot(U \vec{y})=\vec{x} \cdot \vec{y}$
(c) $U \vec{x} \cdot U \vec{y}=0$ if $\vec{x} \cdot \vec{y}=0$
I.e. mapping $\vec{x} \longmapsto U \vec{x}$ preserves length and orthogonality.

Case $m=n$: square U with $0 / n$ columns is an orthogonal matsu. U orthogonal if $U^{-1}=U^{\top}$
6.3 Orthogonal projections

Giver $\vec{y} \in \mathbb{R}^{n}$ and $W \subset \mathbb{R}^{n}$, there exists a unique $\vec{y} \in W$ s.t.
(1) $\vec{y}-\hat{y} \perp W$
(2) $\hat{\vec{y}}$ is the closest vector in W to \vec{y}

THM (orthogonal decomposition the)
Let $W \subset \mathbb{R}^{n}$ be a subspace. Then each $\vec{y} \in \mathbb{R}^{n}$ can be wotton uniquely as $\vec{y}=\hat{\vec{y}}+\vec{z}$ with $\vec{y} \in W, \vec{z} \in W_{\text {. }}^{\perp}$
(x) Moreover, if $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ - any orthogonal basis for W, then

$$
\hat{\vec{y}}=\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} \vec{u}_{1}+\ldots+\frac{\vec{y} \cdot \vec{u}_{p}}{\vec{u}_{p} \cdot \vec{u}_{p}} \vec{u}_{p}{ }^{p} \text { and } \overrightarrow{\vec{z}=\vec{y}-\hat{\vec{y}}} \text {. }
$$

$\hat{\vec{y}}=\operatorname{proj}_{\omega} \vec{y}$-orthogonal projection of \vec{y} onto W.

Sol: $\hat{\vec{y}}=\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} \vec{u}_{1}+\vec{y}_{\vec{u}_{2} \cdot \vec{u}_{2}}^{\vec{u}_{2} \cdot \vec{u}_{2}}=\vec{u}_{2}=\underbrace{\frac{9}{30}}_{\frac{3}{10}}\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right]+\underset{\frac{5}{10}}{\frac{3}{6}}\left[\begin{array}{c}-2 \\ 1\end{array}\right]=\left[\begin{array}{c}-2 / 5 \\ 1 / 5\end{array}\right], \vec{z}=\vec{y}-\hat{\vec{y}}=\left[\begin{array}{c}-7 / 5 \\ 0 \\ 1 \mathrm{k} / 5\end{array}\right]$
So: $\vec{y}=\underbrace{\left[\begin{array}{c}-2 / 5 \\ 2 \\ 1 / 5\end{array}\right]}_{\in W}+\underbrace{\left[\begin{array}{c}7 / 5 \\ 0 \\ 14 / 5\end{array}\right]}_{\in W^{\perp}}$

- formula (*) is the sum of projections of \vec{y} onto lines $\operatorname{Span}_{\text {an }}\left\{\vec{u}_{1}\right\}, \ldots, \operatorname{Span}\left\{\vec{u}_{p}\right\}$.
-if $\vec{y} \in W$, then $\operatorname{proj}_{w} \vec{y}=\vec{y}$
THM (Best approximation theorem)
Let $\omega \subset \mathbb{R}^{n}, y \in \mathbb{R}^{n}$ and $\hat{y}=$ projiw \vec{y}. Then \hat{y} is the closest point in ω to \vec{y}. IRe. $\|\vec{y}-\hat{\vec{y}}\|<\|\vec{y}-\vec{v}\|$ for all $\vec{v} \in W, \vec{v} \neq \hat{\vec{y}}$.
$\overrightarrow{\vec{y}}$ is the best approximation of \vec{y} by elements of W; $\|\vec{y} \hat{\vec{y}}\|-$ "error" of approximation.

Ex@: $\hat{\vec{y}}=\left[\begin{array}{c}-2 / 5 \\ 2 / 1 / 5\end{array}\right]$-closest point to $\vec{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ on the plane W.

$$
\operatorname{dist}(\vec{y}, L))=\|\vec{y}-\hat{\vec{y}}\|=\|\vec{z}\|=\frac{7}{5} \sqrt{5}=\frac{7}{\sqrt{5}}
$$

dist. between \vec{y} and closest point to \vec{y} on W.
THM If $\left\{\vec{u}_{1}, ., \vec{u}_{p}\right\}$ is an orthonormal basis for $\omega \subset \mathbb{R}^{n}$, then $\operatorname{proj}_{\omega} \vec{y}=\left(\vec{y} \cdot \vec{u}_{1}\right) \vec{u}_{1}+\ldots+\left(\vec{y} \cdot \vec{u}_{p}\right) \vec{u}_{p}$
If $U=\left[\vec{u}_{1} \ldots \vec{u}_{p}\right]$, then $\operatorname{proj}_{\omega} \vec{y}=U U^{\top} \vec{y}$ for all $\vec{y} \in \mathbb{R}^{n}$

