03/27/2020
6.4

Gram-Schmidt process
Problem: Given $W \subset \mathbb{R}^{n}$, find an orthogonal basis for W

$$
\text { Span } \underbrace{\left.\vec{x}_{1}, \ldots, \vec{x}_{p}\right\}^{\prime}}_{\text {not orthogonal }}
$$

Ex: $\vec{x}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right] \quad \vec{x}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right] \quad W=\operatorname{Span}_{\text {pan }}\left\{\vec{x}_{1}, \vec{x}_{2}\right\} \subset \mathbb{R}^{3}$
$Q:$ find an orthogonal basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ for W
Sol: Set $\vec{v}_{1}=\vec{x}_{1}$.

$$
\begin{aligned}
& \vec{x}_{2}=\underbrace{\vec{p}}_{\text {prods }_{S_{\text {pan }}\left\{\vec{v}_{3}\right\}} \vec{x}_{2}\left\{v_{1}, v_{2}\right\}}+\underbrace{(\vec{x}-\vec{p})}_{\substack{\text { ortog } \\
\vec{v}_{2}}} \vec{v}_{1}
\end{aligned}
$$

Explicitly:

$$
\begin{array}{ll}
\vec{p}=\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}=\frac{-1}{5}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 / 5 \\
-2 / 5 \\
0
\end{array}\right] \\
\vec{v}_{2}=\vec{x}_{2}-\vec{p}=\left[\begin{array}{c}
-4 / 5 \\
2 / 5 \\
1
\end{array}\right] \quad \text { So: }\left\{\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-4 / 5 \\
2 / 5 \\
1
\end{array}\right]\right\}
\end{array}
$$

- ortlog. ret of two vectors:- W \Rightarrow orth. basis for W.
note: $\left\{\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \quad \vec{v}_{2}^{\prime}=\left[\begin{array}{c}-4 \\ 2 \\ 5\end{array}\right]\right\}$ - also an orth basis dor W ${ }^{\prime \prime} \cdot \vec{v}_{2}$

Generally: Let $W=\operatorname{Span}\{\underbrace{\left\{\vec{x}_{1}, \ldots, \vec{x}_{p}\right\}}_{\text {basis }} \subset \subset \mathbb{R}^{n}$ orthog. basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ for W.
Step 1: Set $\vec{v}_{1}=\vec{x}_{1}, W_{1}=\operatorname{Span}\left\{\vec{x}_{1}\right\}=\operatorname{Span}\left\{\vec{v}_{1}\right\}$ component of \vec{x}_{2}
Step 2: $W_{2}=\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$. Orthog. basis: $\vec{v}_{1}=\vec{x}_{1}, \vec{v}_{2}=\vec{x}_{2}-$ proj \vec{x}_{2} $=\frac{-\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}^{2}}{\vec{v}_{1}} \vec{v}_{1}}{\overrightarrow{v_{1} \cdot \vec{v}_{1}} \vec{v}_{1}}$

Step $3 W_{3}=\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$.
Ortlog. basis: $\underbrace{\vec{v}_{1}, \vec{v}_{2}}_{\text {already }}, \overrightarrow{\vec{v}_{3}=\vec{x}_{3}-\text { projutuded }_{\omega_{2}} \vec{x}_{3}}=\overrightarrow{\vec{x}_{3}}-\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}-\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}}$

$W_{2} \quad$ Step p. $W=W_{p}=\operatorname{Span}\left\{\vec{x}_{1},-, \vec{x}_{p}\right\}$
orthog. basis: $\vec{v}_{1}, \ldots, \vec{v}_{p-1}, \vec{v}_{p}=\vec{x}_{p}-p_{0} j_{\omega_{p-1}} \vec{x}_{p}$

Ex: $\vec{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \vec{x}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \vec{x}_{j}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

- basis for $\omega=\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$

Q: ind an orth. basis for W
Sol: $\vec{v}_{1}=\vec{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$

$$
\begin{aligned}
& \vec{v}_{2}=\vec{x}_{2} \vec{x}_{2} \cdot \vec{v}_{1} \vec{v}_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]-\frac{1}{2} \cdot\left[\begin{array}{c}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1 \\
0
\end{array}\right] \underset{\text { rescaling }}{\longrightarrow} v_{2}^{\prime}=\left[\begin{array}{c}
-1 \\
1 \\
2 \\
0
\end{array}\right]
\end{aligned}
$$

Thus: $\left\{\vec{v}_{1}=\left[\begin{array}{l}1 \\ \vdots \\ 0\end{array}\right], \vec{v}_{2}^{\prime}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right], v_{j}^{\prime}=\left[\begin{array}{c}1 \\ -1 \\ 3\end{array}\right]\right\}$-orthog. basis for W.
Q: find an orthonormal basis for N.
Sol: normuize $\vec{v}_{1}, \vec{v}_{2}^{\prime}, \vec{v}_{3}^{\prime}$ to wit length: $\left\{\vec{u}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \vec{u}_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right], \vec{u}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1 \\ \vdots \\ 3\end{array}\right]\right\}$ - \% basis for W

QR factorization
THM (QR factorization)
if A is an $m \times n$ mat. with lin. indent. columns, then A can befactored as $A=Q R$ where Q is an $m \times n$ mad whose columns form a $0 / n$ bars for ColA and R is an $n \times n$ upper triangular invertible mat, with positive diagonal aries.

Idea: $A=\left[\vec{x}_{1}, \vec{x}_{n}\right], \hat{L}_{j}^{\prime \prime}=\operatorname{Sqan}_{\text {an }}\left\{\vec{x}_{1}, \ldots, \vec{x}_{1}\right\} \subset \mathbb{R}^{m}$
\{Gram-Schmidl (taoradization)
$\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}-o / n$ bris for W.

$$
\begin{aligned}
& \vec{x}_{k}=r_{1 k} \vec{u}_{1}+\ldots+r_{k+k} \vec{u}_{k-1}+\underset{r_{k k}}{r_{k} \vec{v}_{k} \|>0} \vec{u}_{k}+0 \cdot \vec{u}_{k+1}+\ldots+0 \cdot \vec{u}_{n} \quad \text {-from Gran-Schidt } \\
& \Rightarrow A=\underbrace{\left[\begin{array}{lll}
\vec{u}_{1} & \cdots & \vec{u}_{n}
\end{array}\right]}_{Q}\left[\begin{array}{ccccc}
r_{11} & r_{12} & \ldots & r_{1 n} \\
0 & r_{22} & \ldots & r_{2 n} \\
\vdots & 0 & - & r_{2 n} \\
0 & \vdots & \ddots & \vdots & r_{n n}
\end{array}\right],
\end{aligned}
$$

Ex: $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ find the $Q R$ factorization
Sol: $Q=\left[\vec{u}_{1} \vec{u}_{2} \vec{u}_{3}\right]=\left[\begin{array}{ccc}-1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{12} \\ 1 / \sqrt{2} & 1 / \sqrt{6} & -1 / \sqrt{12} \\ 0 & 2 / \sqrt{6} & 1 / \sqrt{12} \\ 0 & 0 & 3 / \sqrt{12}\end{array}\right]$
a shortcut to get $R: \quad A=Q R \Rightarrow Q^{\top} A=Q^{\top} Q R=R$

$$
\text { So: } \left.R=Q^{\top} A=\cdots=\left[\begin{array}{ccc}
\sqrt{2} & 1 / \sqrt{2} & \sqrt{2} \\
0 & 3 / \sqrt{6} & 2 / \sqrt{6} \\
0 & 0 & 4 / \sqrt{12}
\end{array}\right]\right]^{I}
$$

