3/30/2020] $\left.\cdot \operatorname{Gram-Schmidt:~} W=\operatorname{Span}\left\{\vec{x}_{1}, \ldots, \vec{x}_{p}\right\} \sim \underset{\sim}{\text { orthog. bari }} \vec{v}_{n}\right\}$
LAST TIME

$$
\begin{aligned}
& \vec{v}_{1}=\vec{x}_{1} \\
& \left.\dot{\vec{v}_{k}}=\vec{x}_{k}-\text { proj} \vec{w}_{k-1} \vec{x}_{k}=\vec{x}_{k}-\frac{\vec{x}_{k} \cdot \vec{v}_{1}}{\vec{v}_{1} \vec{v}_{1}} \vec{v}_{1} \ldots-\frac{\vec{x}_{k} \cdot \vec{v}_{k-1}}{\vec{v}_{k-1} \cdot \vec{v}_{k-1}} \vec{v}_{k-1}\right\}
\end{aligned}
$$

$$
\left.\operatorname{span}_{\substack{\prime \\ x_{1}, \ldots}}, \vec{x}_{k-1}\right\}=\operatorname{Span}\left\{\vec{v}_{1},, \overrightarrow{v_{k-1}}\right\}
$$

-QR: $A=Q^{Q} R \quad$ finding $R: \quad R=Q^{\top} A$
$\left[\vec{x}_{1}, \ldots \vec{x}_{n}\right] \quad\left[\vec{u}_{1} \cdots \vec{u}_{n}\right]^{\nwarrow}$ upper triangular
lin: indep. columns normalized Gram. Schmidt
basis for ColA
6.5. Least-squares problems

Consider $A \vec{x}=\vec{b}$ an inconsistent system. Want $\hat{\vec{x}}$ st. $A \hat{\vec{x}}$ as close as pos: bleto \vec{b}
def for A man mat, $\vec{b} \in \mathbb{R}^{m}$, a least-squares solution of $A \vec{x}=\vec{b}$ is $\hat{\vec{x}} \in \mathbb{R}^{n}$ s.t. $\|\vec{b}-A \hat{\vec{x}}\| \leqslant\|\vec{b}-A \vec{x}\|$ for all $\vec{x} \in \mathbb{R}^{n}$.

Solution of the general least-squares problem
$\hat{\vec{b}}=\operatorname{proj}_{C_{0} \mid A} \vec{b}$ - closest point to \vec{b} on $\operatorname{Col} A$.
So: $A \hat{\vec{x}}=\hat{\vec{b}} \Rightarrow \vec{b}-A \hat{\vec{x}}$ orthog.to Col A

$$
\begin{aligned}
\Leftrightarrow \vec{a}_{j} \cdot(\vec{b}-A \hat{\vec{x}})=0, j=1, \ldots, n & \Leftrightarrow A^{\top}(\vec{b}-A \hat{\vec{x}})=0 \\
& \Leftrightarrow A^{\top} A \hat{\vec{x}}=A^{\top} \vec{b}
\end{aligned}
$$

-"normal equations" for $A \vec{x}=\vec{b}$
THM Set of least-squares solutions of $A \vec{x}=\vec{b}$
coincides with the (nonempty) set of solutions of the normal equations

$$
A^{\top} A \hat{\vec{x}}=A^{\top} \vec{b}
$$

Ex: $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 1\end{array}\right] \quad \vec{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \quad$ Qifnd the least-squates sol. of $A \vec{x}=\vec{b}$.

Sol: $A^{\top} A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}3 & 2 \\ 2 & 2\end{array}\right],\left(A^{\top} A\right)^{-1}=\frac{1}{2}\left[\begin{array}{cc}2 & -2 \\ -2 & 3\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -1 & 3 / 2\end{array}\right]$

$$
A^{\top} \vec{b}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
6 \\
5
\end{array}\right] \Rightarrow \hat{\vec{x}}=\left(A^{\top} A\right)^{-1}\left(A^{\top} \vec{b}\right)=\left[\begin{array}{cc}
1 & -1 \\
-1 & 3 / 2
\end{array}\right]\left[\begin{array}{l}
6 \\
5
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 / 2
\end{array}\right]
$$

- Distance from \vec{b} to the approximation $A \hat{\vec{x}}$ is the "least-squares error" of the approximation
Ex: In the example above,

$$
\text { least-squares error }=\|\vec{b}-A \vec{x}\|=\left\|\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{c}
1 \\
5 / 2 \\
5 / 2
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
0 \\
-1 / 2 \\
1 / 2
\end{array}\right]\right\|=\frac{\sqrt{2}}{2}
$$

- LS solution can be non-unique.

THM. Let A be an $m \times n$ mat. The following are equivalent:
(a) eq. $A \vec{x}=\vec{b}$ has a unique $L S$ sol. for each $\vec{b} \in \mathbb{R}^{m}$.
(b) columns of A are lin.indep.
(c) $A^{\top} A$ is invertible.

When these hold, LS solution is: $\quad \hat{\vec{x}}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}$
$\underline{E_{x}} \quad A=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right], \vec{b}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \quad \underline{\text { LS sol: }}: A^{\top} A=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 4 & 8\end{array}\right]$

$$
A^{\top} \vec{b}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
2 & 4 \\
4 & 8
\end{array}\right] \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{\hat{x}}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \rightarrow\left[\begin{array}{lll}
2 & 4 & 1 \\
4 & 8 & 2
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 2 & \frac{1}{2} \\
0 & i \\
0 & 0 \\
x_{2}-\text {-free va }
\end{array}\right.
$$

$$
\Rightarrow \hat{\vec{x}}=\left[\begin{array}{l}
1 / 2 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$ non-rivertible!

$$
x_{2} \text {-free var }
$$

Alternative way:
in col upectinus

THM If A m xn mat. with lin. indef. columns and $A=Q R$ decomposition, then for each $\vec{b} \in \mathbb{R}^{m}$, the $L \rho$ sol. of $A \vec{x}=\vec{b}$ is: $\hat{\vec{x}}=R^{-1} Q^{\top} \vec{b}$

Indeed:

$$
\begin{aligned}
& {\underset{\mu}{\top} \underbrace{Q^{\top} Q R}_{I}}_{A^{\top} A}^{A^{\top} b} \underset{R^{\top} Q^{\top} \vec{b}}{\overline{A^{-1}\left(R^{\top}\right)^{-1}}} . \\
& \int_{\text {invertible }} \text { I } \quad \text { instead of } f \cdot d n g R^{-1}
\end{aligned}
$$

Rem In practice, in it is easier to solve $R \vec{x}=Q^{\top} \vec{b}$
by row reduction/back rubistitution.

