2.4 Linear and nonlinear diff. equations

So far, every init. val. prob. We considered had a unique sol. (on some interval t)
THM1 (Existence \& Uniqueness of Solutions for $1^{\text {st }}$ order linear equations)
If p, g are continuous on interval $I, \alpha<t<\beta$ containing to, there exists a unique solution $y=\varphi(t)$ on I of the init. val. prob. $y^{\prime}+p(t) y=g(t)$ $y\left(t_{0}\right)=y_{0}$
[Idea: can construct tee explicit. by integrating factors]
THM2 (Existence \& Uniqueness for $1^{\text {st }}$ order non-linear equations) Consider init.val.prob. $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}(x)$ Assume that
f and $\frac{\partial f}{\partial y}$ are continuous in a reatangk $\begin{aligned} & \alpha<t<\beta \\ & r<y<\delta\end{aligned}$ containing (to, y_{0}).
Then a solution of $(*)$ exists and is unique in some interval $t_{0}-h<t<t_{0}+h$
 interval of existence and uniqueness contained in $\alpha<t<\beta$

Remark. THM2 gives a rufficient but nat necessary condition hor existence and uniqueness

- existence (but not uniqueness) of sol. Lollous just from catruity of f.

Ex: $t y^{\prime}+2 y=4 t^{2}, y(1)=2$. Q: Using The 1 , fud an interval on which sol. exists and is unique.

tue intervals: $I_{1}: 0<t<\infty \longleftarrow$ catains $t_{0}=1 \Rightarrow$ Sol. exists and is $I_{2}:-\infty<t<0 \quad$ unique for $0<t<\infty$.
Note: if init. cord. were $y(-1)=2$, interval of existence would be $-\infty<t<0$.
Ex: (a) $\frac{d y}{d x}=\left(\frac{3 x^{2}+4 x+2}{2(y-1)}\right)^{f(x, y)}, y(0)=-1 \quad$ apply THM 2.
Sol: $f=\frac{3 x^{2}+4 x+2}{2(y-1)}, \frac{\partial f}{\partial y}=-\frac{3 x^{2}+4 x+2}{2(y-1)^{2}}$ continuous away from the line $y=1$
(a) THM2 guaranties Had sol. exists and is unique for $-h<+<h$ for same h

(in fact, from explicit sol: it exists \& is unique hor $-2<t<\infty$)
(b) Cannot draw a rectangle around $(0,1)$ where $f, \frac{\partial f}{\partial y}$ are cart.

So, tHM2 doen't say anything!
(I. fact, from separation of variables, $y=1 \pm \sqrt{x^{3}+2 x^{2}+2 x}$ for $x>0$-two solutions that exist only to ore sickle of init.)
Ex 3: $y^{\prime}=\left(y^{\prime \prime / 3}\right)^{\prime \prime}, y(0)=0{ }^{(*)}$ Q: apply THM2, solve init. val. prods. cord.

$$
\begin{aligned}
& y=\varphi_{1}(t)=\left(\frac{2}{3} t\right)^{3 / 2}, t \geqslant 0 \\
& y=\varphi_{2}(t)=-\left(\frac{2}{3} t\right)^{3 / 2}, t \geqslant 0 \quad-t+0 \text { solutions of }(*)
\end{aligned}
$$

There are even more! $\quad y=\mu(t)=\left\{\begin{array}{llr}0, \text { if } 0 \leq t<t_{0} & \begin{array}{c}\text { differentiable } \\ \pm\left(\frac{2}{3}\left(t-t_{0}\right)\right)^{3 / 2},\end{array} \geqslant t_{0} & \text { everyandere } \\ \text { including to }\end{array}\right.$
 for any $t_{0} \geqslant 0$

- iffuitely many solution of the wist. val. pebbles (x)

Interval of existence: $\quad y^{\prime}+p(t) y=g(t)$

$$
y\left(t_{0}\right)=y_{0}
$$

sol. can be cone singular only of valuer of t for which p org is sing.
Solutions may sometimes remain continuous even at the pint of discodinuity of cofficients:

$$
\left.\begin{array}{rl}
y^{\prime}+\frac{2}{t} y & =4 t \\
y(1) & =1
\end{array}\right\} \rightarrow y=t^{2}
$$

- For a nonlinear eq., interval of existence-difficalt to determine.

Ex: $y^{\prime}=y^{2}, y(0)=1$-defernive the interval a which the rd. exists.
Sol: $y^{-2} d y=d t \rightarrow-y^{-1}=t+c \rightarrow y=-\frac{1}{t+c} \quad$ wit. on. $\rightarrow c=-1$

$$
+y=-\frac{1}{t-1}=\frac{1}{1-t}
$$

interval of existence $-\infty<t<1$.
Note: pout $t=1$ does not reed remarkalk in any way from the eq.!
If nit cad is $y(0)=y_{0}$, then $c=-\dot{y}_{0}^{-1}$ and $y=\frac{y_{0}}{1-y_{0} t}$
interval of exatence: $-\infty<t<1 / y_{0}$

$$
\text { if } y_{0}<0
$$

$$
\begin{gathered}
\text { linear eq. } \\
y^{\prime}+p(t) y=g(t)
\end{gathered}
$$

there is a general sol. depending
might be exceptional solutions
sol. is give- explicitly,

$$
y=\cdots
$$

inglicat solute, $F(t, y)=0$ <separable case>
possible points of ducathunty
by funding the ports ad disc.
of the coefficients

