$1 / 10 / 2022$
Systems of linear equations (Poole 2.1,2.2)
variables (indeterminates)
Linear equation:

$$
\begin{aligned}
& \text { coefficients constant team } \\
& \text { giver real/complex numbers }
\end{aligned}
$$

System of linear equations:
m equations on n variables \rightarrow set of all solutions

Ex: (a) $\quad x_{1}-x_{2}=1 \quad\left(e_{1}\right)$

$$
x_{1}+2 x_{2}=4 \quad\left(\text { eq }_{2}\right)
$$

(b)

$$
\begin{gathered}
x_{1}-x_{2}=1 \\
-2 x_{1}+2 x_{2}=4
\end{gathered}
$$

(c)

$$
\begin{aligned}
x_{1}-x_{2} & =1 \\
-2 x_{1}+2 x_{2} & =-2
\end{aligned}
$$

lines coincide \rightarrow infinitely mary solutions. $x_{1}=x_{2}+1, x_{2}$ any number

Any linear system has either (1) no solutions
or (2) exactly one solution
or (3) infinitely mary solutions

Solving a linear system
$\varepsilon_{x}{ }^{1}:$

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-x_{3} & =2 \\
5 x_{3} & =-5
\end{aligned}
$$

$\underset{\text { Solve }}{ } x_{3}=-1$
system ina triangular (echelon)

Solve
for x_{3}
form
\Rightarrow the unique solution is $(3,1,-1)$. This method of solving a system in triangular form is called "back substitution"

Matrix notation
2 Solve the system
Ex: $\quad x_{1}-2 x_{2}+x_{3}=0$

$$
3 x_{2}-3 x_{3}=6
$$

$$
2 x_{1}+3 x_{3}=3
$$

(coefficients of each' vamable aligned in columns)
$\underset{\substack{\text { matrix off } \\ \text { coefficients }}}{ }\left[\begin{array}{rrr}1 & -2 & 1 \\ 0 & 3 & -3 \\ 2 & 0 & 3\end{array}\right]$

How to solve the system?

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 3 & -3 \\
2 & 0 & 3
\end{array}\right]} \\
& \left.\begin{array}{c}
\text { 3rous (3 equations) } \\
\text { alums (3 variables) }
\end{array}\right\} \Rightarrow \begin{array}{cc:c}
\text { matrix of } \\
\text { size } 3 \times 3
\end{array} \\
& {\left[\begin{array}{ccc:c}
1 & -2 & 1 & 0 \\
0 & 3 & -3 & 6 \\
2 & 0 & 3 & 3
\end{array}\right]}
\end{aligned} \begin{aligned}
& \text { a } 3 \times 4 \\
& \text { matrix }
\end{aligned}
$$

Idea: . use x_{1} term in eq. to eliminate x_{1} f som other eggs

- use x_{2} termin eq 2 ta eliminate x_{2} from other eqs, etc.
\rightarrow obtain a very simple equivalent linear sys. (with same solution set)

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
3 x_{2}-3 x_{3} & =6 \\
+3 x_{3} & =3
\end{aligned} \quad\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 3 & -3 & 6 \\
2 & 0 & 3 & 3
\end{array}\right] \quad\left[R_{3} \rightarrow R_{3}-2 R_{1}\right.
$$

- Kep X_{1} in eq and eliminate it from other eqs: add (-2)eq to eq 3

$-2 \cdot$ eq. $e q_{3}$	$-2 x_{1}+4 x_{2}-2 x_{3}=0$ nev eq 3
$2 x_{1}$ $+3 x_{3}=3$ $4 x_{2}+x_{3}=3$	

new $\quad x_{1}-2 x_{2}+x_{3}=0$
system:

$$
\begin{aligned}
& -2 x_{2}+x_{3}=0 \\
& 3 x_{2}-3 x_{3}=6 \\
& 4 x_{2}+x_{3}=3
\end{aligned} \quad\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 3 & -3 & 6 \\
0 & 4 & 1 & 3
\end{array}\right]
$$

- multiply eq 2 by $\frac{1}{3}$, to get 1 as coff of x_{2} in eq 2

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-x_{3} & =2 \\
4 x_{2}+x_{3} & =3
\end{aligned}
$$

(optional -simplifies the next step)

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -1 & 2 \\
0 & 4 & 1 & 3
\end{array}\right]
$$

$$
R_{2} \rightarrow R_{2} \cdot \frac{1}{3}
$$

- use x_{2} term in eq q to eliminate x_{2} from eq u: \quad eq $\rightarrow e q_{3}-s e q_{2}$

$$
\left.\left.\begin{array}{rr}
-4 e q_{2} & -4 x_{2}+4 x_{3}=-8 \\
\frac{e q_{3}}{\text { new } e q_{3}} & \frac{4 x_{2}+x_{3}=3}{5 x_{3}=-5}
\end{array}\right)\left(\begin{array}{ccc}
\left(x_{1}-2 x_{2}+x_{3}=0\right. \\
x_{2}-x_{3}=2 \\
5 x_{3}=-5
\end{array}\right)\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & 0 & 5 \\
0
\end{array}\right] \quad-5\right]
$$

system in triangular form/ from Ex ${ }^{1}$ - can solve by back substitution

- This method of solving a lin. sys. is called "Gaussian elimination

Another way to proceed:

- \quad eq $q_{3} \rightarrow \frac{1}{5}$ eq_

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}=0 \\
x_{2}-x_{3}=2 \\
x_{3}=-1
\end{array}
$$

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -1 & 2 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

- eliminate x_{3} from eq.eq2:

$$
\begin{aligned}
& e q_{1} \rightarrow e q_{1}-e q_{3} \\
& e q_{2} \rightarrow e q_{2}+e q_{3}
\end{aligned}
$$

- eliminate x_{2} from eq:

$$
\begin{array}{ll}
e q_{1} \rightarrow e q_{1}+2 e q_{2} & x_{1} \\
& =3 \\
x_{2} & =1 \\
x_{3} & =-1
\end{array} \quad\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

- we proved that the only sol. of the original system is $(3,1,-1)$.
- This method is called Gauss-Jordan elimination.

Check: $\quad 1 \cdot 3-2 \cdot 1+1(-1)=0$
(substitute $\quad 3 \cdot 1-3 \cdot(-1)=6$
Auto orig, says.)

$$
2 \cdot 3+3(-1)=3
$$

solving a lin. sys. We use the operations
(1) replace an eq. with itself plus a multiple of another eq.
(2) interchange two egs
(3) multiply an eq. by a nonzero constant
far the aug. mat, we perform the sorrespondyy (4) elementary row operations
(1) (Replacement): $\quad R_{i} \rightarrow R_{i}+c R_{j}, j \neq i$
(2) (Interchange): $R_{i} \longleftrightarrow R_{j}$
(3) (scaling): $\quad R_{i} \rightarrow C R_{i}, C \neq 0$
def Two matrices are now equivalent iff they can be transomed one into the other by a sequence of elem. row operations

- Raw operations are reversible
- If the aug. mat. of two lin. systems are row equivalent, then the two systems have same sol. set.

Rou reduction and echelon forms

- leading entry = leftmost nonzero entry
- a rectangular matrix is in "row echelon form" (REF) if
- all nonzero rows are above zero rows
- each leading entry is to the left of any leading entries below it
-all entries is a column below a leading att are zero. (this is automatic)
$\varepsilon_{x}:$

$$
\left[\begin{array}{lll}
\substack{\text { pion } \\
0} & * & * \\
0 & * \\
0 & 0 & * \\
0 & 0 & 0
\end{array} 0\right.
$$

$\nRightarrow 0$ are leading entries

* any entries

A matrix is in reduced row echelon form (RREF) if additionally

- all leading entries are 1
- each leading 1 is the only nonzero entry in its column.

$$
\varepsilon_{x}:\left[\begin{array}{llll}
1 & 0 & * & * \\
0 & 1 & * & * \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllllll}
0 & 1 & * & 0 & 0 & * & 0 \\
0 & 0 & 0 & 1 & 0 & * & 0 \\
0 & 0 & 0 & 0 & 1 & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

