$$
\varepsilon_{x i}
$$

a matrix in REF
a matrix in RREF

$$
\left[\begin{array}{cccc}
-2 & 0 & 3 & 5 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 4 \\
0 & 1 & 3 & 0 & 5 \\
0 & 0 & 0 & 1 & 6
\end{array}\right]
$$

pivot positions
pivot columns

Any matrix can be roc reduced Ctransforered by a sequence of elem.
into more than one matrix in REF. Hoverer, RREF of a matrix is unique.

- Leading entries are always in the same position for any REF of A
=pivot positions. A column containing a pivot pr. = "pivot columns"
f. Leading entries in a REF of $A=$ "pivots"

Row reduction algorithm
matrix $A \underset{\text { steps I-v }}{\longrightarrow}$ REF of $A \xrightarrow[\text { step } V]{\longrightarrow}$ RREF of A
"forward phase"
"backward phase"
Ex:

$$
A=\left[\begin{array}{ccccc}
1 & 5 & 2 & -6 & -1 \\
2 & 1 & 9 & 9 & 6 \\
2 & 4 & 0 & 6 & 0
\end{array}\right]
$$

Step 1: begin with leftmost nonzero column. It is a pivot column. Pivot positanis at the top.
Ster I: Select a nonzero entry: pinot col as pivot.
If necessary, interchange sous to move the entry ito pivot pos.

internal
$R \leftrightarrow R_{3}$

$$
R_{1} \leftrightarrow R_{3}\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
2 & 1 & 9 & 9 & 6 \\
0 & 2 & -6 & -1 & -2
\end{array}\right]
$$

Step III: Use row replacement to create zeros in all position below pivot.

$$
\xrightarrow[R_{2}+R_{2}-R]{ }\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
0 & -3 & 9 & 3 & 6 \\
0 & 2 & -6 & -1 & -2
\end{array}\right]
$$

Step IV: Ger (or ignore) the row containing the pinot pos. aid all rows above it
Apply steps I-III to remaining submatrix.
Repeat until there are no rows left to modify.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
0 & -3 & 9 & 3 & 6 \\
0 & 2 & -6 & -1 & -2
\end{array}\right] \xrightarrow[\text { neo parol }]{\substack{0 \\
R_{3} \rightarrow R_{3}}} \xrightarrow{\longrightarrow}+\frac{2}{3} R_{2}\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
0 & -3 & 9 & 3 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \xrightarrow[R_{2} \rightarrow \frac{-1}{3} R_{2}]{\text { coptianal) }}\left[\begin{array}{ccccc}
2 & 4 & 0 & 6 & 0 \\
0 & 1 & -3 & -1 & -2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]} \\
& \text { already: REF } \\
& \Rightarrow \text { Step IV stops }
\end{aligned}
$$

If we want RREF:
Step V: Beginning with rightmost pivot and working upua-d and to the left create zeros above each pivot. If pivot is not 1, make it 1 by rescaling rows.

$$
\begin{aligned}
& \xrightarrow[\text { rescale }]{\longrightarrow}\left[\begin{array}{ccccc}
1 & 0 & 6 & 0 & -6 \\
0 & 1 & -3 & 0 & 0 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \leftarrow R R E F \text { of } A \text {. } \\
& R_{1} \rightarrow \frac{1}{2} R_{\text {, }}
\end{aligned}
$$

Theorem (i) RREF of any matrix is unique (but REF is not)
(ii) For any REF of a matrix A, leading entries are always inthesame positions - "plush positions"
Gaussian Elimination
-algorithm for solving linear systems:
(1) Write down the augmented matrix of the system
(2) Reduce the augm. mat. to REF
(3) Solve the lin. sys. corresponding to REF by bacle substitution.

Ex: Solve the system.

$$
\begin{aligned}
& \begin{array}{c}
2 x_{2}+3 x_{3}=8 \\
2 x_{1}+3 x_{2}+x_{3}=5 \\
x_{1}-x_{2}-2 x_{3}=-5
\end{array} \longrightarrow\left[\begin{array}{ccc:c}
0 & 2 & 3: 8 \\
2 & 3 & 1: 5 \\
1 & -1 & -2:-5
\end{array}\right] \xrightarrow[R_{1} \leftrightarrow R_{3}]{\longrightarrow}\left[\begin{array}{ccc:c}
1 & -1 & -2: 5 \\
2 & 3 & 1 & 5 \\
0 & 2 & 3 & 8
\end{array}\right] \\
& \xrightarrow[R_{2} \rightarrow R_{2}-2 R_{1}]{\longrightarrow}\left[\begin{array}{ccc:c}
1 & -1 & -2 & -5 \\
0 & 5 & 5 & 15 \\
0 & 2 & 3 & 8
\end{array}\right] \xrightarrow[R_{2}-\frac{1}{5} R_{2}]{ }\left[\begin{array}{ccc:c}
1 & -1 & -2 & -5 \\
0 & 1 & 1 & 3 \\
0 & 2 & 3 & 8
\end{array}\right]
\end{aligned}
$$

back substitution: $x_{3}=2, x_{2}=9-x_{3}=1, x_{1}=-5+x_{2}+2 x_{3}=-5+1+2.2=0$ Solution: $\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$ (we will be writing solution as colum-vectors)

Ex: Solve the system

$$
\begin{aligned}
& w-x-y+2 z=1 \\
& 2 w-2 x-y+3 z=3 \\
& -w+x-y=-3 \\
& \underset{\text { Aug. Mat. }}{\sim}\left[\begin{array}{cccc|c}
1 & -1 & -1 & 2 & 1 \\
2 & -2 & -1 & 3 & 3 \\
-1 & 1 & -1 & 0 & -3
\end{array}\right] \underset{R_{2}-2 R_{1}}{\longrightarrow}\left[\begin{array}{cccc|c}
1 & -1 & -1 & 2 & 1 \\
0 & 0 & 1 & -1 & 1 \\
-1 & 1 & -1 & 0 & -3
\end{array}\right] \\
& \xrightarrow[R_{3}+R_{1}]{\longrightarrow}\left[\begin{array}{cccc|c}
1 & -1 & -1 & 2 & 1 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & -2 & 2 & -2
\end{array}\right] \underset{R_{3}+2 R_{2}}{ }\left[\begin{array}{cccc|c}
1 & -1 & -1 & 2 & 1 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad R E F
\end{aligned}
$$

-aug.mat. for $\quad w-x-y+2 z=1$

$$
y-z=1
$$

- infinitely many solutions
variables w, y correspond to leading entries in REF, they are "leading variables" other observables are called "free variables" - parameters for solutions x, z
back substitution: $y=1+z$
- we express leading

$$
w=1+x+y-2 z=2+x-z
$$ vars : t terns of free vars.

assign parameters $x=s, z=t$

$$
\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{cc}
2+s-t \\
s & t \\
t & t
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1 \\
1
\end{array}\right] \quad \begin{aligned}
& \text { - parametric } \\
& \text { solution } \\
& \text { of the system }
\end{aligned}
$$

Ex: Solve

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3} & =3 \\
x_{1}+2 x_{2}-x_{3} & =-3 \\
2 x_{2}-2 x_{3} & =1
\end{aligned} \quad \text { Aug Mat }\left[\begin{array}{ccc|c}
1 & -1 & 2 & 3 \\
1 & 2 & -1 & -3 \\
0 & 2 & -2 & 1
\end{array}\right]
$$

$$
\rightarrow \ldots \rightarrow\left[\begin{array}{ccc|c}
1 & -1 & 2 & 3 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3} & =3 \\
x_{2}-x_{3} & =-2
\end{aligned}
$$

$0=5$ system is in consistent!

- Generally: a system is inconsistent iff REF of Aug. Mat. contains a row $[0 \cdots 01 b], b \neq 0$

Gauss-Jordan elimination
(1) Write the aug. mat. for the lin. sys.
(2) Reduce it to RREF by elem, row operations
(3) If the resulting system is consistent, solve for leading variables in terms of free variables.

Ex* (revisited)
REF of Aug. Mat. $\left[\begin{array}{cccc|c}1 & -1 & -1 & 2 & 1 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \underset{R_{1}+R_{2}}{\longrightarrow}\left[\begin{array}{cccc|c}1 & -1 & 0 & 1 & 2 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\omega \begin{array}{llll}\omega & x & y & z \\ & 11 & & 11 \\ s & & & t\end{array}$

$$
\begin{aligned}
& w-x+z=2 \rightarrow \begin{array}{l}
w=2+x-z \\
y-z=1 \\
y=1+z
\end{array} \\
& \Rightarrow\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2+s-t \\
s \\
+t \\
t
\end{array}\right]
\end{aligned}
$$

Def For A a matrix, rank of A is the number of pivots in a REF of A (= number of nonzero rows in a REF of A)

$$
T=\text { \# pivot oblemns) }
$$

Rank theorem: Let A be the coefficient matrix of a lin. sys, with n variables. If the system is consistent, then $\#$ free variables $=n-r a n k A$

- A consistent system has: infinitely many solutions if there are $\geqslant 1$ free unique sol. if there are no free vars.

Vector equations
Let $\vec{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \vec{v}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ be two vectors in \mathbb{R}^{2}

$$
x\left[\begin{array}{l}
1 \\
2
\end{array}\right]+y\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
x \\
2 x
\end{array}\right]+\left[\begin{array}{l}
3 y \\
4 y
\end{array}\right]=\left[\begin{array}{l}
x+3 y \\
2 x+4 y
\end{array}\right] \quad \begin{aligned}
& \text { - } \text { inear combination } \\
& \text { of } \vec{u}, \vec{v}
\end{aligned}
$$

Generally, for $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$ vectors in \mathbb{R}^{n}, $x_{1} \vec{v}_{1}+\ldots+x_{k} \vec{v}_{k}-l_{i n e a r ~ c o m b i n a t i o n ~}$
$\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{2}\right)=$ Set of all lInear combinations $x_{1} \vec{v}_{1} \ldots+x_{k} \vec{v}_{k}$ with $x_{1}, \ldots, x_{k} \in \mathbb{R}$

Ex: $\vec{\omega}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ in $\operatorname{span}\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right]\right)$?
Sol: want to solve the vector eq. $\quad x\left[\begin{array}{l}1 \\ 2\end{array}\right]+y\left[\begin{array}{l}3 \\ 4 \\ \vec{u}\end{array}\right]=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$

$$
\Leftrightarrow \quad 2 x+4 y=0
$$

Aug. Mat. : $\left[\begin{array}{lc}\left(\begin{array}{c}1 \\ 2\end{array}\right. & \left.\begin{array}{c}3 \\ 4 \\ 4\end{array}\right) \\ \vec{v} & \left(\begin{array}{c}-1 \\ 0 \\ \vec{b}\end{array}\right]\end{array} \rightarrow\left[\begin{array}{cc|c}1 & 3 & -1 \\ 0 & -2 & 2\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & 0 & 2 \\ 0 & 1 & -1\end{array}\right] \Rightarrow \underset{\text { solution - }}{y=-1} \begin{array}{l}x=2 \\ y=-1\end{array}\right.$

$$
\Rightarrow \vec{w}=2 \vec{u}-\vec{v} \quad \Rightarrow \vec{w} \in \operatorname{spar}(\vec{u}, \vec{v})
$$

- linear combination
$\mathcal{E}_{x}:$ is $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ in $\operatorname{span}\left(\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]\right)$?

$$
\left[\begin{array}{ll|l}
1 & 2 & 1 \\
0 & 1 & 2 \\
1 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 2 & 1 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & 0 & -3 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right] \quad \begin{gathered}
x_{1}=-3 \\
x_{2}=2 \\
0=2 \\
0=2
\end{gathered} \text { no solution, }
$$

