Vector equations
Let $\vec{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \vec{v}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ be two vectors in \mathbb{R}^{2}

$$
x\left[\begin{array}{l}
1 \\
2
\end{array}\right]+y\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
x \\
2 x
\end{array}\right]+\left[\begin{array}{l}
3 y \\
4 y
\end{array}\right]=\left[\begin{array}{l}
x+3 y \\
2 x+4 y
\end{array}\right] \begin{aligned}
& \text { - linear combination } \\
& \text { of } \vec{u}, \vec{v}
\end{aligned}
$$

Generally, for $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$ vectors :i \mathbb{R}^{n},
$x_{1} \vec{v}_{1}+\ldots+x_{k} \vec{v}_{k}-l_{\text {near combination }}$
$\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)=\operatorname{set}$ of all Inear combinations $x_{1} \vec{v}_{1} \ldots+x_{2} \vec{v}_{k}$ with $x_{1}, \ldots, x_{k} \in \mathbb{R}$
Ex: $\vec{\omega}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ in $\operatorname{span}\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right]\right)$?
Sol: want to solve the vector eq. $\left.\quad x \quad \begin{array}{cc}\quad\left[\begin{array}{l}1 \\ 2\end{array}\right] & \underset{\vec{u}}{y+3 y}=-1 \\ x+y \\ x+3 \\ 4\end{array}\right]=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$

$$
\Leftrightarrow \quad \begin{aligned}
x+3 y & =-1 \\
2 x+4 y & =0
\end{aligned}
$$

$$
\Rightarrow \quad \vec{\omega}=2 \vec{u}-\vec{v} \quad \Rightarrow \vec{\omega} \in \operatorname{span}(\vec{u}, \vec{v})
$$

- linear combination
$\varepsilon_{x}:$ is $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ in $\operatorname{span}\left(\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]\right)$?

$$
\left[\begin{array}{ll|l}
1 & 2 & 1 \\
0 & 1 & 2 \\
1 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 2 & 1 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll|r}
1 & 0 & -3 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right] \quad \begin{aligned}
& x_{1}=-3 \\
& x_{2}=2 \\
& 0=2)! \\
& 0=2
\end{aligned} \text { so, NOluntos, }
$$

Matrix -vector product
For $A=\left[\begin{array}{ccc}\vec{a}_{1} & \ldots & \vec{a}_{n} \\ r & \tau\end{array}\right]$ an $m \times n$ matrix, $\vec{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ a vector in \mathbb{R}^{n}, columns $\in \mathbb{R}^{m}$
the matrix -vector product $A \vec{x}:=\underbrace{x \vec{a}_{1}+\ldots+x_{n} \vec{a}_{n}}_{\text {lin.comb. of columns of } A}$ is a vector: \mathbb{R}^{m}.
Ex: $\left[\begin{array}{cc}{\left[\begin{array}{cc}1 \\ 2 & 0 \\ 1 & -2 \\ 3\end{array}\right]}\end{array}\right]\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]=2\left[\begin{array}{l}1 \\ 2\end{array}\right]+0\left[\begin{array}{l}0 \\ 1\end{array}\right]+1\left[\begin{array}{c}-2 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 7\end{array}\right]$
$\vec{a}_{1} \vec{a}_{2}$
\vec{a}_{3}
matrix equation

$$
\underbrace{A}_{\text {given }} \vec{x}=\underbrace{\vec{b}}_{\text {given vector }} \quad \Leftrightarrow x_{1} \overrightarrow{\mathbb{R}}^{m} \vec{a}_{1}+\ldots+x_{n} \vec{a}_{n}=\vec{b}
$$

$A=\left[\vec{a}_{1}-\vec{a}_{1}\right]$ unknown vector: in \mathbb{R}^{n}

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{1} \\
x_{1}
\end{array}\right]
$$

Ex: $\left.\begin{array}{ll}1 & 2 \\ 0 & 1 \\ 1 & 2\end{array}\right] \underbrace{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]}_{\vec{x}}=\underset{\vec{b}}{\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right]} \Leftrightarrow x_{1}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]+x_{2}\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right] \Leftrightarrow \begin{array}{r}x_{1}+2 x_{2}=3 \\ x_{2}=2 \\ x_{1}+2 x_{2}=3\end{array}$
lin. syst e- with aug. mat.

$$
\left[\begin{array}{ll|l}
1 & 2 & 3 \\
0 & 1 & 2 \\
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{lll}
A & \mid & \vec{b}
\end{array}\right]
$$

Operations on matrices - can solve for x_{1}, x_{2} by nous reduction. reduction.
Let $M_{m n}$ - Set of matrices $\stackrel{L}{m \times n}$,
for $A \in M_{m n}$, let $A_{i j}$ be the entry at row i, column j in $A($ " (i, j)-entry")

- Scalar multiple:

$$
\left.\begin{array}{l}
\text { (3). }
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
3 & 6 & 9 \\
12 & 15 & 18
\end{array}\right]
$$

- each matrix entry gets multiplied by the scalar
- Addition: $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]+\left[\begin{array}{ccc}0 & -1 & 1 \\ -1 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 1 & (4) \\ 3 & 6 & 6\end{array}\right]$
for $A, D \in M_{m n}$ matrices of sane size, $(A+B)_{i j}=A_{i j}+B_{i j}$
$\left[\begin{array}{lll}1 & 2 & 0 \\ 4 & 5 & 6\end{array}\right]+\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right] \quad-n o t$ defined! (antrices of different sizes)
- Matrix product
def If A is an $m \times n$ matrix, B is an $n \times r$ matrix, then the product $C=A B$ is an $m \times r$ matrix with (i, j)-entry

$$
\begin{aligned}
& C_{i j}=A_{i 1} B_{1 j}+A_{i 2} B_{2 j}+\ldots+A_{i n} B_{n j}=\left(i^{- \text {th }} \text { row of } A\right) \cdot\left(j^{\text {th }} \text { column of } B\right) \\
& \begin{aligned}
\left.\left.E_{x}: \begin{array}{ccc}
{\left[\begin{array}{ccc}
1 & 0 & 5 \\
0 & 2 & -1
\end{array}\right]} \\
\Delta & {\left[\begin{array}{cc}
-1 & -1 \\
1 & 0 \\
2 & 1
\end{array}\right]} & {\left[\begin{array}{cc}
1(-1)+0 \cdot 1+5 \cdot 2 & 1(-1)+0 \cdot 0+5 \cdot 1 \\
0(-1)+2 \cdot 1+(-1) 2 & 0(-1)+2 \cdot 0+(-1) \cdot 1
\end{array}\right]} \\
2 \times 3 & 3 \times 2
\end{array}\right] \begin{array}{ll}
0 & 4
\end{array}\right]
\end{aligned} \\
& =\left[\begin{array}{cc}
9 & 4 \\
0 & -1
\end{array}\right] \\
& E_{x}:\left[\begin{array}{llc}
1 & 0 & 5 \\
0 & 2 & -1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1(-1)+0 \cdot 1+5 \cdot 2 \\
0(-1)+2 \cdot 1+(-1) \cdot 2
\end{array}\right]=(-1)\left[\begin{array}{l}
1 \\
0
\end{array}\right]+1 \cdot\left[\begin{array}{l}
0 \\
2
\end{array}\right]+2 \cdot\left[\begin{array}{c}
5 \\
-1
\end{array}\right] \\
& \text { A } \\
& \text {-as :- def. of } A \vec{x} \text {. } \\
& \text { Ex: }\left[\begin{array}{ccc}
1 & 0 & 5 \\
0 & 2 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text {-not defined! } \\
& { }^{2 \times(3)} \not{ }^{(2) \times 2}
\end{aligned}
$$

Properties: $\cdot(A B) C=A(B C)$

$$
\text { - } A I_{n}=I_{m} A=A \text {, }
$$

- $A B \neq B A$ generally! $I_{n}=\left[\begin{array}{lll}1 & 0 \\ 0 & \ddots & 1\end{array}\right] \begin{gathered}\text { non "identity" } \\ \text { matrix }\end{gathered}$
- Another way to compute matrix product: $A \underline{B}=\left[A \vec{b}, \cdots A \vec{b}_{r}\right]$

$$
\left[\begin{array}{lll}
\vec{b}_{1} & \cdots & \vec{b}_{r} \\
\text { columns }
\end{array}\right]
$$

Matrix transpose for A an $m \times n$ matrix, its transpose A^{\top} is an $n \times m$ with $\left(A^{\top}\right)_{i j}=A_{j i}$
$\mathcal{E}_{x}: A=\left[\begin{array}{ccc}1 & 0 & 5 \\ 0 & 2 & -1\end{array}\right] \rightarrow A^{\top}=\left[\begin{array}{cc}1 & 0 \\ 0 & 2 \\ 5 & -1\end{array}\right]$

Matrix inverse
For A non matrix, A is "invertible" if there exists an n en mat. B st. $A B=B A=I_{n}$. Then $B=: A^{-1}$ is called the here of A.

- 2×2 case: $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \Rightarrow A$ is invertible :ff $\left.\frac{(a d-b c}{}\right) \neq 0$

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Ex: $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] \quad a d-b c=2.2-1 \cdot 3=1, \quad A^{-1}=\frac{1}{1}\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]$ check: $A A^{-1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Gauss-Jordan method for funding A^{-1} consider the matrix $\left[A \mid I_{n}\right] \xrightarrow[\text { row reduce }]{ }\left[I_{n} \mid B\right]$ then $A^{-1}=B$ to RREF
if RREF: s not of this Loom, then A is not invertible
Ex:

$$
\begin{aligned}
& \rightarrow\left[\begin{array}{cc|cc}
2 & 0 & 4 & -2 \\
0 & \frac{1}{2} & -\frac{3}{2} & 1
\end{array}\right] \underset{\frac{1}{2} R_{1}}{\underset{A^{-1}}{\longrightarrow}}\left[\begin{array}{cc|cc}
1 & 0 & 2 & -1 \\
0 & 1 & -3 & 2
\end{array}\right]
\end{aligned}
$$

Linear transformations

- A transformation (or function, or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rale assigning be each vector $\vec{v} \in \mathbb{R}^{n}$ some vector $T(\vec{v}) \in \mathbb{R}^{m}$
- Atrasforanaton $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if
(a) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for any $\vec{u}, \vec{v} \in \mathbb{R}^{n}$
(b) $T(c \cdot \vec{v})=c T(\vec{v})$
scalar

Ex: for A an $m \times n$ matrix, $T(\vec{v}):=A \vec{v}{ }^{(*)}$ is a C near transf. (matrixtians. determined by A).
Theorem Any linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix trave. (*), with $A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right) \ldots T\left(\vec{e}_{1}\right)\right]$ where $\vec{e}_{i}=\left[\begin{array}{c}0 \\ \vdots \\ \vdots \\ \vdots\end{array}\right] \leqslant i^{\text {th place }} \in \mathbb{R}^{n}$

$$
\text { "standard matrix" of } T
$$

$$
=i^{\text {th }} \text { column of } I_{n} \text {. }
$$

Ex: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(\vec{v})=3 \vec{v} \Rightarrow$

$$
\begin{aligned}
\text { stand. matrix }= & {\left[\begin{array}{l}
3 \\
3 \\
0
\end{array}\binom{0}{3}\right] } \\
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right) T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right. \\
\vec{e}_{1} & \vec{e}_{2}
\end{aligned}
$$

